Very Low Forward Voltage Trench-based Schottky Rectifier

Exceptionally Low $V_F = 0.50 \text{ V}$ at $I_F = 5 \text{ A}$

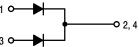
Features

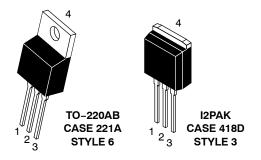
- Fine Lithography Trench-based Schottky Technology for Very Low Forward Voltage and Low Leakage
- Fast Switching with Exceptional Temperature Stability
- Low Power Loss and Lower Operating Temperature
- Higher Efficiency for Achieving Regulatory Compliance
- Low Thermal Resistance
- High Surge Capability
- Pb-Free and Halide-Free Packages are Available

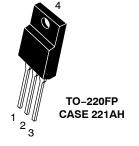
Typical Applications

- Switching Power Supplies including Notebook / Netbook Adapters, ATX and Flat Panel Display
- High Frequency and DC-DC Converters
- Freewheeling and OR-ing diodes
- Reverse Battery Protection
- Instrumentation

Mechanical Characteristics


- Case: Epoxy, Molded
- Epoxy Meets Flammability Rating UL 94-0 @ 0.125 in
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Maximum for 10 sec




ON Semiconductor®

http://onsemi.com

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

This document contains information on some products that are still under development. ON Semiconductor reserves the right to change or discontinue these products without notice.

MAXIMUM RATINGS

Rating		Symbol	Value	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage		V _{RRM} V _{RWM} V _R	100	V
Average Rectified Forward Current (Rated V _R , T _C = 130°C)	Per device Per diode	I _{F(AV)}	20 10	А
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz, T _C = 125°C)	Per device Per diode	I _{FRM}	40 20	А
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)		I _{FSM}	150	Α
Operating Junction Temperature		TJ	-40 to +150	°C
Storage Temperature		T _{stg}	-40 to +150	°C
Voltage Rate of Change (Rated V _R)		dv/dt	10,000	V/μs

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

THERMAL CHARACTERISTICS

Rating	Symbol	NTST20U100CTG, NTSB20U100CT-1G	NTSB20U100CTG	NTSJ20U100CTG	Unit
Maximum Thermal Resistance per Diode Junction-to-Case Junction-to-Ambient	000	2.5 70	1.24 46.7	4.20 105	°C/W °C/W

ELECTRICAL CHARACTERISTICS (Per Leg unless otherwise noted)

Rating	Symbol	Тур	Max	Unit
Maximum Instantaneous Forward Voltage (Note 1)	٧ _F			V
$(I_F = 5 \text{ A}, T_J = 25^{\circ}\text{C})$		0.55	_	
$(I_F = 10 \text{ A}, T_J = 25^{\circ}\text{C})$		0.65	0.79	
(I _F = 5 A, T _J = 125°C) (I _F = 10 A, T _J = 125°C)		0.50 0.58	- 0.68	
Maximum Instantaneous Reverse Current (Note 1) (V _R = 70 V, T _{.1} = 25°C)	I _R	17		^
$(V_R = 70 \text{ V}, T_J = 25 \text{ C})$ $(V_R = 70 \text{ V}, T_J = 125 ^{\circ}\text{C})$		5.3	_	μA mA
(Rated dc Voltage, T _J = 25°C) (Rated dc Voltage, T _J = 125°C)		- 12	800 25	μA mA

^{1.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle $\leq 2.0\%$

TYPICAL CHARACTERISITICS

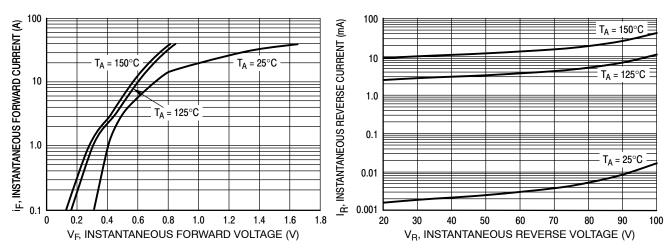


Figure 1. Typical Instantaneous Forward Characteristics

Figure 2. Typical Reverse Characteristics

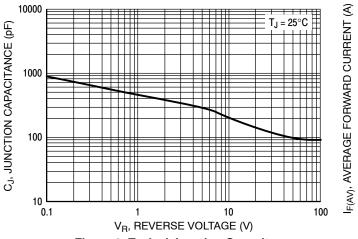


Figure 3. Typical Junction Capacitance

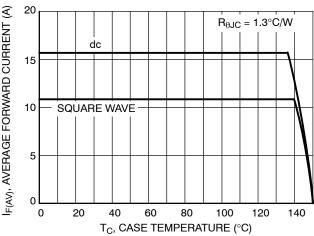


Figure 4. Current Derating per Leg

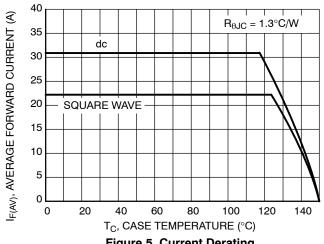


Figure 5. Current Derating

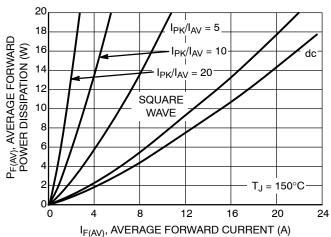


Figure 6. Forward Power Dissipation

TYPICAL CHARACTERISITICS

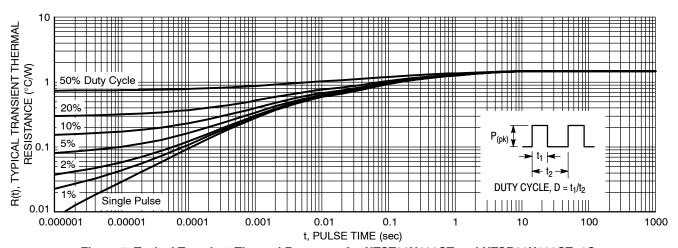


Figure 7. Typical Transient Thermal Response for NTST20U100CT and NTSB20U100CT-1G

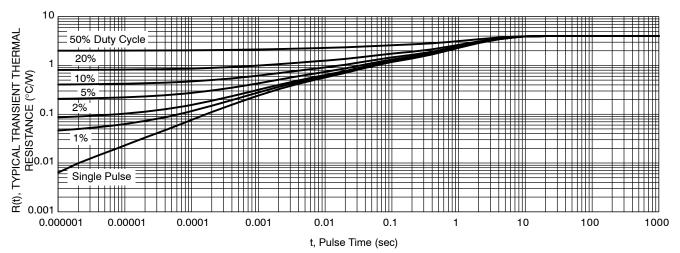
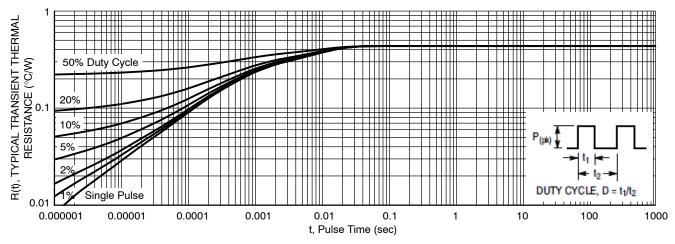
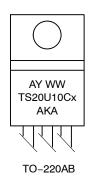
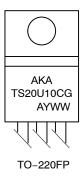


Figure 8. Typical Transient Thermal Response, Junction-to-Case for NTSJ20U100CTG

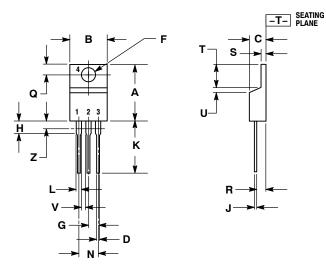

Figure 9. Typical Transient Thermal Response for NTSB20U100CTG

ORDERING INFORMATION

Device	Package	Shipping
NTST20U100CTG	TO-220AB (Pb-Free)	50 Units / Rail
NTST20U100CTH (In Development)	TO-220AB (Halide-Free)	50 Units / Rail
NTSB20U100CT-1G	I ² PAK (Pb-Free)	50 Units / Rail
NTSJ20U100CTG	TO-220FP (Halide-Free)	50 Units / Rail
NTSB20U100CTG	D ² PAK (Pb-Free)	50 Units / Rail
NTSB20U100CTT4G	D ² PAK (Pb-Free)	800 / Tape & Reel

MARKING DIAGRAMS

A = Assembly Location

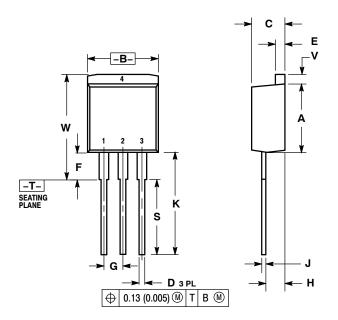

Y = Year WW = Work Week AKA = Polarity Designator

x = G or H

G = Pb-Free Package H = Halide-Free Package

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 **ISSUE AF**

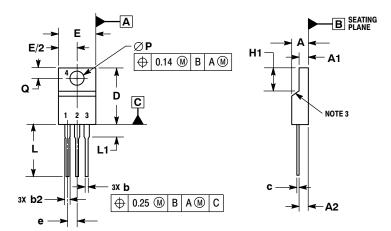

NOTES:

- IES:
 DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
 CONTROLLING DIMENSION: INCH.
 DIMENSION Z DEFINES A ZONE WHERE ALL
 BODY AND LEAD IRREGULARITIES ARE ALLOWED.

	INCHES		MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.405	9.66	10.28	
С	0.160	0.190	4.07	4.82	
D	0.025	0.035	0.64	0.88	
F	0.142	0.161	3.61	4.09	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.155	2.80	3.93	
J	0.014	0.025	0.36	0.64	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
N	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
T	0.235	0.255	5.97	6.47	
J	0.000	0.050	0.00	1.27	
٧	0.045		1.15		
Z		0.080	-	2.04	
STYLE 6: PIN 1. ANODE 2. CATHODE					
3. ANODE					

- ANODE CATHODE

I²PAK (TO-262) CASE 418D-01 ISSUE D


NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIM	IETERS
DIM	MIN MAX		MIN	MAX
Α	0.335	0.380	8.51	9.65
В	0.380	0.406	9.65	10.31
С	0.160	0.185	4.06	4.70
D	0.026	0.035	0.66	0.89
Е	0.045	0.055	1.14	1.40
F	0.122 REF		3.10	REF
G	0.100	BSC	2.54	BSC
Н	0.094	0.110	2.39	2.79
J	0.013	0.025	0.33	0.64
K	0.500	0.562	12.70	14.27
S	0.390 REF		9.90	REF
٧	0.045	0.070	1.14	1.78
W	0.522	0.551	13.25	14.00

PACKAGE DIMENSIONS

TO-220 FULLPACK, 3-LEAD CASE 221AH **ISSUE B**

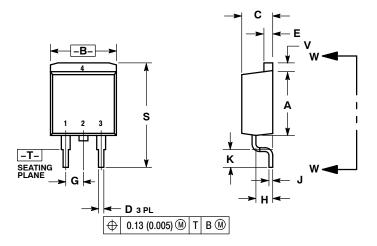
NOTES:

- IOTES:

 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: MILLIMETERS.

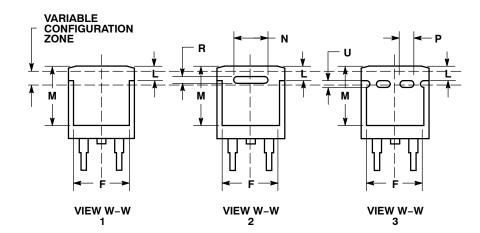
 3. CONTOUR UNCONTROLLED IN THIS AREA.


 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH AND GATE PROTRUSIONS. MOLD FLASH AND GATE PROTRUSIONS NOT TO EXCEED 0.13 PER SIDE. THESE DIMENSIONS ANE TO DE MEASURED AT OUTERMOST EXTREME OF THE PLASTIC BODY.

 5. DIMENSION b2 DOES NOT INCLUDE DAMBAR PROTRUSION. LEAD WIDTH INCLUDING PROTRUSION SHALL NOT EXCEED 2.00.

	MILLIMETERS			
DIM	MIN	MAX		
Α	4.30	4.70		
A1	2.50	2.90		
A2	2.50	2.70		
b	0.54	0.84		
b2	1.10	1.40		
С	0.49	0.79		
D	14.70	15.30		
Е	9.70	10.30		
е	2.54	BSC		
H1	6.70	7.10		
L	12.70	14.73		
L1		2.80		
Р	3.00	3.40		
Q	2.80	3.20		

PACKAGE DIMENSIONS


D²PAK 3 CASE 418B-04 ISSUE K

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI V14 5M 1982
- PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
- 418B-01 THRU 418B-03 OBSOLETE, NEW STANDARD 418B-04.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
Α	0.340	0.380	8.64	9.65
В	0.380	0.405	9.65	10.29
С	0.160	0.190	4.06	4.83
D	0.020	0.035	0.51	0.89
E	0.045	0.055	1.14	1.40
F	0.310	0.350	7.87	8.89
G	0.100 BSC		2.54 BSC	
н	0.080	0.110	2.03	2.79
J	0.018	0.025	0.46	0.64
K	0.090	0.110	2.29	2.79
L	0.052	0.072	1.32	1.83
M	0.280	0.320	7.11	8.13
N	0.197 REF		5.00 REF	
Р	0.079	0.079 REF		REF
R	0.039	REF	0.99	REF
S	0.575	0.625	14.60	15.88
V	0.045	0.055	1.14	1.40

ON Semiconductor and was a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative