Ultra-Low Resistance Dual SPDT Analog Switch

The NLAS4684 is an advanced CMOS analog switch fabricated in Sub-micron silicon gate CMOS technology. The device is a dual Independent Single Pole Double Throw (SPDT) switch featuring Ultra-Low R_{ON} of 0.5 Ω , for the Normally Closed (NC) switch, and 0.8 Ω for the Normally Opened switch (NO) at 2.7 V.

The part also features guaranteed Break Before Make switching, assuring the switches never short the driver.

The NLAS4684 is available in a 2.0 x 1.5 mm bumped die array. The pitch of the solder bumps is 0.5 mm for easy handling.

Features

- Ultra-Low R_{ON}, $< 0.5 \Omega$ at 2.7 V
- Threshold Adjusted to Function with 1.8 V Control at V_{CC} = 2.7-3.3 V
- Single Supply Operation from 1.8-5.5 V
- Tiny 2 x 1.5 mm Bumped Die
- Low Crosstalk, < 83 dB at 100 kHz
- Full 0-V_{CC} Signal Handling Capability
- High Isolation, -65 dB at 100 kHz
- Low Standby Current, <50 nA
- Low Distortion, < 0.14% THD
- R_{ON} Flatness of 0.15 Ω
- Pin for Pin Replacement for MAX4684
- High Continuous Current Capability
 ± 300 mA Through Each Switch
- Large Current Clamping Diodes at Analog Inputs ±300 mA Continuous Current Capability
- Pb-Free Packages are Available

Applications

- Cell Phone
- Speaker Switching
- Power Switching
- Modems
- Automotive

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS

Microbump-10 CASE 489AA

DFN10 CASE 485C

Micro10 CASE 846B

A = Assembly Location

L = Wafer Lot Y = Year WW, W = Work Week

■ = Pb-Free Package (Note: Microdot may be in either location)

FUNCTION TABLE

IN 1, 2	NO 1, 2	NC 1, 2
0	OFF	ON
1	ON	OFF

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 11 of this data sheet.

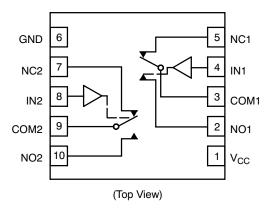


Figure 1. Pin Connections and Logic Diagram (DFN10 and Micro10)

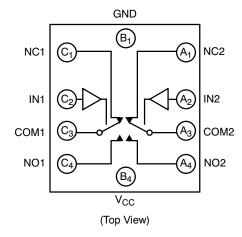


Figure 2. Pin Connections and Logic Diagram (Microbump-10)

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Positive DC Supply Voltage	-0.5 to +7.0	V
V _{IS}	Analog Input Voltage (V _{NO} , V _{NC} , or V _{COM})	$-0.5 \le V_{IS} \le V_{CC} + 0.5$	V
V _{IN}	Digital Select Input Voltage	$-0.5 \le V_{ } \le +7.0$	V
I _{anl1}	Continuous DC Current from COM to NC/NO	±300	mA
I _{anl-pk 1}	Peak Current from COM to NC/NO, 10 duty cycle (Note 1)	± 500	mA
I _{clmp}	Continuous DC Current into COM/NO/NC	±300	mA
I _{clmp 1}	Peak Current into Input Clamp Diodes at COM/NC/NO	±500	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Defined as 10% ON, 90% off duty cycle.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
V _{CC}	DC Supply Voltage		1.8	5.5	V
V _{IN}	Digital Select Input Voltage		GND	5.5	V
V _{IS}	Analog Input Voltage (NC, NO, COM)		GND	V _{CC}	V
T _A	Operating Temperature Range		- 55	+ 125	°C
t _r , t _f	Input Rise or Fall Time, SELECT V _C	$_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$ $_{CC} = 5.0 \text{ V} \pm 0.5 \text{ V}$	0	100 20	ns/V

DC CHARACTERISTICS - Digital Section (Voltages Referenced to GND)

				Guaranteed Limit			
Symbol	Parameter	Condition	V _{CC} ± 10%	−55°C to 25°C	<85°C	<125°C	Unit
V _{IH}	Minimum High-Level Input		2.0	1.4	1.4	1.4	V
	Voltage, Select Inputs		2.5	1.4	1.4	1.4	
	(Figure 9)		3.0	1.4	1.4	1.4	
			5.0	2.0	2.0	2.0	
V _{IL}	Maximum Low-Level Input		2.0	0.5	0.5	0.5	V
	Voltage, Select Inputs		2.5	0.5	0.5	0.5	
	(Figure 9)		3.0	0.5	0.5	0.5	
			5.0	0.8	0.8	0.8	
I _{IN}	Maximum Input Leakage Current, Select Inputs	V _{IN} = 5.5 V or GND	5.5	± 1.0	± 1.0	± 1.0	μΑ
l _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or GND	0	±10	±10	± 10	μΑ
Icc	Maximum Quiescent Supply Current (Note 2)	Select and V _{IS} = V _{CC} or GND	5.5	± 180	± 200	± 200	nA

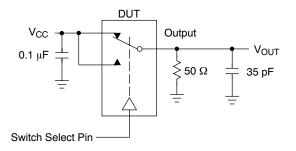
^{2.} Guaranteed by design.

DC ELECTRICAL CHARACTERISTICS - Analog Section

						Guaranteed Maximum Limit					
				-55°C	to 25°C	<8	5°C	<12	25°C		
Symbol	Parameter	Condition	V _{CC} ± 10%	Min	Max	Min	Max	Min	Max	Unit	
R _{ON} (NC)	NC "ON" Resistance (Note 3)	$\begin{split} &V_{IN} \leq V_{IL} \\ &V_{IS} = \text{GND to } V_{CC} \\ &I_{IN}I \leq 100 \text{ mA} \end{split}$	2.5 3.0 5.0		0.6 0.5 0.4		0.7 0.5 0.4		0.8 0.5 0.5	Ω	
R _{ON} (NO)	NO "ON" Resistance (Note 3)	$\begin{split} &V_{IN} \geq V_{IH} \\ &V_{IS} = GND \text{ to } V_{CC} \\ &I_{IN}I \leq 100 \text{ mA} \end{split}$	2.5 3.0 5.0		1.0 0.8 0.8		1.0 0.8 0.8		1.0 1.0 0.9	Ω	
R _{FLAT (NC)}	NC_On-Resistance Flatness (Notes 3, 5)	I _{COM} = 100 mA V _{IS} = 0 to V _{CC}	2.5 3.0 5.0		0.15 0.15 0.15		0.15 0.15 0.15		0.15 0.15 0.15	Ω	
R _{FLAT (NO)}	NO_On-Resistance Flatness (Notes 3, 5)	I _{COM} = 100 mA V _{IS} = 0 to V _{CC}	2.5 3.0 5.0		0.35 0.35 0.35		0.35 0.35 0.35		0.35 0.35 0.35	Ω	
ΔR_{ON}	On-Resistance Match Between Channels (Notes 3 and 4)	V _{IS} = 1.3 V; I _{COM} = 100 mA V _{IS} = 1.5 V;	2.5 3.0		0.18 0.06		0.18		0.18	Ω	
		I _{COM} = 100 mA V _{IS} = 2.8 V; I _{COM} = 100 mA	5.0		0.06		0.06		0.06		
I _{NC(OFF)} I _{NO(OFF)}	NC or NO Off Leakage Current (Figure 13) (Note 3)	$\begin{aligned} V_{IN} &= V_{IL} \text{ or } V_{IH} \\ V_{NO} \text{ or } V_{NC} &= 1.0 \\ V_{COM} &= 4.5 \text{ V} \end{aligned}$	5.5	-1	1	-10	10	-100	100	nA	
I _{COM(ON)}	COM ON Leakage Current (Figure 13) (Note 3)	$\begin{aligned} &V_{IN} = V_{IL} \text{ or } V_{IH} \\ &V_{NO} \text{ 1.0 V or 4.5 V with} \\ &V_{NC} \text{ floating or} \\ &V_{NC} \text{ 1.0 V or 4.5 V with} \\ &V_{NO} \text{ floating} \\ &V_{COM} = 1.0 \text{ V or 4.5 V} \end{aligned}$	5.5	-2	2	-20	20	-200	200	nA	

Guaranteed by design. Resistance measurements do not include test circuit or package resistance.
 ΔR_{ON} = R_{ON(MAX)} - R_{ON(MIN)} between NC1 and NC2 or between NO1 and NO2.
 Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

$\textbf{AC ELECTRICAL CHARACTERISTICS} \text{ (Input } t_r = t_f = 3.0 \text{ ns) (Typical characteristics are at } 25^{\circ}\text{C)}$


					Guaranteed Maximum Limit								
			v _{cc}	V _{IS}	-5	5°C to 2	25°C	<8	5°C	< 12	25°C	c	
Symbol	Parameter	Test Conditions	(V)	(v)	Min	Тур	Max	Min	Max	Min	Max	Unit	
t _{ON}	Turn-On Time	$R_L = 50 \Omega, C_L = 35 pF$	2.5	1.3			60		70		70	ns	
		(Figures 4 and 5)	3.0	1.5			50		60		60		
			5.0	2.8			30		35		35		
t _{OFF}	Turn-Off Time	$R_L = 50 \Omega, C_L = 35 pF$	2.5	1.3			50		55		55	ns	
		(Figures 4 and 5)	3.0	1.5			40		50		50		
			5.0	2.8			30		35		35		
t _{BBM}	Minimum Break-Before-Make Time (Note 6)	$V_{IS} = 3.0$ $R_L = 300~\Omega,~C_L = 35~pF$ (Figure 3)	3.0	1.5	2	15						ns	

		Typical @ 25, V _{CC} = 5.0 V	
C _{NC} Off C _{NO} Off C _{NC} On C _{NO} On	NC Off Capacitance, f = 1 MHz NO Off Capacitance, f = 1 MHz NC On Capacitance, f = 1 MHz NO On Capacitance, f = 1 MHz	102 104 322 330	pF

ADDITIONAL APPLICATION CHARACTERISTICS (Voltages Referenced to GND Unless Noted)

			v _{cc}	Typical	
Symbol	Parameter	Condition	v	25°C	Unit
BW	Maximum On-Channel -3dB Bandwidth or Minimum Frequency Response	V_{IN} = 0 dBm NC V_{IN} centered between V_{CC} and GND (Figure 6) NO	3.0 3.0	6.5 9.5	MHz
V _{ONL}	Maximum Feed-through On Loss	V _{IN} = 0 dBm @ 100 kHz to 50 MHz V _{IN} centered between V _{CC} and GND (Figure 6)	3.0	-0.05	dB
V _{ISO}	Off-Channel Isolation (Note 7)	$f = 100 \text{ kHz}$; $V_{IS} = 1 \text{ V RMS}$; $C_L = 5 \text{ nF}$ V_{IN} centered between V_{CC} and GND(Figure 6)	3.0	-65	dB
Q	Charge Injection Select Input to Common I/O (Figures 10 and 11)	$V_{IN} = V_{CC \text{ to}}$ GND, $R_{IS} = 0 \Omega$, $C_L = 1 \text{ nF}$ Q = $C_L - \Delta V_{OUT}$ (Figure 7)	3.0	15	рС
THD	Total Harmonic Distortion THD + Noise (Figure 9)	F_{IS} = 20 Hz to 100 kHz, R_L = R_{gen} = 600 Ω , C_L = 50 pF V_{IS} = 1 V RMS	3.0	0.14	%
VCT	Channel-to-Channel Crosstalk	f = 100 kHz; V_{IS} = 1 V RMS, C_L = 5 pF, R_L = 50 Ω V_{IN} centered between V_{CC} and GND (Figure 6)	3.0	-83	dB

^{6. -55°}C specifications are guaranteed by design.
7. Off-Channel Isolation = 20log10 (Vcom/Vno) (See Figure 6).

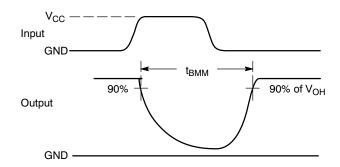
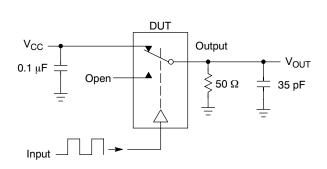



Figure 3. t_{BBM} (Time Break-Before-Make)

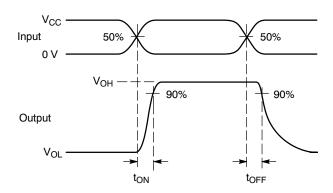
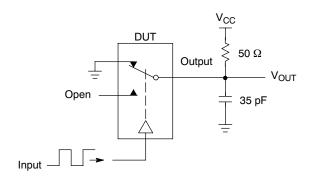



Figure 4. t_{ON}/t_{OFF}

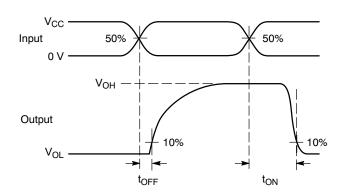
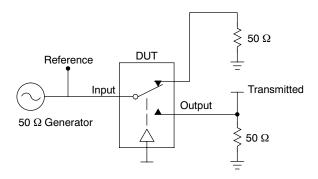



Figure 5. t_{ON}/t_{OFF}

Channel switch control/s test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. $V_{\rm ISO}$, Bandwidth and $V_{\rm ONL}$ are independent of the input signal direction.

$$\begin{split} &V_{ISO} = \text{Off Channel Isolation} = 20 \text{ Log} \left(\frac{V_{OUT}}{V_{IN}} \right) \text{ for } V_{IN} \text{ at } 100 \text{ kHz} \\ &V_{ONL} = \text{On Channel Loss} = 20 \text{ Log} \left(\frac{V_{OUT}}{V_{IN}} \right) \text{ for } V_{IN} \text{ at } 100 \text{ kHz to } 50 \text{ MHz} \end{split}$$

Bandwidth (BW) = the frequency 3 dB below V_{ONL}

 V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω

Figure 6. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V_{ONL}

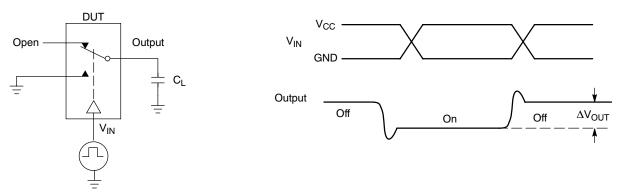


Figure 7. Charge Injection: (Q)

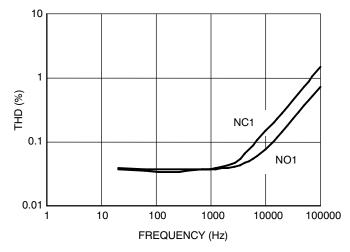


Figure 8. Total Harmonic Distortion Plus Noise Versus Frequency

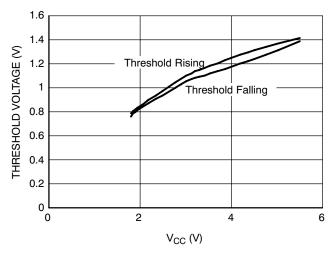


Figure 9. Voltage in Threshold on Logic Pins

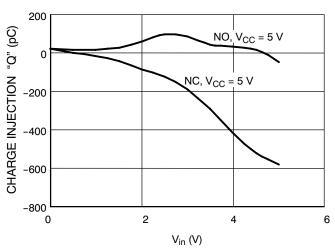


Figure 10. Charge Injection versus Vis

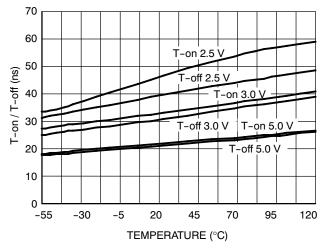


Figure 11. T-on / T-off Time versus Temperature

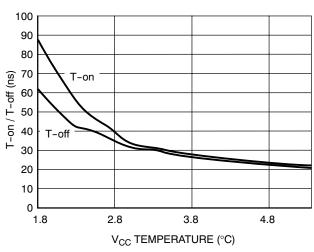


Figure 12. T-on / T-off Time versus Temperature

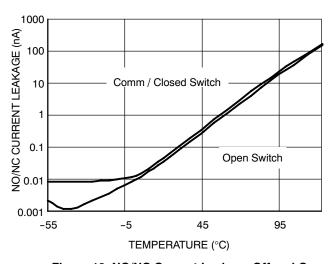


Figure 13. NO/NC Current Leakage Off and On, V_{CC} = 5 V

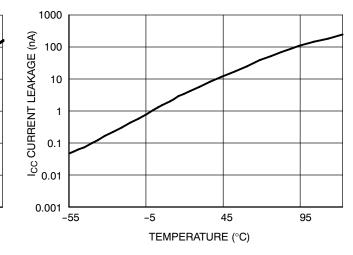


Figure 14. I_{CC} Current Leakage versus Temperature V_{CC} = 5.5 V

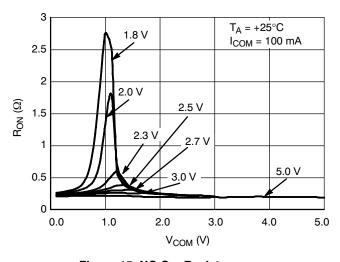


Figure 15. NC On-Resistance versus COM Voltage

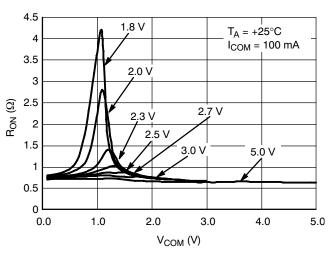


Figure 16. NO On-Resistance versus COM Voltage

Figure 17. NC On-Resistance versus COM Voltage

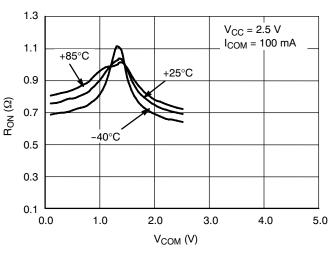


Figure 18. NO On-Resistance versus COM Voltage

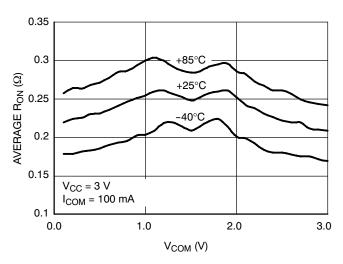


Figure 19. NC On-Resistance versus COM Voltage

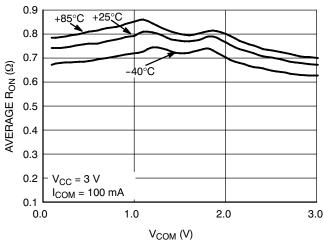


Figure 20. NC On-Resistance versus COM Voltage

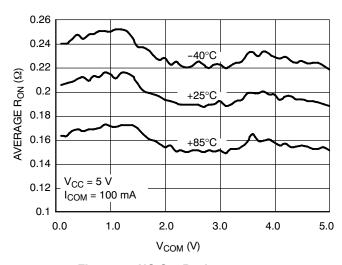


Figure 21. NC On-Resistance versus COM Voltage

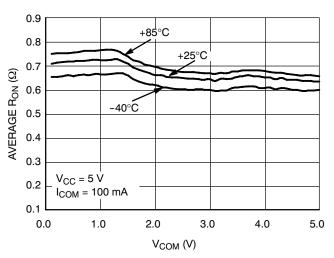


Figure 22. NO On-Resistance versus COM Voltage

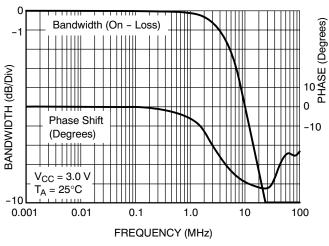


Figure 23. NC Bandwidth and Phase Shift versus Frequency

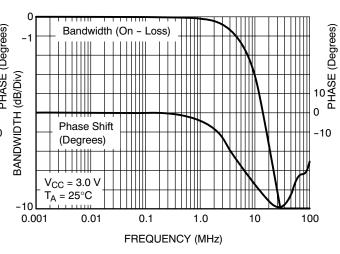


Figure 24. NO Bandwidth and Phase Shift versus Frequency

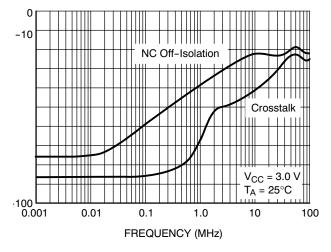


Figure 25. NC Off Isolation and Crosstalk

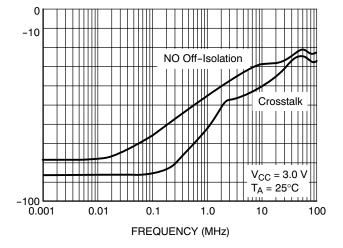
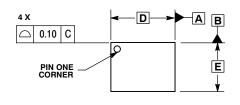
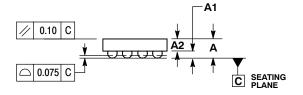
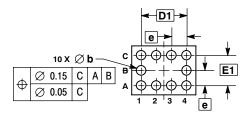


Figure 26. NO Off Isolation and Crosstalk

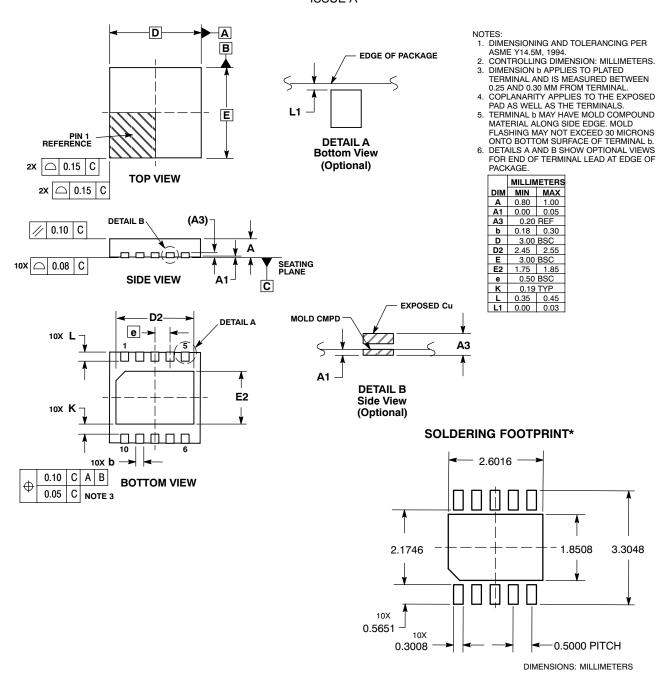

ORDERING INFORMATION


Device	Package	Shipping†
NLAS4684FCT1	Microbump-10	3000 / Tape & Reel
NLAS4684FCT1G	Microbump-10 (Pb-Free)	3000 / Tape & Reel
NLAS4684FCTCG	Microbump-10 (Pb-Free)	3000 / Tape & Reel
NLAS4684MNR2	DFN10	3000 / Tape & Reel
NLAS4684MNR2G	DFN10 (Pb-Free)	3000 / Tape & Reel
NLAS4684MR2	Micro10	4000 / Tape & Reel
NLAS4684MR2G	Micro10 (Pb-Free)	4000 / Tape & Reel


[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

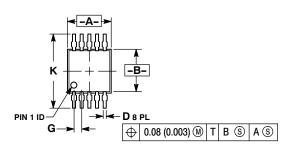
Microbump-10 CASE 489AA-01 **ISSUE A**

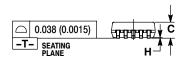


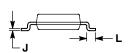
- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: MILLIMETERS.
 3. COPLANARITY APPLIES TO SPHERICAL CROWNS OF SOLDER BALLS.

	MILLIMETERS					
DIM	MIN	MAX				
Α		0.650				
A1	0.210	0.270				
A2	0.280	0.380				
D	1.965	BSC				
E	1.465	BSC				
b	0.250	0.350				
е	0.500	BSC				
D1	1.500	BSC				
E1	1.000	BSC				

PACKAGE DIMENSIONS

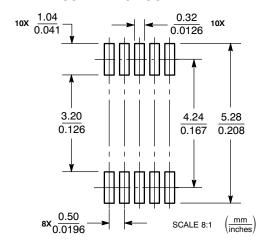

DFN10, 3 x 3mm, 0.5mm Pitch CASE 485C-01 ISSUE A




*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

Micro₁₀ CASE 846B-03 ISSUE D


NOTES:

- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982. CONTROLLING DIMENSION: MILLIMETER. DIMENSION "A" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006)
- PER SIDE.

 DIMENSION "B" DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION.
- SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. 846B-01 OBSOLETE. NEW STANDARD

	MILLIN	IETERS	INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	2.90	3.10	0.114	0.122	
В	2.90	3.10	0.114	0.122	
C	0.95	1.10	0.037	0.043	
D	0.20	0.30	0.008	0.012	
G	0.50	BSC	0.020	BSC	
Н	0.05	0.15	0.002	0.006	
J	0.10	0.21	0.004	0.008	
K	4.75	5.05	0.187	0.199	
L	0.40	0.70	0.016	0.028	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada **Fax**: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative