
 

 
Web Site: www.parallax.com 
Forums: forums.parallax.com 
Sales: sales@parallax.com 
Technical: support@parallax.com 
 

 
Office: (916) 624-8333 
Fax: (916) 624-8003 
Sales: (888) 512-1024 
Tech Support: (888) 997-8267 
 

 

Copyright © Parallax Inc.  Memsic 2125 Dual-Axis Accelerometer (#28017) v2.0  1/29/2009  Page 1 of 3 

Memsic 2125 Dual-Axis Accelerometer (#28017) 
The Memsic 2125 is a low-cost thermal accelerometer capable of measuring tilt, collision, static and 
dynamic acceleration, rotation, and vibration with a range of ±3 g on two axes. Memsic provides the 
2125 IC in a surface-mount format. Parallax mounts the circuit on a tiny PCB providing all I/O 
connections so it can easily be inserted on a breadboard or through-hole prototype area. 
 

Features 
 Measures ±3 g on each axis 
 Simple pulse output of g-force for each axis 
 Convenient 6-pin 0.1” spacing DIP module  
 Analog output of temperature (TOut pin) 
 Fully temperature compensated over 0 to 70 °C 

operating temperature range  
 

Key Specifications 
 Power Requirements: 3.3 to 5 VDC; 

< 5 mA supply current 
 Communication: TTL/CMOS 

compatible 100 Hz PWM output signal 
with duty cycle proportional to 
acceleration  

 Dimensions: 0.42 x 0.42 x 0.45 in 
(10.7 x 10.7 x 11.8 mm) 

 Operating temperature: 32 to 158 °F 
(0 to 70 °C) 

Application Ideas 
 Dual-axis tilt and acceleration sensing 

for autonomous robot navigation 
 R/C tilt controller or autopilot 
 Tilt-sensing Human Interface Device 
 Motion/lack-of-motion sensor for 

alarm system 
 Single-axis rotational angle and 

position sensing 

 
 

Theory of Operation 
The MX2125 has a chamber of gas with a 
heating element in the center and four 
temperature sensors around its edge.  
When the accelerometer is level, the hot 
gas pocket rises to the top-center of the 
chamber, and all the sensors will measure 
the same temperature.  
 
By tilting the accelerometer, the hot gas will collect closer to some of temperature sensors.  By 
comparing the sensor temperatures, both static acceleration (gravity and tilt) and dynamic acceleration 
(like taking a ride in a car) can be detected. The MX2125 converts the temperature measurements into 
signals (pulse durations) that are easy for microcontrollers to measure and decipher.  



Copyright © Parallax Inc.  Memsic 2125 Dual-Axis Accelerometer (#28017) v2.0  1/29/2009  Page 2 of 3 

Pin Definitions  
For Memsic MXD2125GL pin ratings, see the manufacturer’s datasheet posted on the 28017 product page 
at www.parallax.com. 
 

Pin Name Function 
1 Tout Temperature Out 
2 Yout Y-axis PWM output 
3 GND Ground -> 0 V 
4 GND Ground -> 0 V 
5 Xout X-axis PWM output 
6 VDD Input voltage: +3.3 to +5 VDC 

 

 

Communication Protocol 
Each axis has a 100 Hz PWM duty cycle output in which acceleration 
is proportional to the ratio tHx/Tx.  In practice, we have found that 
Tx is consistent so reliable results can be achieved by measuring 
only the duration of tHx. This is easy to accomplish with the BASIC 
Stamp PULSIN command or with the Propeller chip’s counter 
modules. 
 
With Vdd = 5V, 50% duty cycle corresponds to 0 g, but this will vary 
with each individual unit within a range of 48.7% to 51.3%.  This 
zero offset may be different when using Vdd = 3.3 V. See the 
manufacturer’s datasheet for details. 
 

Example Circuit  
The example schematic and wiring diagram below are for the BASIC Stamp and Board of Education. 
  

   
 
The program below, SimpleTilt.bs2, simply measures the pulse width, that is, the duration of tHx, for 
each axis.  The raw values are displayed in the BASIC Stamp Editor’s Debug Terminal.  If you run the 
program, then tilt the accelerometer, you should see the values for each axis change.  



Copyright © Parallax Inc.  Memsic 2125 Dual-Axis Accelerometer (#28017) v2.0  1/29/2009  Page 3 of 3 

' Smart Sensors and Applications - SimpleTilt.bs2 
' Measure room temperature tilt. 
  
'{$STAMP BS2} 
'{$PBASIC 2.5} 
  
x              VAR     Word 
y              VAR     Word 
 
DEBUG CLS 
  
DO 
  
  PULSIN 6, 1, x 
  PULSIN 7, 1, y 
  
  DEBUG HOME, DEC4 ? X, DEC4 ? Y 
  
  PAUSE 100 
  
LOOP 

 

Programming Resources and Downloads 

BASIC Stamp 

 Smart Sensors and Applications — The BASIC Stamp example above is taken from the Stamps in 
Class text Smart Sensors and Applications, which features several chapters specific to the Memsic 
Dual-Axis Accelerometer.  Topics include output scaling and offset, measuring vertical rotation, tilt-
controlled video gaming basics, data logging g-force during a skateboard trick, and data logging 
acceleration on an RC car. The book and sample code can be downloaded from the 28029 product 
page at http://www.parallax.com 

 
 Boe-Bot Robot Projects with the Memsic 2125 Accelerometer — The following projects with 

source code are posted under the Stamps in Class Mini-Projects sticky-thread in the Stamps in Class 
Forum at http://forums.parallax.com: 

o Boe-Bot Robot Navigation with Accelerometer Incline Sensing 
o A Tilt Radio Controller for Your Boe-Bot 

 The Memsic 2125 Demo Kit BASIC Stamp Source Code — this source code contains conditional 
compile directives that allow it to be used with the BS2, BS2e, BS2sx, BS2p, and BS2pe. 

Propeller Objects  
Several Memsic 2125 Accelerometer code objects and applications 
for the Propeller chip are available in the Propeller Object Exchange 
(http://obex.parallax.com).  
 
Below is a photograph of the high-speed Memsic MXD2125 
Accelerometer Demo in action. This application “provides a high 
speed assembly driver, and separate-cog and same-cog Spin 
versions of the MXD2125 Dual Axis Accelerometer. The high speed 
version displays the data on a television as a 3D wireframe plane 
with normal vector. 



© Parallax, Inc.  �  Memsic 2125 Accelerometer Demo Kit (#28017)  �  09/2004 1 

 

599 Menlo Drive, Suite 100 
Rocklin, California 95765, USA 
Office: (916) 624-8333 
Fax: (916) 624-8003 

 
General: info@parallax.com 
Technical: support@parallax.com 
Web Site: www.parallax.com 
Educational: www.stampsinclass.com 
 

 
 

Memsic 2125 Accelerometer Demo Kit (#28017) 
Acceleration, Tilt, and Rotation Measurement 
 
 
Introduction 
 
The Memsic 2125 is a low cost, dual-axis thermal accelerometer capable of measuring dynamic 
acceleration (vibration) and static acceleration (gravity) with a range of ±2 g.   For integration into 
existing applications, the Memsic 2125 is electrically compatible with other popular accelerometers. 
 
What kind of things can be done with the Memsic 2125 accelerometer?  While there are many 
possibilities, here's a small list of ideas that can be realized with a Memsic 2125 and the Parallax BASIC 
Stamp® microcontroller: 
 
� Dual-axis tilt sensing for autonomous robotics applications (BOE-Bot, Toddler, SumoBot) 
� Single-axis rotational position sensing 
� Movement/Lack-of-movement sensing for alarm systems 

 
 
Packing List 
 
Verify that your Memsic 2125 Demo Kit is complete in accordance with the list below: 
 
� Parallax Memsic 2125 Demo PCB (uses Memsic MXD2125GL) 
� Documentation 

 
Note: Demonstration software files may be downloaded from www.parallax.com. 
 
 
Features 
 
� Measure 0 to ±2 g on either axis; less than 1 mg resolution 
� Fully temperature compensated over 0° to 70° C range 

� Simple, pulse output of g-force for X and Y axis � direct connection to BASIC Stamp 
� Analog output of temperature (TOut pin) 
� Low current operation: less than 4 mA at 5 vdc 

 
 
Connections 
 
Connecting the Memsic 2125 to the BASIC Stamp is a straightforward operation, requiring just two IO 
pins.  If single-axis tilt of less than 60 degrees is your requirement, only one output from the Memsic 
2125 need be connected.  See Figure 1 for connection details. 

mailto:info@parallax.com
mailto:support@parallax.com
http://www.stampsinclass.com
http://www.parallax.com.


© Parallax, Inc.  �  Memsic 2125 Accelerometer Demo Kit (#28017)  �  09/2004 2 

Figure 1.  Essential Memsic 2125 Connections 
 

 
 
How It Works 
 
Internally, the Memsic 2125 contains a small heater.  This heater warms a "bubble" of air within the 
device.  When gravitational forces act on this bubble it moves.  This movement is detected by very 
sensitive thermopiles (temperature sensors) and the onboard electronics convert the bubble position 
[relative to g-forces] into pulse outputs for the X and Y axis. 
 
The pulse outputs from the Memsic 2125 are set to a 50% duty cycle at 0 g.   The duty cycle changes in 
proportion to acceleration and can be directly measured by the BASIC Stamp.  Figure 2 shows the duty 
cycle output from the Memsic 2125 and the formula for calculating g force. 
 

Figure 2.  Memsic 2125 Pulse Output 
 

 
  

A(g) = ((T1 / T2) � 0.5) / 12.5% 
 
 
The T2 duration is calibrated to 10 milliseconds at 25° C (room temperature).  Knowing this, we can 
convert the formula to the following BASIC Stamp routine: 
 
Read_X_Force: 
  PULSIN Xin, HiPulse, xRaw 
  xRaw = xRaw */ Scale  
  xGForce = ((xRaw / 10) - 500) * 8 
  RETURN 
 
The T1 duration (Memsic output) is captured by PULSIN in the variable xRaw.  Since each BASIC Stamp 
module has its own speed and will return a different raw value for the pulse, the factor called Scale (set 
by the compiler based on the BASIC Stamp module installed) is used to convert the raw output to 
microseconds.  This will allow the program to operate properly with any BASIC Stamp 2-series module.  
At this point the standard equation provided by Memsic can be applied, adjusting the values to account 
for the pulse-width in microseconds.   Fortunately, one divided by divided by 0.125 (12.5%) is eight, 
hence the final multiplication.  The result is a signed value representing g-force in milli-g's (1/1000th g). 
 



© Parallax, Inc.  �  Memsic 2125 Accelerometer Demo Kit (#28017)  �  09/2004 3 

Experiments 
 
Experiment 1: Dual-Axis Tilt Measurement 
 
This experiment reads both axis values and displays the results in the DEBUG window.   Calculations for 
g-force measurement and conversion to tilt were taken directly from Memsic documentation.  Since the 
BASIC Stamp does not have an Arcsine function, it must be derived.  Code for Arccosine and Arcsine are 
provided courtesy Tracy Allen, Ph.D. 
 
 
' ========================================================================= 
' 
'   File...... MEMSIC2125-Dual.BS2 
'   Purpose... Memsic 2125 Accelerometer Dual-Axis Demo 
'   Author.... (C) 2003-2004 Parallax, Inc -- All Rights Reserved 
'   E-mail.... support@parallax.com 
'   Started... 
'   Updated... 07 SEP 2004 
' 
'   {$STAMP BS2} 
'   {$PBASIC 2.5} 
' 
' ========================================================================= 
 
 
' -----[ Program Description ]--------------------------------------------- 
' 
' Read the pulse outputs from a Memsic 2125 accelerometer and converts to 
' G-force and tilt angle. 
' 
' g = ((t1 / 10 ms) - 0.5) / 12.5% 
' 
' Tilt = ARCSIN(g) 
' 
' Refer to Memsic documentation (AN-00MX-007.PDF) for details on g-to-tilt 
' conversion and considerations. 
' 
' www.memsic.com 
 
 
' -----[ Revision History ]------------------------------------------------ 
 
 
' -----[ I/O Definitions ]------------------------------------------------- 
 
Xin             PIN     8                       ' X input from Memsic 2125 
Yin             PIN     9                       ' Y input from Memsic 2125 
 
 
' -----[ Constants ]------------------------------------------------------- 
 
' Set scale factor for PULSIN 
 
#SELECT $STAMP 
  #CASE BS2, BS2E 
    Scale       CON     $200                    ' 2.0 us per unit 
  #CASE BS2SX 
    Scale       CON     $0CC                    ' 0.8 us per unit 
  #CASE BS2P 

mailto:support@parallax.com
http://www.memsic.com


© Parallax, Inc.  �  Memsic 2125 Accelerometer Demo Kit (#28017)  �  09/2004 4 

    Scale       CON     $0C0                    ' 0.75 us per unit 
  #CASE BS2PE 
    Scale       CON     $1E1                    ' 1.88 us per unit 
#ENDSELECT 
 
HiPulse         CON     1                       ' measure high-going pulse 
LoPulse         CON     0 
 
DegSym          CON     176                     ' degrees symbol 
 
 
' -----[ Variables ]------------------------------------------------------- 
 
xRaw            VAR     Word                    ' pulse from Memsic 2125 
xmG             VAR     Word                    ' g force (1000ths) 
xTilt           VAR     Word                    ' tilt angle 
 
yRaw            VAR     Word 
ymG             VAR     Word 
yTilt           VAR     Word 
 
disp            VAR     Byte                    ' displacement (0.0 - 0.99) 
angle           VAR     Byte                    ' tilt angle 
 
 
' -----[ EEPROM Data ]----------------------------------------------------- 
 
 
' -----[ Initialization ]-------------------------------------------------- 
 
Setup: 
  PAUSE 250                                     ' let DEBUG window open 
  DEBUG "Memsic 2125 Accelerometer", CR, 
        "-------------------------" 
 
 
' -----[ Program Code ]---------------------------------------------------- 
 
Main: 
  DO 
    GOSUB Read_Tilt                             ' reads G-force and Tilt 
 
    ' display results 
 
    DEBUG CRSRXY, 0, 3 
    DEBUG "X Input...  ", 
          DEC (xRaw / 1000), ".", DEC3 xRaw, " ms", 
          CLREOL, CR, 
          "G Force... ", (xmG.BIT15 * 13 + " "), 
          DEC (ABS xmG / 1000), ".", DEC3 (ABS xmG), " g", 
          CLREOL, CR, 
          "X Tilt.... ", (xTilt.BIT15 * 13 + " "), 
          DEC ABS xTilt, DegSym, CLREOL 
 
    DEBUG CRSRXY, 0, 7 
    DEBUG "Y Input...  ", 
          DEC (yRaw / 1000), ".", DEC3 yRaw, " ms", 
          CLREOL, CR, 
          "G Force... ", (ymG.BIT15 * 13 + " "), 
          DEC (ABS ymG / 1000), ".", DEC3 (ABS ymG), " g", 



© Parallax, Inc.  �  Memsic 2125 Accelerometer Demo Kit (#28017)  �  09/2004 5 

          CLREOL, CR, 
          "Y Tilt.... ", (yTilt.BIT15 * 13 + " "), 
          DEC ABS yTilt, DegSym, CLREOL 
 
    PAUSE 200                                   ' update about 5x/second 
  LOOP 
  END 
 
 
' -----[ Subroutines ]----------------------------------------------------- 
 
Read_G_Force: 
  PULSIN Xin, HiPulse, xRaw                     ' read pulse output 
  xRaw = xRaw */ Scale                          ' convert to uSecs 
  xmG = ((xRaw / 10) - 500) * 8                 ' calc 1/1000 g 
  PULSIN Yin, HiPulse, yRaw 
  yRaw = yRaw */ Scale 
  ymG = ((yRaw / 10) - 500) * 8 
  RETURN 
 
 
Read_Tilt: 
  GOSUB Read_G_Force 
  disp = ABS xmG / 10 MAX 99                    ' x displacement 
  GOSUB Arcsine 
  xTilt = angle * (-2 * xmG.BIT15 + 1)          ' fix sign 
  disp = ABS ymG / 10 MAX 99                    ' y displacement 
  GOSUB Arcsine 
  yTilt = angle * (-2 * ymG.BIT15 + 1)          ' fix sign 
  RETURN 
 
 
' Trig routines courtesy Tracy Allen, PhD. (www.emesystems.com) 
 
Arccosine: 
  disp = disp */ 983 / 3                        ' normalize input to 127 
  angle = 63 - (disp / 2)                       ' approximate angle 
  DO                                            ' find angle 
    IF (COS angle <= disp) THEN EXIT 
    angle = angle + 1 
  LOOP 
  angle = angle */ 360                          ' convert brads to degrees 
  RETURN 
 
 
Arcsine: 
  GOSUB Arccosine 
  angle = 90 - angle 
  RETURN 
 
 



© Parallax, Inc.  �  Memsic 2125 Accelerometer Demo Kit (#28017)  �  09/2004 6 

Experiment 2: Rotational Position Sensing 
 
If the Memsic 2125 is tilted up on its edge (X axis), the X and Y outputs can be combined to measure 
rotational position.  Output from this program is in Brads (binary radians, 0 to 255, the BASIC Stamp's 
unit of angular measurement) and degrees (0 to 359). 
 
For this code to work, the Memsic 2125 PCB must be positioned such that the sensor is perpendicular to 
the ground. 
 
 
' ========================================================================= 
' 
'   File...... MEMSIC2125-Rotation.BS2 
'   Purpose... Memsic 2125 Accelerometer Rotational Angle Measurement 
'   Author.... (C) 2003-2004 Parallax, Inc -- All Rights Reserved 
'   E-mail.... support@parallax.com 
'   Started... 
'   Updated... 07 SEP 2004 
' 
'   {$STAMP BS2} 
'   {$PBASIC 2.5} 
' 
' ========================================================================= 
 
 
' -----[ Program Description ]--------------------------------------------- 
' 
' Read the pulse outputs from a Memsic 2125 accelerometer and combine to 
' calculation rotational position. 
' 
' Refer to Memsic documentation (AN-00MX-007.PDF) for details on angle 
' conversion and considerations. 
' 
' www.memsic.com 
 
 
' -----[ I/O Definitions ]------------------------------------------------- 
 
Xin             PIN     8                       ' X input from Memsic 2125 
Yin             PIN     9                       ' Y input from Memsic 2125 
 
 
' -----[ Constants ]------------------------------------------------------- 
 
' Set scale factor for PULSIN 
 
#SELECT $STAMP 
  #CASE BS2, BS2E 
    Scale       CON     $200                    ' 2.0 us per unit 
  #CASE BS2SX 
    Scale       CON     $0CC                    ' 0.8 us per unit 
  #CASE BS2P 
    Scale       CON     $0C0                    ' 0.75 us per unit 
  #CASE BS2PE 
    Scale       CON     $1E1                    ' 1.88 us per unit 
#ENDSELECT 
 
HiPulse         CON     1                       ' measure high-going pulse 
LoPulse         CON     0 

mailto:support@parallax.com
http://www.memsic.com


© Parallax, Inc.  �  Memsic 2125 Accelerometer Demo Kit (#28017)  �  09/2004 7 

 
DegSym          CON     176                     ' degrees symbol 
 
 
' -----[ Variables ]------------------------------------------------------- 
 
pulse           VAR     Word                    ' pulse input 
xmG             VAR     Word                    ' g force (1000ths) 
ymG             VAR     Word 
brads           VAR     Word                    ' binary radians 
degrees         VAR     Word 
 
 
' -----[ Initialization ]-------------------------------------------------- 
 
Setup: 
  DEBUG "Memsic 2125 Rotation", CR, 
        "--------------------" 
 
 
' -----[ Program Code ]---------------------------------------------------- 
 
Main: 
  DO 
    GOSUB Read_G_Force                          ' read X and Y 
 
    brads = (xmG / 8) ATN (ymG / 8)             ' calculate angle 
    degrees = brads */ 360                      ' convert to degrees 
 
    DEBUG CRSRXY, 0, 3 
    DEBUG "Axis   A(g)", CR, 
          "X     ", (xmG.BIT15 * 13 + " "), 
          DEC (ABS xmG / 1000), ".", DEC3 (ABS xmG), " g", CR, 
          "Y     ", (ymG.BIT15 * 13 + " "), 
          DEC (ABS ymG / 1000), ".", DEC3 (ABS ymG), " g", CR, CR, 
          "Tilt = ", DEC3 brads, " Brads", CR, 
          "       ", DEC3 degrees, " Degrees" 
 
    PAUSE 200                                   ' update about 5x/second 
  LOOP 
  END 
 
 
' -----[ Subroutines ]----------------------------------------------------- 
 
Read_G_Force: 
  PULSIN Xin, HiPulse, pulse                    ' read pulse output 
  pulse = pulse */ Scale                        ' convert to uSecs 
  xmG = ((pulse / 10) - 500) * 8                ' calc 1/1000 g 
  PULSIN Yin, HiPulse, pulse 
  pulse = pulse */ Scale 
  ymG = ((pulse / 10) - 500) * 8 
  RETURN 

 
 
 
 



© Parallax, Inc.  �  Memsic 2125 Accelerometer Demo Kit (#28017)  �  09/2004 8 

Experiment 3: Motion Detector 
 
This experiment uses the Memsic 2125 as a movement or vibration detector.  The program starts by 
reading the initial state of the sensor and storing these readings as calibration values.  By doing this, the 
starting position of the sensor is nullified.  The main loop of the program reads the sensor and compares 
the current outputs to the calibration values.  If the output from either axis is greater than its calibration 
value the motion timer is incremented.  If both fall below the thresholds motion timer is cleared.  If the 
motion timer exceeds its threshold, the alarm will be turned on and will stay on until the BASIC Stamp is 
reset. 
 
You can adjust the sensitivity (to motion/vibration) of the program by changing the XLimit and YLimit 
constants, as well as the SampleDelay constant (should be 100 ms or greater).  The AlarmLevel 
constant determines how long motion/vibration must be present before triggering the alarm. 
 
 
' ========================================================================= 
' 
'   File...... MEMSIC2125-Motion.BS2 
'   Purpose... Detects continuous motion for given period 
'   Author.... Parallax (based on code by A. Chaturvedi of Memsic) 
'   E-mail.... support@parallax.com 
'   Started... 
'   Updated... 15 JAN 2003 
' 
'   {$STAMP BS2} 
'   {$PBASIC 2.5} 
' 
' ========================================================================= 
 
 
' -----[ Program Description ]--------------------------------------------- 
' 
' Monitors X and Y inputs from Memsic 2125 and will trigger alarm if 
' continuous motion is detected beyond the threshold period. 
 
 
' -----[ I/O Definitions ]------------------------------------------------- 
 
Xin             PIN     8                       ' X pulse input 
Yin             PIN     9                       ' Y pulse input 
ResetLED        PIN     10                      ' reset LED 
AlarmLED        PIN     11                      ' alarm LED 
 
 
' -----[ Constants ]------------------------------------------------------- 
 
HiPulse         CON     1                       ' measure high-going pulse 
LoPulse         CON     0 
 
SampleDelay     CON     500                     ' 0.5 sec 
AlarmLevel      CON     5                       ' 5 x SampleDelay 
 
XLimit          CON     5                       ' x motion max 
YLimit          CON     5                       ' y motion max 
 
 
' -----[ Variables ]------------------------------------------------------- 
 

mailto:support@parallax.com


© Parallax, Inc.  �  Memsic 2125 Accelerometer Demo Kit (#28017)  �  09/2004 9 

xCal            VAR     Word                    ' x calibration value 
yCal            VAR     Word                    ' y calibration value 
xMove           VAR     Word                    ' x sample 
yMove           VAR     Word                    ' y sample 
xDiff           VAR     Word                    ' x axis difference 
yDiff           VAR     Word                    ' y axis difference 
 
moTimer         VAR     Word                    ' motion timer 
 
 
' -----[ Initialization ]-------------------------------------------------- 
 
Initialize: 
  LOW AlarmLED                                  ' alarm off 
  moTimer = 0                                   ' clear motion timer 
 
Read_Cal_Values: 
  PULSIN Xin, HiPulse, xCal                     ' read calibration values 
  PULSIN Yin, HiPulse, yCal 
  xCal = xCal / 10                              ' filter for noise & temp 
  yCal = yCal / 10 
 
  HIGH ResetLED                                 ' show reset complete 
  PAUSE 1000 
  LOW ResetLED 
 
 
' -----[ Program Code ]---------------------------------------------------- 
 
Main: 
  DO 
    GOSUB Get_Data                              ' read inputs 
    xDiff = ABS (xMove - xCal)                  ' check for motion 
    yDiff = ABS (yMove - yCal) 
 
    IF (xDiff > XLimit) OR (yDiff > YLimit) THEN 
      moTimer = moTimer + 1                     ' update motion timer 
      IF (moTimer > AlarmLevel) THEN Alarm_On 
    ELSE 
      moTimer = 0                               ' clear motion timer 
    ENDIF 
  LOOP 
  END 
 
 
' -----[ Subroutines ]----------------------------------------------------- 
 
' Sample and filter inputs 
 
Get_Data: 
  PULSIN Xin, HiPulse, xMove                    ' take first reading 
  PULSIN Yin, HiPulse, yMove 
  xMove = xMove / 10                            ' filter for noise & temp 
  yMove = yMove / 10 
  PAUSE SampleDelay 
  RETURN 
 
 
' Blink Alarm LED 
' -- will run until BASIC Stamp is reset 



© Parallax, Inc.  �  Memsic 2125 Accelerometer Demo Kit (#28017)  �  09/2004 10 

 
Alarm_On: 
  DO 
    TOGGLE AlarmLED                             ' blink alarm LED 
    PAUSE 250 
  LOOP                                          ' loop until reset 

 
 
 
 
Application Idea 
 
Using the tilt code from Experiment 1, you can create a 3D joystick by mounting the Memsic 2125 and a 
pushbutton in a small, spherical enclosure (like a tennis ball).  With just three pins you can measure tilt 
of each axis and the status of the switch.   This would make an interesting, intelligent "leash" for a 
Parallax BOE-Bot. 
 
 
 
Using TOut 
 
Since the Memsic 2125 is a thermal device, the temperature is available from the TOut pin and can be 
measured using an external analog to digital converter (i.e., LTC1298).   
 
Details: 
 
� Output calibrated to 1.25 volts @ 25.0° C 

� Output change: 5 millivolts per degree C 
 
 
 
 



1 2 3 4 5 6

A

B

C

D

654321

D

C

B

A

Title

Number RevisionSize

B

Date: 27-Sep-2004 Sheet    of 
File: P:\Technical Support\Stephens Protel files (read only do not edit files of folders)\Mx2125 module\mx2125 board.ddbDrawn By:

Vdd

Tout

Yout

Gnd

VDA

Xout

Vref

SCK

N/C

Xout

Tout

Yout

C1
.1uF

C2
.1uF

MX2125

Pin 6

Pin 5Pin 2

Pin 1

Note: Gnds pin 3

Gnd
Pin 3

VDD



 

MEMSIC MXD2125G/M/N/H Rev.E Page 1 of 7 3/25/2005 
 

 

 
 

Improved, Ultra Low Noise 
±3 g Dual Axis Accelerometer with 
Digital Outputs

    MXD2125G/H 
 MXD2125M/N 

 
FEATURES 
Resolution better than 1 milli-g   
Dual axis accelerometer fabricated on a monolithic CMOS IC 
On chip mixed mode signal processing 
No moving parts 
50,000 g shock survival rating 
17 Hz bandwidth expandable to >160 Hz 
3.0V to 5.25V single supply continuous operation 
Continuous self test 
Independent axis programmability (special order) 
Compensated for Sensitivity over temperature 
Ultra low initial Zero-g Offset 
 
APPLICATIONS 
Automotive – Vehicle Security/Vehicle stability control/ 
 Headlight Angle Control/Tilt Sensing 
Security – Gas Line/Elevator/Fatigue Sensing 
Information Appliances – Computer Peripherals/PDA’s/Mouse  
 Smart Pens/Cell Phones 

Internal
Oscillator

Sck
(optional)

CLK

Heater
Control

X axis

Y axis

Factory Adjust
Offset & Gain

LPF

LPF

Temperature
Sensor

Voltage
Reference Vref

Dout X

Vdd VdaGnd

2-AXIS
SENSOR

Dout Y

Tout

Continous
Self Test

A/D

A/D

 
 

MXD2125G/H/M/N FUNCTIONAL BLOCK DIAGRAM 

Gaming – Joystick/RF Interface/Menu Selection/Tilt Sensing 
GPS – electronic Compass tilt Correction 
Consumer – LCD projectors, pedometers, blood pressure 
 Monitor, digital cameras 
 
GENERAL DESCRIPTION                                             
The MXD2125G/H/M/N is a low cost, dual axis 
accelerometer fabricated on a standard, submicron CMOS 
process.  It is a complete sensing system with on-chip 
mixed mode signal processing.  The MXD2125G/H/M/N 
measures acceleration with a full-scale range of ±3 g and a 
sensitivity of 12.5%/g @5V at 25°C.  It can measure both 
dynamic acceleration (e.g. vibration) and static acceleration 
(e.g. gravity). 
The MXD2125G/H/M/N design is based on heat 
convection and requires no solid proof mass.  This 
eliminates stiction and particle problems associated with 
competitive devices and provides shock survival of 50,000 
g, leading to significantly lower failure rate and lower loss 
due to handling during assembly. 

The MXD2125G/H/M/N provides two digital outputs that 
are set to 50% duty cycle at zero g acceleration.  The 
outputs are digital with duty cycles (ratio of pulse width to 
period) that are proportional to acceleration.  The duty 
cycle outputs can be directly interfaced to a micro-
processor. 
The typical noise floor is 0.2 mg/ Hz  allowing signals 
below 1 milli-g to be resolved at 1 Hz bandwidth.  The 
MXD2125G/H/M/N is packaged in a hermetically sealed 
LCC surface mount package (5 mm x 5 mm x 2 mm height) 
and is operational over a -40°C to 105°C(M/N) and 0°C to 
70°C(G/H) temperature range. 

 
Information furnished by MEMSIC is believed to be accurate and reliable.  
However, no responsibility is assumed by MEMSIC for its use, nor for any 
infringements of patents or other rights of third parties which may result from 
its use.  No license is granted by implication or otherwise under any patent or 
patent rights of MEMSIC. 

MEMSIC, Inc.  
800 Turnpike St., Suite 202, North Andover, MA  01845 
Tel:  978.738.0900      Fax:  978.738.0196 
www.memsic.com



 

  
MEMSIC MXD2125G/M/N/H Rev.E Page 2 of 7 3/25/2005 

 

MXD2125G/H/M/N SPECIFICATIONS  (Measurements @ 25°C, Acceleration = 0 g unless otherwise noted; VDD, VDA = 5.0V unless 
otherwise specified) 
 

 
Parameter 

 
Conditions 

 
Min

MXD2125G/H
Typ 

 
Max

 
Min

MXD2125M/N
Typ 

 
Max

 
Units 

SENSOR INPUT 
   Measurement Range1 

Each Axis  
±3.0

   
±3.0

   
g 

   Nonlinearity Best fit straight line  0.5   0.5  % of FS
   Alignment Error2 X Sensor to Y Sensor  ±1.0   ±1.0  degrees
   Transverse Sensitivity3   ±2.0    ±2.0  %  
SENSITIVITY 
   Sensitivity, Digital Outputs at 
pins  
  DOUTX and DOUTY

4 Change 

Each Axis 
 

 
11.8

 
12.5 

 
13.2 

 
11.8

 
12.5 

 
13.2

 
% duty 
cycle/g

over Temperature   -10  +8 -25  +8 % 
ZERO g BIAS LEVEL 
   0 g Offset4 

Each Axis  
-0.1

 
0.0 

 
+0.1 

 
-0.1

 
0.0 

 
+0.1

 
g 

   0 g Duty Cycle4  48.7 50 51.3 48.7 50 51.3 % duty 
cycle 

   0 g Offset over Temperature ∆ from 25°C 
Based on 12.5%/g 

 ±1.5 
±0.02 

  ±1.5 
±0.02 

 mg/°C
%/°C 

NOISE PERFORMANCE 
   Noise Density, rms 

 
 

  
0.2 

 
0.4 

  
0.2 

 
0.4 

 

mg/ Hz
FREQUENCY RESPONSE         
   3dB Bandwidth   15 17 9 15 17 19 Hz 
TEMPERATURE OUTPUT         
   Tout Voltage  1.15 1.25 1.35 1.15 1.25 1.35 V 
   Sensitivity  4.6 5.0 5.4 4.6 5.0 5.4 mV/°K
VOLTAGE REFERENCE         
   VRef @3.0V-5.25V supply 2.4 2.5 2.65 2.4 2.5 2.65 V 
   Change over Temperature   0.1   0.1  mV/°C 
   Current Drive Capability Source   100   100 µA 
SELF TEST          
   Continuous Voltage at DOUTX,  
   DOUTY under Failure 

@5.0V Supply, output 
rails to 

supply voltage 

 
  

 
5.0 

   
  

 
5.0 

   
V 

   Continuous Voltage at DOUTX, 
   DOUTY under Failure 

@3.0V Supply, output 
rails to 

supply voltage 

 
  

3.0    
  

3.0    
V 

DOUTX and DOUTY OUTPUTS         
   Normal Output Range Output High 

Output Low 
4.8

 
  

0.2 
4.8 

 
  

0.2 
V 
V 

    Output Frequency MXD2125G/M 
MXD2125H/N 

95 
380

100 
400 

105 
420 

95 
380

100 
400 

105
420

Hz 
Hz 

   Current  Source or sink, @ 
3.0V-5.25V supply

   100    100 µA 

   Rise/Fall Time 3.0 to 5.25V supply 90 100 110 90 100 110 nS 
   Turn-On Time5 @5.0V Supply 

@3.0V Supply 
 
 

160 
300 

  
 

160 
300 

 mS 
mS 

POWER SUPPLY         
   Operating Voltage Range  3.0  5.25 3.0  5.25 V 
   Supply Current @ 5.0V 2.5 3.1 3.9 2.5 3.1 3.9 mA 
   Supply Current @ 3.0V 3.0 3.8 4.6 3.0 3.8 4.6 mA 
TEMPERATURE RANGE         
   Operating Range  0  +70 -40  +105 °C 
NOTES 
 

1  Guaranteed by measurement of initial offset and sensitivity. 
2  Alignment error is specified as the angle between the true and indicated axis of 
sensitivity. 
3  Transverse sensitivity is the algebraic sum of the alignment and the inherent 
sensitivity errors.   
4  The device operates over a 3.0V to 5.25V supply range.  Please note that sensitivity 
and zero g bias level will be slightly different at 3.0V operation. For devices to be 

operated at 3.0V in production, they can be trimmed at the factory specifically for 
this lower supply voltage operation, in which case the sensitivity and zero g bias 
level specifications on this page will be met.  Please contact the factory for specially 
trimmed devices for low supply voltage operation. 
5  Output settled to within ±17mg. 
 
 
 
 



 

  
MEMSIC MXD2125G/M/N/H Rev.E Page 3 of 7 3/25/2005 

 

ABSOLUTE MAXIMUM RATINGS* 
Supply Voltage (VDD, VDA) ………………...-0.5 to +7.0V 
Storage Temperature  ……….…………-65°C to +150°C 
Acceleration ……………………………………..50,000 g 
 
*Stresses above those listed under Absolute Maximum Ratings may cause permanent 
damage to the device.  This is a stress rating only; the functional operation of the 
device at these or any other conditions above those indicated in the operational 
sections of this specification is not implied.  Exposure to absolute maximum rating 
conditions for extended periods may affect device reliability. 
 
Pin Description:  LCC-8 Package 

Pin Name Description 
1 TOUT Temperature (Analog Voltage) 
2 DOUTY Y-Axis Acceleration Digital Signal
3 Gnd Ground 
4 VDA Analog Supply Voltage 
5 DOUTX X-Axis Acceleration Digital Signal
6 Vref 2.5V Reference 
7 Sck Optional External Clock 
8 VDD Digital Supply Voltage 

 

Ordering Guide 
Model Package Style Digital 

Output 
Temperature 

Range 
MXD2125GL LCC8         

RoHS compliant 
100 Hz 0 to 70°C 

MXD2125GF LCC8, Pb-free 100 Hz 0 to 70°C 
MXD2125HL LCC8         

RoHS compliant 
400Hz 0 to 70°C 

MXD2125HF LCC8, Pb-free 400Hz 0 to 70°C 
MXD2125ML LCC8         

RoHS compliant 
100 Hz -40 to 105° 

MXD2125MF LCC8, Pb-free 100 Hz -40 to 105° 
MXD2125NL LCC8         

RoHS compliant 
400 Hz -40 to 105° 

MXD2125NF LCC8, Pb-free 400 Hz -40 to 105° 

All  parts are shipped in tape and reel packaging.    
Caution: ESD (electrostatic discharge) sensitive device. 
 
 
 

8

4

1

2

3

7

6

5

Top View

M
E

M
S

IC X  +g

Y  +g

 
 

Note:  The MEMSIC logo’s arrow indicates the +X sensing 
direction of the device.  The +Y sensing direction is rotated 90° 
away from the  +X direction following the right-hand rule. Small 
circle indicates pin one(1). 
 
 
                   

 
 
 

THEORY OF OPERATION 
The MEMSIC device is a complete dual-axis acceleration 
measurement system fabricated on a monolithic CMOS IC 
process.  The device operation is based on heat transfer by 
natural convection and operates like other accelerometers 
having a proof mass.  The proof mass in the MEMSIC 
sensor is a gas.   
 
A single heat source, centered in the silicon chip is 
suspended across a cavity.  Equally spaced 
aluminum/polysilicon thermopiles (groups of 
thermocouples) are located equidistantly on all four sides of 
the heat source (dual axis).  Under zero acceleration, a 
temperature gradient is symmetrical about the heat source, 
so that the temperature is the same at all four thermopiles, 
causing them to output the same voltage.   
 
Acceleration in any direction will disturb the temperature 
profile, due to free convection heat transfer, causing it to be 
asymmetrical.  The temperature, and hence voltage output 
of the four thermopiles will then be different.  The 
differential voltage at the thermopile outputs is directly 
proportional to the acceleration.  There are two identical 
acceleration signal paths on the accelerometer, one to 
measure acceleration in the x-axis and one to measure 
acceleration in the y-axis.  Please visit the MEMSIC 
website at www.memsic.com for a picture/graphic 
description of the free convection heat transfer principle. 
 
 
 
 
 
 
 
 
 
 
 
 



 

  
MEMSIC MXD2125G/M/N/H Rev.E Page 4 of 7 3/25/2005 

 

 
 
 
MXD2125G/H/M/N  PIN DESCRIPTIONS 
VDD – This is the supply input for the digital circuits and 
the sensor heater in the accelerometer.  The DC voltage 
should be between 3.0 and 5.25 volts.  Refer to the section 
on PCB layout and fabrication suggestions for guidance on 
external parts and connections recommended. 
 
VDA – This is the power supply input for the analog 
amplifiers in the accelerometer.  VDA should always be 
connected to VDD.  Refer to the section on PCB layout and 
fabrication suggestions for guidance on external parts and 
connections recommended. 
 
Gnd – This is the ground pin for the accelerometer. 
 
DOUTX – This pin is the digital output of the x-axis 
acceleration sensor. It is factory programmable to 100 Hz 
or 400 Hz.  The user should ensure the load impedance is 
sufficiently high as to not source/sink >100µA typical.  
While the sensitivity of this axis has been programmed at 
the factory to be the same as the sensitivity for the y-axis, 
the accelerometer can be programmed for non-equal 
sensitivities on the x- and y-axes.  Contact the factory for 
additional information. 
 
DOUTY – This pin is the digital output of the y-axis 
acceleration sensor. It is factory programmable to 100 Hz 
or 400 Hz.  The user should ensure the load impedance is 
sufficiently high as to not source/sink >100µA typical.   
While the sensitivity of this axis has been programmed at 
the factory to be the same as the sensitivity for the x-axis, 
the accelerometer can be programmed for non-equal 
sensitivities on the x- and y-axes.  Contact the factory for 
additional information. 
 
TOUT – This pin is the buffered output of the temperature 
sensor.  The analog voltage at TOUT is an indication of the 
die temperature.  This voltage is useful as a differential 
measurement of temperature from ambient and not as an 
absolute measurement of temperature.   
 
Sck – The standard product is delivered with an internal 
clock option (800kHz).  This pin should be grounded 
when operating with the internal clock.  An external 
clock option can be special ordered from the factory 
allowing the user to input a clock signal between 400kHz 
And 1.6MHz 
 
Vref – A reference voltage is available from this pin.  It is 
set at 2.50V typical and has 100µA of drive capability. 
 
 
 

 

 

 

DISCUSSION OF TILT APPLICATIONS AND 
RESOLUTION  

Tilt Applications:  One of the most popular applications of 
the MEMSIC accelerometer product line is in 
tilt/inclination measurement.  An accelerometer uses the 
force of gravity as an input to determine the inclination 
angle of an object. 
 
A MEMSIC accelerometer is most sensitive to changes in 
position, or tilt, when the accelerometer’s sensitive axis is 
perpendicular to the force of gravity, or parallel to the 
Earth’s surface.  Similarly, when the accelerometer’s axis is 
parallel to the force of gravity (perpendicular to the Earth’s 
surface), it is least sensitive to changes in tilt.   
 
Table 1 and Figure 2 help illustrate the output changes in 
the X- and Y-axes as the unit is tilted from +90° to 0°.  
Notice that when one axis has a small change in output per 
degree of tilt (in mg), the second axis has a large change in 
output per degree of tilt.  The complementary nature of 
these two signals permits low cost accurate tilt sensing to 
be achieved with the MEMSIC device (reference 
application note AN-00MX-007).  
 

Top View

X

Y

+900

00

gravity

M
E

M
S

IC

 
Figure 2:  Accelerometer Position Relative to Gravity 
 

 X-Axis Y-Axis 
X-Axis 
Orientation 
To Earth’s 
Surface 
(deg.) 

 
 

X Output
(g) 

 
Change 
per deg. 

of tilt 
(mg) 

 
 

Y Output
(g) 

 
Change 
per deg. 

of tilt 
(mg) 

90 1.000  0.15 0.000  17.45 
85 0.996  1.37 0.087  17.37 
80 0.985  2.88 0.174  17.16 
70 0.940  5.86 0.342  16.35 
60 0.866  8.59 0.500  15.04 
45 0.707  12.23 0.707  12.23 
30 0.500  15.04 0.866  8.59 
20 0.342  16.35 0.940  5.86 
10 0.174  17.16 0.985  2.88 
5 0.087  17.37 0.996  1.37 
0 0.000  17.45 1.000  0.15 

Table 1:  Changes in Tilt for X- and Y-Axes 
 
 
 



 

  
MEMSIC MXD2125G/M/N/H Rev.E Page 5 of 7 3/25/2005 

 

Resolution:  The accelerometer resolution is limited by 
noise. The output noise will vary with the measurement 
bandwidth. With the reduction of the bandwidth, by 
applying an external low pass filter, the output noise drops. 
Reduction of bandwidth will improve the signal to noise 
ratio and the resolution. The output noise scales directly 
with the square root of the measurement bandwidth. The 
maximum amplitude of the noise, its peak- to- peak value, 
approximately defines the worst case resolution of the 
measurement. With a simple RC low pass filter, the rms 
noise is calculated as follows: 
 
Noise (mg rms) = Noise(mg/ Hz ) * )6.1*)(( HzBandwidth  
 
The peak-to-peak noise is approximately equal to 6.6 times 
the rms value (for an average uncertainty of 0.1%). 
 
DIGITAL INTERFACE 
The MXD2125G/H/M/N is easily interfaced with low cost 
microcontrollers.  For the digital output accelerometer, one 
digital input port is required to read one accelerometer 
output. For the analog output accelerometer, many low cost 
microcontrollers are available today that feature integrated 
A/D (analog to digital converters) with resolutions ranging 
from 8 to 12 bits. 
  
In many applications the microcontroller provides an 
effective approach for the temperature compensation of the 
sensitivity and the zero g offset. Specific code set, reference 
designs, and applications notes are available from the 
factory.  The following parameters must be considered in a 
digital interface: 
 
Resolution: smallest detectable change in input acceleration 
Bandwidth: detectable accelerations in a given period of 
time 
Acquisition Time: the duration of the measurement of the 
acceleration signal 
 
 
DUTY CYCLE DEFINITION 
The MXD2125G/H/M/N has two PWM duty cycle outputs 
(x,y). The acceleration is proportional to the ratio T1/T2.  
The zero g output is set to 50% duty cycle and the 
sensitivity scale factor is set to 12.5% duty cycle change 
per g.  These nominal values are affected by the initial 
tolerance of the device including zero g offset error and 
sensitivity error.  This device is offered from the factory 
programmed to either a 10ms period (100 Hz) or a 2.5ms 
period (400Hz).   
 
T1  Length of the “on” portion of the cycle. 
T2 (Period) Length of the total cycle. 
Duty Cycle Ratio of the “0n” time (T1) of the cycle to 

the total cycle (T2). Defined as T1/T2. 
Pulse width Time period of the “on” pulse. Defined as 

T1.                                   

T2

T1

 
A (g)= (T1/T2 - 0.5)/12.5% 

0g = 50% Duty Cycle 
T2= 2.5ms or 10ms (factory programmable) 

Figure 3:  Typical output Duty C ycle 
 
CHOOSING T2 AND COUNTER FREQUENCY 
DESIGN TRADE-OFFS 
The noise level is one determinant of accelerometer 
resolution.  The second relates to the measurement 
resolution of the counter when decoding the duty cycle 
output.  The actual resolution of the acceleration signal is 
limited by the time resolution of the counting devices used 
to decode the duty cycle.  The faster the counter clock, the 
higher the resolution of the duty cycle and the shorter the 
T2 period can be for a given resolution.  Table 2 shows 
some of the trade-offs.  It is important to note that this is the 
resolution due to the microprocessors’ counter.  It is 
probable that the accelerometer’s noise floor may set the 
lower limit on the resolution. 
 

 
 
 

T2 (ms)

 
MEMSIC
Sample 

Rate 

Counter- 
Clock 
Rate 

(MHz) 

 
Counts
Per T2
Cycle 

 
 

Counts
per g 

 
Reso-
lution
(mg)

 2.5 400  2.0  5000  625 1.6 
 2.5 400  1.0  2500  312.5 3.2 
 2.5 400  0.5  1250  156.3 6.4 
 10.0 100  2.0  20000 2500 0.4 
 10.0 100  1.0  10000  1250 0.8 
 10.0 100  0.5  5000  625 1.6 
Table 2:  Trade-Offs Between Microcontroller Counter Rate and 
T2 Period. 
 
CONVERTING THE DIGITAL OUTPUT TO AN 
ANALOG OUTPUT 
The PWM output can be easily converted into an analog 
output by integration. A simple RC filter can do the 
conversion. Note that that the impedance of the circuit 
following the integrator must be much higher than the 
impedance of the RC filter. Reference figure 4 for an 
example. 
 

1uF

DOUT AOUT
10K

MEMSIC 
Accel.

 
Figure 4:  Converting the digital output to an analog voltage  
 
 



 

  
MEMSIC MXD2125G/M/N/H Rev.E Page 6 of 7 3/25/2005 

 

POWER SUPPLY NOISE REJECTION  
Two capacitors and a resistor are recommended for best 
rejection of power supply noise (reference Figure 5 below). 
The capacitors should be located as close as possible to the 
device supply pins (VDA, VDD). The capacitor lead length 
should be as short as possible, and surface mount capacitors  
are preferred. For typical applications, capacitors C1 and 
C2 can be ceramic 0.1 µF, and the resistor R can be 10 Ω.  
 

R

MEMSIC
Accelerometer

VDA

C1 C2

VDD

V SUPPLY

 
Figure 5:  Power Supply Noise Rejection 
 
 
 
 
 
 
 
 
 
 
 
 
 

PCB LAYOUT AND FABRICATION SUGGESTIONS 
1. The Sck pin should be grounded to minimize noise. 
2. Liberal use of ceramic bypass capacitors is 

recommended. 
3. Robust low inductance ground wiring should be used. 
4. Care should be taken to ensure there is “thermal 

symmetry” on the PCB immediately surrounding the 
MEMSIC device and that there is no significant heat 
source nearby. 

5. A metal ground plane should be added directly beneath 
the MEMSIC device.  The size of the plane should be 
similar to the MEMSIC device’s footprint and be as 
thick as possible. 

6. Vias can be added symmetrically around the ground 
plane.  Vias increase thermal isolation of the device 
from the rest of the PCB. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

  
MEMSIC MXD2125G/M/N/H Rev.E Page 7 of 7 3/25/2005 

 

LCC-8 PACKAGE DRAWING 
 
 

 
Fig 6: Hermetically Sealed Package Outline 

 
 



Accelerometer - Tilt, Graphics and Video Games · Page 1 

Accelerometer - Tilt, Graphics and Video Games 
 
The accelerometer is featured in lots of HIDs.  HID is short for Human Interface Device, 
and it includes computer mice, keyboards, and more generally, anything that makes it 
possible for humans to interact with microprocessors.  With limited space on PDAs like 
the one in Figure 1, tilt control eliminates the need for extra buttons.  Tilt control is also a 
popular feature in certain game controllers.    
 

 

Figure 1 
Tilt Controlled  
Game on a PDA 

 
The circuit in products like these is similar to the one introduced in Accelerometer - 
Getting Started.  If you haven’t already built and tested the circuit and tried the examples 
in Activity #1 of Accelerometer - Getting Started, do it first before continuing here. 
 

 

Where can I find Accelerometer - Getting Stared? 

√ Go to the www.parallax.com home page, and enter 28017 into the search field.   

√ This will take you to the Memsic 2125 Dual-axis Accelerometer page.   

√ Follow the Stamps in Class Memsic Tutorial (.pdf) link.    

 
This chapter has four activities that demonstrate the various facets of using tilt to control 
a display.  Here are summaries of each activity: 
 
• Activity #1: PBASIC Graphic Character Display – introduces some Debug Terminal 

cursor control and coordinate plotting basics. 
_____________________________________________________________________________________________ 
  

The draft material in this Chapter is part of a forthcoming Stamps in Class text by Andy Lindsay. 
(c) 2005 by Parallax Inc - all rights reserved.  Last revised on 4/24/05. 
To post feedback or suggestions, go to http://forums.parallax.com/forums/default.aspx?f=6&m=57588. 
Software for BASIC Stamp® Modules and applications are available for free download from www.parallax.com.    

www.parallax.com
http://www.parallax.com/dl/docs/prod/compshop/SICMemsicTut.pdf
http://www.parallax.com/detail.asp?product_id=28017
http://forums.parallax.com/forums/default.aspx?f=6&m=57588
www.parallax.com


Page 2 · Smart Sensors and Applications 
 
 
• Activity #2: Background Store and Refresh with EEPROM – Each time your game 

character moves, whatever it was covering up on the screen has to be re-drawn.  This 
activity demonstrates how you can move your character and refresh the background 
with the help of the BASIC Stamp’s EEPROM. 

• Activity #3: Tilt the Bubble Graph – With a moving asterisk on a graph, this first 
application demonstrates how the hot air pocket inside the MX2125 moves when you 
tilt it.  At the same time, it puts the accelerometer fundamentals to work along with 
the techniques from Activity #2. 

• Activity #4: Game Control Example – You are now ready to use tilt to start 
controlling your game character.  The background characters can be used to make 
decisions about whether your game character is in or out of bounds.  Have fun 
customizing and expanding this tilt controlled video game. 

ACTIVITY #1: PBASIC GRAPHIC CHARACTER DISPLAY 
This activity introduces some programming techniques you will use to graphically 
display coordinates with the Debug Terminal.  Certain elements of the techniques 
introduced in this and the next activity are commonly used with liquid crystal and other 
small displays as well as in certain digital video technologies like MPEG.   

The CRSRXY  and Other Control Characters 

The DEBUG command's CRSRXY control character can be used to place the cursor at a 
location on the Debug Terminal's receive windowpane.  For example, DEBUG CRSRXY, 
7, 3, "*" places the asterisk character seven spaces to the right and three characters 
down.  Instead of using constants like 7 and 3, you can use variables to make the 
placement of the cursor adjustable.  Let’s say you have two variables, x and y, the values 
these variables store can control the placement of the asterisk in the command DEBUG 
CRSRXY, x, y, "*".  
 
The next example program also makes use of the CLRDN control character.  The command 
DEBUG CLRDN causes all the lines below the cursor’s current location to be erased.   
 

 

More Control Characters 

You can find out more about control characters by looking up the DEBUG command, either 
in the PBASIC Syntax Guide or the BASIC Stamp Manual.  You can get to the PBASIC 
Syntax guide through your BASIC Stamp Editor (v2.0 or newer).  Just click Help and select 
Index.  The BASIC Stamp Manual is available for free download from www.parallax.com → 
Downloads → Documentation.   

www.parallax.com
http://www.parallax.com/html_pages/downloads/basicstamps/documentation_basic_stamp.asp


Accelerometer - Tilt, Graphics and Video Games · Page 3 

Example Program – CrsrxyPlot.bs2 

With this program, you can type pairs of digits into the Transmit Windowpane (see 
Figure 2) to position asterisks on the receive windowpane.  Simply click the transmit 
windowpane and start typing.  The first digit you type is the number of spaces to the right 
to place the cursor, and the second number is the number of carriage returns downward.  
Before typing a new pair of digits, press the space bar once. 
 
Figure 2 - Debug Terminal Transmit and Receive Windowpanes  
 

                  
 
√ Enter, save, and run CrsrxyPlot.bs2 
√ Follow the prompts and type digits into the Debug Terminal's transmit windowpane 

to place asterisks on the plot. 
√ Try the sequence 11, 22, 33, 43, 53, 63, 73, 84, 95.  Do the asterisks in your Debug 

Terminal match the pattern in the example? 
√ Try predicting the sequences for various shapes, like a square, triangle, and circle.   
√ Enter the sequences to test your predictions. 
√ Correct the sequences as needed. 
 
' Accelerometer Projects 
' CrsrxyPlot.bs2 
 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
 
x      VAR   Word 

Transmit 
Windowpane 

Receive 
Windowpane 



Page 4 · Smart Sensors and Applications 
 
 
y      VAR   Word 
temp   VAR   Byte 
 
DEBUG CLS, 
"0123456789X", CR, 
"1          ", CR, 
"2          ", CR, 
"3          ", CR, 
"4          ", CR, 
"5          ", CR, 
"Y          ", CR, CR 
 
DO 
 
  DEBUG "Type X coordinate: " 
  DEBUGIN DEC1 x 
  DEBUG CR, "Type Y coordinate: " 
  DEBUGIN DEC1 y 
 
  DEBUG CRSRXY, x, y, "*" 
 
  DEBUG CRSRXY, 0, 10, "Press any key..." 
  DEBUGIN temp 
  DEBUG CRSRXY, 0, 8, CLRDN 
 
LOOP 

Your Turn – Keeping Characters in the Plot Area 

If you type the digit 8 in response to the prompt "Type Y coordinate: ", it will 
overwrite your text.  Similar problems occur if you type 0 for either the X or Y 
coordinates.  The asterisk is plotted over the text that shows which row and column 
CRSRXY is plotting.  One way to fix this is with the MAX and MIN operators.  Simply add 
the statement y = y MAX 5 MIN 1.  The DEBUGIN command’s DEC1 operator solves this 
problem for the maximum X coordinate, since it is limited to a value from 0 to 9.  So, all 
you’ll need to clamp the X value is x = x MIN 1.   
 
√ Try entering out of bounds values for the Y coordinate (0 and 6 to 9) and 0 for the X 

coordinate.   
√ Observe the effects on the display’s background.   
√ Modify CrsrxyPlot.bs2 as shown here and try it again 

 
  DEBUG CR, "Type Y coordinate: " 
  DEBUGIN DEC1 y 
 
  Y = y MAX 5 MIN 1                ' <--- Add  



Accelerometer - Tilt, Graphics and Video Games · Page 5 

  X = x MIN 1                      ' <--- Add 
 
  DEBUG CRSRXY, x, y, "*" 

 

Scale and Offset 

Scale and offset were introduced in both What's a Microcontroller and Robotics with the 
Boe-Bot.  In What's a Microcontroller, they were used to adjust servo position based on 
input, and in Robotics with the Boe-Bot, they were used to calibrate light sensors.  Here is 
scale and offset again, this time for positioning characters on a display. 
 
Take a look at the example in Figure 3.  When you type in -3-3 into the Debug 
Terminal’s transmit windowpane, it doesn’t automatically appear at the (-3, -3) position 
on the graph.  The asterisk actually needs to be placed 0 spaces over and 6 carriage 
returns down.  Here is a second example.  When you type-in 2,2, CRSRXY actually needs 
to place the cursor at 10 spaces over and one carriage return down.   
 

 

Figure 3 
Entering and  
Displaying Coordinates 
 

 
For values ranging from -3 to 3, the X value has to be multiplied by 2 and added to 6 for 
CRSRXY to place the asterisk the right number of spaces over.  That’s a scale of 2, and an 
offset of 6.  Here is a PBASIC statement to make the conversion from X coordinate to 
number of spaces. 
 
  x = (x * 2) + 6 
 



Page 6 · Smart Sensors and Applications 
 
 
The Y value has to be multiplied by -1, then added to 3.  That’s a scale of -1 and an offset 
of 3.  Here is a PBASIC statement to make the conversion from Y coordinate to number 
of carriage returns. 
 
  y = 3 - y 
 

√ Try substituting X and Y coordinates in the right side of each of these equations, do 
the math, and verify that each equation yields the right number of spaces and carriage 
returns. 

Example Program – PlotXYGraph.bs2    

√ Enter and run PlotXYGraph.bs2. 
√ Try entering the sequence of values: -3-3 -2-2 -1-1 00 11 22 33 and verify that it 

matches the Debug Terminal example. 
√ Try some other sequences and/or drawing shapes by their coordinates. 
 
' Accelerometer Projects                      
' PlotXYGraph.bs2 
 
'{$STAMP BS2} 
'{$PBASIC 2.5} 
 
x              VAR     Word 
y              VAR     Word 
temp           VAR     Byte 
 
DEBUG CLS, 
"     3|      ", CR, 
"     2|      ", CR, 
"     1|      ", CR, 
"------+------", CR, 
"-3-2-1| 1 2 3", CR, 
"    -2|      ", CR, 
"    -3|      ", CR, CR 
 
DO 
 
  DEBUG "Type X coordinate: " 
  DEBUGIN SDEC1 x 
  DEBUG CR, "Type Y coordinate: " 
  DEBUGIN SDEC1 y 
 
  x = (x * 2) + 6 
  y = 3 - y 
 
  DEBUG CRSRXY, x, y, "*" 



Accelerometer - Tilt, Graphics and Video Games · Page 7 

 
  DEBUG CRSRXY, 0, 10, "Press any Key..." 
  DEBUGIN temp 
  DEBUG CRSRXY, 0, 8, CLRDN 
 
LOOP 

Your Turn – More Keeping Characters in the Plot Area 

You can also use IF…THEN statements to handle values that are out of bounds.  Here is an 
example of how you can modify PlotXyGraph.bs2 with IF…THEN.  Instead of clipping the 
value, the program just waits until a correct value is entered.   
 
√ Modify PlotXYGraph.bs2 as shown here, and then run it.  Verify that this program 

does not allow you to enter characters outside the range of -3 to 3. 
 
  x = (x * 2) + 6 
  y = 3 - y 
                                              
  IF (x > 12) OR (y > 6) THEN                ' <--- Add/modify from here... 
    DEBUG CRSRXY, 0, 8, CLRDN,               ' 
         "Enter values from -3 to 3.", CR,   ' 
         "Try again"                         ' 
                                             ' 
  ELSE                                       ' 
                                             ' 
    DEBUG CRSRXY, x, y, "*"                  ' 
                                             ' 
  ENDIF                                      ' <--- to here 
                                          
  DEBUG CRSRXY, 0, 10, "Press any Key..."     
  DEBUGIN temp                               

 



Page 8 · Smart Sensors and Applications 
 
 

 

What negative numbers?  

The conditions for the IF...THEN statement in your modified version of PlotXYGraph.bs2 
are (x > 12) OR (y > 6).  This covers positive numbers that are larger than 12 or 6, but 
it also covers all negative numbers.  That's because the BASIC Stamp uses a system called 
twos complement to store negative numbers.  In twos complement, the unsigned version of 
any negative value is larger than any positive value.  For example, -1 is 65535, -2 is 65534, 
and so on, down to -32768, which is actually 32768.  Signed positive values only range from 
1 to 32767. 

Twos complement is the most common form of negative number storage in both 
microcontrollers and computers.  The reason twos complement is so popular is because its 
rules are very simple at the binary computing level.  If you don't already know the rules for 
twos complement, try this program, and see if you can figure them out: 

' Accelerometer Projects 
' TwosComplementExample.bs2 
 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
counter VAR Word 
 
DEBUG "Signed  Unsigned  Binary          ", CR, 
      "------  --------  ----------------", CR 
 
FOR counter = - 8 TO -1 
  DEBUG SDEC counter, "      ", 
        DEC counter,  "     ", 
        BIN16 counter, CR 
  PAUSE 100 
NEXT 
 
FOR counter = 0 TO 8 
  DEBUG " ", SDEC counter, 
        "      ", DEC counter, 
        "         ", BIN16 counter, CR 
  PAUSE 100 
NEXT 
 
END 

When writing IF...THEN statements that examine negative values for the BASIC Stamp, 
always keep three things in mind:  

   1) The BASIC Stamp makes unsigned IF...THEN comparisons. 
   2) Negative values are always larger than positive values.  
   3) You can always recognize a negative number by testing if its Bit15 is one.   
        For example, IF counter.bit15 = 1 THEN... 
  



Accelerometer - Tilt, Graphics and Video Games · Page 9 

Algebra to Determine Scale and Offset 

The XY plot displayed in the Debug Terminal in this activity is called the Cartesian 
coordinate system.  Named after 17th century mathematician René Descartes, this system 
is the basis for graphing techniques used in many mathematical pursuits.  Shown in 
Figure 4, the Cartesian coordinate system’s is most commonly displayed with (0, 0) in the 
center of the graph.  Its values get larger going upward (y-axis) and to the right (x-axis).  
Most displays behave differently, with coordinate 0, 0 starting at the top-left.  While the 
x-axis increases toward the right, the y-axis increases downward. 
 
              Cartesian                                               Display 
 

 

Figure 4 
Cartesian vs. 
Display 
Coordinates 
 

 
You can use a standard algebra technique, solving two equations in two unknowns, to 
figure out the statements you will need to transform Cartesian coordinates into debug 
terminal coordinates.  This next example shows how it was done for the statements that 
converted x and y from Cartesian to display coordinates in PlotXYGraph.bs2.      
 
By adding a couple of DEBUG commands, you can display the before and after versions of 
the X-value you entered.   
 
  DEBUG "Type X coordinate: " 
  DEBUGIN SDEC1 x 
  DEBUG CR, "Type Y coordinate: " 
  DEBUGIN SDEC1 y 
 
  DEBUG CRSRXY, 0, 12, "x before: ", SDEC1 x   ' <--- Add 
 
  x = (x * 2) + 6 
  y = 3 - y 
 
  DEBUG CRSRXY, 0, 14, "x after:  ", SDEC1 x   ' <--- Add 



Page 10 · Smart Sensors and Applications 
 
 
 
  DEBUG CRSRXY, x, y, "*" 
 

√ Save PlotXyGraph.bs2 under another name, like PlotXyGraphBeforeAfter.bs2. 
√ Add the two DEBUG commands that display the "before" and "after" values of x. 
√ Add two more DEBUG commands to display the “before” and “after” values of y. 
√ Enter the coordinates (3,1) and (-2,-2) into the Debug Terminal's transmit 

windowpane.  See Figure 5. 
√ Record the after values in the table.  
 

Table: 1 Values Before and After 
Coordinate before  After 

(3, 1) 3  
(-2, 2) -2   

 

 

Figure 5 
Test Coordinates 

 
When designing a display to show Cartesian coordinates, it helps to take a couple of 
before and after values like the one's in Table 1.  You can then use them to solve for scale 
(K) and offset (C) using two equations with two unknowns.   
 
          Xafter = (K×Xbefore) + C 
 



Accelerometer - Tilt, Graphics and Video Games · Page 11 

The usual steps for two equations in two unknowns are: 
 
(1) Substitute your two before and after data points into separate copies of the equation. 
 

          
C-2)(K  2
C3)(K12

+×=
+×=

 

 
(2) If needed, multiply one of the two equations by a term that causes the number of one 

of the unknowns in the top and bottom equations to be equal. 
 
          Not needed, because the coefficient of C in both equations is 1. 
 
(3) Subtract one equation from the other to make one of the unknowns zero.  
 

          [ ]
5K10   

C-2)(K  2 
C3)(K12   

×=

+×=−
+×=

 

 
(4) Solve for the unknown that did not subtract to zero. 
 

          

2K  
5

10K 

5K10

=

=

×=

 

 
(5) Substitute the value you solved in step 4 into one of the original two equations. 
 
         12 = (2×3) + C 
 
(6) Solve for the second unknown. 
 
         12 = (2×3) + C  
         12 = 6 + C 
          C = 12-6 



Page 12 · Smart Sensors and Applications 
 
 
          C = 6 
 
(7) Incorporate solved unknowns into your equation. 
 
        Xafter = (K×Xbefore) + C 

       ( ) 6X2X
6  C and 2 K 

beforeafter +×=
==

 

Your Turn – Y-Axis Calculations 

√ Modify your program so that it displays the Y-Axis before and after values. 
√ Fill in the table for the Y-axis values: 

Table: Y Values Before and After 
Coordinate before  After 

(3, 1) 1  
(-2, 2) 2   

 
√ Repeat steps 1-7 for the Y-Axis equation.  The correct answer is yafter = (-1 × ybefore) + 

3.  

ACTIVITY #2: BACKGROUND STORE AND REFRESH WITH EEPROM 
In a video game, when your game character isn’t on the screen, all that’s visible is the 
background.  As soon as your game character enters the screen, it blocks out part of the 
background.  When the character moves, two things have to happen: (1) the game 
character has to be re-drawn at the new location, and (2) the background that the game 
character was blocking out has to be re-drawn.  If step 2 never happened in your program, 
your screen would fill up with copies of your game character. 
 
Televisions and CRT computer monitors refresh every pixel many times per second.  The 
refresh rate on televisions is around 30 Hz, and a few of the more common refresh rates 
on CRTs are 60, 70, and 72 Hz.  Other devices like certain LCD and LED displays hold 
the image automatically, or sometimes with the help of another microcontroller.  All the 
program or microcontroller that controls these devices has to do is tell them what to 
display or change.  This is also how video compression on your computer works.  In 



Accelerometer - Tilt, Graphics and Video Games · Page 13 

order to reduce the file size, some compressed video files store the changes to the image 
instead of all the pixels in a given image frame.  
 
When used with displays that do not need to be refreshed (like the Debug Terminal or an 
LCD), the BASIC Stamp’s can store an image of a game or graph background in its 
EEPROM.  When a game character moves and is redrawn at a different location, the 
BASIC Stamp can just redraw the background characters at the game characters old 
location.  All you have to do is save the old coordinates of the game character before it 
moved and then use those coordinates to retrieve the background characters from 
EEPROM.  Depending on how large the display is, this can save a considerable amount 
of time that the BASIC Stamp might need to perform other tasks.   
 
This activity introduces three elements to game characters and backgrounds: 
 
  (1) Storing and displaying the background from EEPROM 
  (2) Tracking a character’s old and new coordinates 
  (3) Redrawing the old coordinates from EEPROM.   

Background Display from EEPROM 

This display doesn’t have to be made with a single DEBUG command, especially if it needs 
to be maintained as a background with characters traveling over it in the foreground.  
Instead, it’s better to store the characters in EEPROM and then display them individually 
with a FOR…NEXT loop that uses READ and DEBUG commands to display individual 
characters.  Figure 6 is a display generated with this technique. 
 

 

Figure 6 
Background  
from DATA 

 



Page 14 · Smart Sensors and Applications 
 
 
You can use the DATA directive to store a background in EEPROM.  Notice how this 
DATA directive stores 100 characters (0 to 99).  Notice also that each row is 14 characters 
wide when you add the CR control character.  It makes programming much easier if each 
row is the same width.  Otherwise, finding the character you want become s a more 
complex problem. 
 
  DATA CLS,                     ' 0   
  "     3|      ", CR,          ' 14 
  "     2|      ", CR,          ' 28 
  "     1|      ", CR,          ' 42 
  "------+------", CR,          ' 56 
  "-3-2-1| 1 2 3", CR,          ' 70 
  "    -2|      ", CR,          ' 84 
  "    -3|      ", CR, CR       ' 98 + 1 = 99 
 

You can then use a FOR…NEXT loop to retrieve and display each character stored in 
EEPROM.  The net effect is the same as a long DEBUG command. 
 
FOR index = 0 TO 99                          
  READ index, character 
  DEBUG character 
NEXT 

Example Program – EepromBackgroundDisplay.bs2 

√ Enter, save, and run the program. 
√ Verify that the display is the same as PlotXyGraph.bs2. 
 
' Accelerometer Projects                     ' Program 
' EepromBackgroundDisplay.bs2 
 
'{$STAMP BS2}                                ' Stamp & PBASIC Directives 
'{$PBASIC 2.5} 
 
index          VAR     Byte           ' Variables 
character      VAR     Byte 
 
DATA CLS,                     ' 0            ' Store background in EEPROM 
"     3|      ", CR,          ' 14 
"     2|      ", CR,          ' 28 
"     1|      ", CR,          ' 42 
"------+------", CR,          ' 56 
"-3-2-1| 1 2 3", CR,          ' 70 
"    -2|      ", CR,          ' 84 
"    -3|      ", CR, CR       ' 98 + 1 = 99 
 
FOR index = 0 TO 99                          ' Retrieve and display background 



Accelerometer - Tilt, Graphics and Video Games · Page 15 

  READ index, character 
  DEBUG character 
NEXT 
 
END 

Your Turn – Viewing the EEPROM Characters 

√ In the BASIC Stamp Editor, click Run and select Memory Map.   
√ Click the Display Ascii box in the lower left corner of the Memory Map window. 
√ The digits, dashes, and vertical bars should appear exactly as shown in Figure 7.  
√ Instead of 14 characters per row, the EEPROM map shows 16.  Verify that you have 

a total of 100 (0 to 99) characters stored for display purposes in EEPROM.    
 
 
Figure 7 - Display Characters Stored in EEPROM 
 

 

Tracking a Character’s Old and New Coordinates 

Let’s say you want to track the previous X and Y coordinates in PlotXYGaph.bs2 from 
Activity #1.  It takes two steps: 
 

(1) Declare a couple variables for storing the old values, xOld and yOld for example. 
 

x              VAR     Word 
y              VAR     Word 
 



Page 16 · Smart Sensors and Applications 
 
 

xOld           VAR     Nib                   ' <--- Add 
yOld           VAR     Nib                   ' <--- Add 
 
temp           VAR     Byte 

 
(2) Before loading new values into the x and y variables, store the current value of x 

into xOld and the current value of y into yOld. 
 

DO 
 
  xOld = x                                   ' <--- Add 
  yOld = y                                   ' <--- Add 
 
  DEBUG "Type X coordinate: " 

 

 

Why are x and y words while xOld and yOld are nibbles?  

When working with signed values, word variables store both the value and the sign.   

At the particular place that xOld and yOld are used in the program, they are only storing 
values that range from 0 to 12, so all we need are nibble variables. 

 
Here’s a third step you can use to test and verify that it works:  
 

(3) Before loading new values into the x and y variables, store the current value of x 
into xOld and the current value of y into yOld.  Keep in mind that both values will 
be in terms of Debug Terminal coordinates.  Also keep in mind that the first time 
through, the old coordinates will be (0, 0) since all variables initialize to zero in 
PBASIC. 

 
  DEBUG CRSRXY, x, y, "*" 
 
  DEBUG CRSRXY, 0, 10,                       ' <--- Add 
        "Current entry:  (",  
        DEC x, ",", DEC y, ")"    
  DEBUG CRSRXY, 0, 11,                       ' <--- Add 
        "Previous entry: (",  
        DEC xOld, ",", DEC yOld, ")"    
  DEBUG CRSRXY, 0, 12, "Press any Key..."    ' <--- Modify 
 
  DEBUGIN temp 
 

√ Start with PlotXYGraph.bs2, save it under a new name, and try the modifications just 
discussed. 



Accelerometer - Tilt, Graphics and Video Games · Page 17 

Re-Drawing the Background 

The net effect we want for game control is to make the asterisk disappear from its old 
location and appears in its new location whenever it moves.  To make it appear at its new 
location, simply use a DEBUG command to display the asterisk at its current coordinates.  
To make the asterisk disappear from its old coordinates, the background character that 
was there has to be looked up in EEPROM and then displayed with DEBUG.  Notice that 
six ordered pairs were entered into the Debug Terminal shown in Figure 8, but there is 
only one asterisk, and it corresponds with the last pair that was entered. 
 

 

Figure 8 
Display with  
Background  
Refresh 

 
Here is a routine you can add to PlotXYGraph.bs2 to accomplish this:   

 
  DEBUG CRSRXY, x, y, "*" 
 
  index = (14 * yOld) + xOld + 1             ' <--- Add 
  READ index, character                      ' <--- Add 
  DEBUG CRSRXY, xOld, yOld, character        ' <--- Add 
 

The index variable selects the correct character from EEPROM.  The x value is the 
number of spaces over and the y value is the number of carriage returns down.  To get to 
the correct address of a character on the third row, your program has to add all the 
characters in the first two rows.  Since each row has 14 characters, yOld has to be 
multiplied by 14 before it can be added to xOld.  The extra 1 is added to skip the CLS at 
address 0. 
 



Page 18 · Smart Sensors and Applications 
 
 
Regardless of whether it's a computer display, the liquid crystal display on your cell 
phone, or your BASIC Stamp application's display, the same technique applies.  The 
processor remembers two different images, the one in the background, and the one in the 
foreground.  As the foreground object moves, it is displayed in a different location and 
the area that the foreground object used to occupy is re-drawn. 
 
The most important thing to keep in mind about this programming technique is that it 
saves the processor lots of time.  It only has to get one character from EEPROM and send 
it to the debug terminal.  Compared to 99 characters, that's a significant time savings, and 
the BASIC Stamp can be doing other things with that time, such as monitoring other 
sensors, controlling servos, etc. 

Example Program – EeprogrmBackgroundRefresh.bs2 

This is a modified version of PlotXYGraph.bs2 with the background display, coordinate 
storage, and background redraw techniques introduced in this activity.   
 
√ Enter save and run EepromBackgroundRefresh.bs2. 
√ Test and verify that the asterisk disappears form its old location and appears at the 

new location you entered.   
 
' -----[ Title ]----------------------------------------------------------- 
' Accelerometer Projects                     ' Program info 
' EepromBackgroundRefresh.bs2 
 
'{$STAMP BS2}                                ' Stamp/PBASIC directives 
'{$PBASIC 2.5} 
 
' -----[ Variables ]------------------------------------------------------- 
 
x              VAR     Word                  ' Store current position 
y              VAR     Word 
 
xOld           VAR     Nib                   ' Store previous position 
yOld           VAR     Nib 
 
temp           VAR     Byte                  ' Dummy variable for DEBUGIN 
 
index          VAR     Byte                  ' READ index/character storage 
character      VAR     Byte 
 
' -----[ EEPROM Data ]----------------------------------------------------- 
 
DATA CLS,                                    ' Display background 
"     3|      ", CR,          ' 14 



Accelerometer - Tilt, Graphics and Video Games · Page 19 

"     2|      ", CR,          ' 28 
"     1|      ", CR,          ' 42 
"------+------", CR,          ' 56 
"-3-2-1| 1 2 3", CR,          ' 70 
"    -2|      ", CR,          ' 84 
"    -3|      ", CR, CR       ' 98 + 1 = 99 
 
' -----[ Initialization ]-------------------------------------------------- 
 
FOR index = 0 TO 99                          ' Display background  
  READ index, character 
  DEBUG character 
NEXT 
 
' -----[ Main Routine ]---------------------------------------------------- 
 
DO                                            
 
  xOld = x                                   ' Store previous coordinates 
  yOld = y 
 
  DEBUG "Type X coordinate: "                ' Get new coordinates 
  DEBUGIN SDEC1 x 
  DEBUG CR, "Type Y coordinate: " 
  DEBUGIN SDEC1 y 
 
  x = (x * 2) + 6                            ' Cartesian to DEBUG values 
  y = 3 - y 
 
  DEBUG CRSRXY, x, y, "*"                    ' Display asterisk 
 
  index = (14 * yOld) + xOld + 1             ' Redisplay background 
  READ index, character 
  DEBUG CRSRXY, xOld, yOld, character 
 
  DEBUG CRSRXY, 0, 10, "Press any Key..."    ' Wait for user 
  DEBUGIN temp 
  DEBUG CRSRXY, 0, 8, CLRDN                  ' Clear old info 
 
LOOP 
 

Your Turn - Redrawing the Background without Extra Variables 

Keeping track of the old location of the foreground character isn’t always necessary.  
Think about it this way: in EepromBackgroundRefresh.bs2 the x and y variables store the 
old values until you enter new values.  By simply rearranging the order that the x and y 
variables are displayed in, you can eliminate the need for xOld and yOld.   
 



Page 20 · Smart Sensors and Applications 
 
 
Next is a replacement main routine you can try in EepromBakcgroundRefresh.bs2.  As 
soon as you press the space bar, your old asterisk disappears.  The new asterisk reappears 
when you type the second of the two coordinates.  As you will see in the next activity, 
this technique works really well when the refresh rate is several times per second with tilt 
control. 
 
√ Save EepromBakcgroundRefresh.bs2 as EepromBackgroundRefreshYourTurn.bs2. 
√ Comment the xOld and yOld variable declarations. 
√ Replace the Main Routine in EepromBackgroundRefresh.bs2 with this one. 
√ Test it and examine the change in the program’s behavior. 
 

' -----[ Main Routine ]--------------------------------------------------- 
 
DO 
 
  index = (14 * y) + x + 1                   ' Redisplay background 
  READ index, character 
  DEBUG CRSRXY, x, y, character 
 
  DEBUG CRSRXY, 0, 8,                        ' Get new coordinates 
        "Type X coordinate: " 
  DEBUGIN SDEC1 x 
  DEBUG CR, "Type Y coordinate: " 
  DEBUGIN SDEC1 y 
 
  x = (x * 2) + 6                            ' Cartesian to DEBUG values 
  y = 3 - y 
 
  DEBUG CRSRXY, x, y, "*"                    ' Display asterisk 
 
  DEBUG CRSRXY, 0, 10, "Press any Key..."    ' Wait for user 
  DEBUGIN temp 
  DEBUG CRSRXY, 0, 8, CLRDN                  ' Clear old info 
 
LOOP 

Animation and Redrawing the Background 

Here is an example of something you can do if you use individual characters, but it won't 
work if you try to redraw the entire display with a DEBUG command.   
 
√ Save EepromBackgroundRefresh.bs2 as ExampleAnimation.bs2 
√ Replace the main routine in the program with the one shown here. 
√ Run it and observe the effect. 

 



Accelerometer - Tilt, Graphics and Video Games · Page 21 

DO 
  FOR y = 0 TO 6 
    FOR temp = 1 TO 2 
      FOR x = 0 TO 12 
        IF (temp.BIT0 = 1) THEN 
          DEBUG CRSRXY, x, y, "*" 
        ELSE 
          index = (14 * yOld) + xOld + 1 
          READ index, character 
          DEBUG CRSRXY, xOld, yOld, character 
          xOld = x 
          yOld = y 
        ENDIF 
        PAUSE 50 
      NEXT 
    NEXT 
  NEXT 
LOOP 

ACTIVITY #3: TILT THE BUBBLE GRAPH 
This activity combines the graphics concepts introduced in Activity #1 and #2 with the 
accelerometer tilt measurement techniques introduced in Chapter 1.  The result is an 
asterisk bubble that demonstrates the movement of the heated gas pocket inside the 
MX2125’s chamber.  Figure 9 shows what the Debug Terminal in this activity displays 
when the accelerometer is tilted up and to the left. 
 
Figure 9 - Accelerometer Hot Gas Location  

 

 

Asterisk Indicates 
Hot Gas Location



Page 22 · Smart Sensors and Applications 
 
 
Figure 10 shows a legend for the different ways you can tilt the board on its axes along 
with each tilt’s effect on the location of the hot gas pocket. 
 

 

 

Level 

Tilt 
Right 

Tilt 
Left 

Tilt 
Down 

Tilt 
Up 

 

Tilt 
 

Hot Gas Center 

 

(0, 0) 

 

(-3, 0)

 

(3, 0) 

 

(0, -3)

 

(0, 3) 

 

Figure 10 
 



Accelerometer - Tilt, Graphics and Video Games · Page 23 

Tilt Control of Asterisk Display 

BubbleGraph.bs2 updates the position of the hottest spot inside the accelerometer 
chamber about 8 times per second (8 Hz).  After displaying the (background) XY axes to 
the debug terminal, it repeats the same steps over and over again. 
 
• Display the background character and pause for the blink-effect. 
• Get the X-axis tilt from the accelerometer 
• Adjust the value so that it fits on the plot’s X-axis. 
• Get the Y-axis tilt from the accelerometer 
• Adjust the value so that it fits on the plot’s Y-axis. 
• Display the asterisk and pause again for the blink-effect. 
 
Each of these steps is discussed in more detail in the section that follows the example 
program. 

Example Program – BubbleGraph.bs2 

√ Enter and run BubbleGraph.bs2. 
√ Hold your board as shown in the Tilt Asterisk Display figure. 
√ Practice controlling the asterisk by tilting the board.   
√ Aside from holding you board horizontally and tilting it, try holding it vertically and 

rotating it in a circle.  The asterisk should travel in a circular arc around the graph as 
you do so. 

 
' -----[ Title ]-------------------------------------------------------------- 
' Accelerometer Projects                     ' Program info 
' BubbleGraph.bs2 
 
'{$STAMP BS2}                                ' Stamp/PBASIC directives 
'{$PBASIC 2.5} 
 
' -----[ EEPROM Data ]-------------------------------------------------------- 
' Store background to EEPROM                 ' Address of last char on row 
DATA CLS,                                    '   0            
"         5^Y         ", CR,                 '  22 
"         4|          ", CR,                 '  44 
"         3|          ", CR,                 '  66 
"         2|          ", CR,                 '  88 
"         1|         X", CR,                 ' 110 
"----------+--------->", CR,                 ' 132 
"-5-4-3-2-1| 1 2 3 4 5", CR,                 ' 154 
"        -2|          ", CR,                 ' 176 
"        -3|          ", CR,                 ' 198 



Page 24 · Smart Sensors and Applications 
 
 
"        -4|          ", CR,                 ' 220 
"        -5|          ", CR                  ' 242 
 
' -----[ Variables ]---------------------------------------------------------- 
x       VAR    Word                          ' Store current position 
y       VAR    Word 
 
index   VAR     Word                         ' READ index/character storage 
char    VAR     Byte 
 
' -----[ Initialization ]----------------------------------------------------- 
FOR index = 0 TO 242                         ' Read & display background 
  READ index, char 
  DEBUG char 
NEXT 
 
' -----[ Main Routine ]------------------------------------------------------- 
DO                                           ' Begin main routine 
 
  ' Replace asterisk with background character. 
  index = (22 * y) + x + 1                   ' Coordinates -> EEPROM address 
  READ index, char                           ' Get background character 
  DEBUG CRSRXY, x, y, char                   ' Display background character 
  PAUSE 50                                   ' Pause for blink effect 
 
  ' Get X-axis tilt & scale to graph. 
  PULSIN 6, 1, x                             ' Get X-axis tilt 
  x = x MIN 1875 MAX 3125                    ' Keep inside X-axis domain 
  x = x – 1875                               ' Offset to zero 
  x = x * 2 / 125                            ' Scale 
 
  ' Get Y-axis tilt & scale to graph. 
  PULSIN 7, 1, y                             ' Get Y-Axis tilt 
  y = y MIN 1875 MAX 3125                    ' Keep in Y-Axis range 
  y = y – 1875                               ' Offset to zero 
  y = y / 125                                ' Scale  
  y = 10 – y                                 ' Offset Cartesian -> Debug  
 
  ' Display asterisk at new cursor position. 
  DEBUG CRSRXY, x, y, "*"                    ' Display asterisk 
  PAUSE 50                                   ' Pause again for blink effect 
 
LOOP                                         ' Repeat main routine 

How BubbleGraph.bs2 Works 

The first thing the main routine does is displays the background character at the current 
cursor position.  With a 50 ms pause, it completes the “off” portion of a blinking asterisk.  
While the programs in Activity #2 had 14 characters per row, this larger plot has 22 
characters per row.  This value has to be multiplied by the y display coordinate, then 



Accelerometer - Tilt, Graphics and Video Games · Page 25 

added to the x display coordinate, plus one for the CLS at EEPROM address zero.  The 
result stored in the index variable is the EEPROM address of the correct background 
character. 
 

' Replace asterisk with background character. 
index = (22 * y) + x + 1  
READ index, char          
DEBUG CRSRXY, x, y, char  
PAUSE 50                  

 
The PULSIN command measures the X-axis measurement pulse the accelerometer sends 
to P6 and stores it in the x variable.  MIN and MAX values are applied to x so that it doesn’t 
cause the program to try to place the asterisk outside the plot area.  Then, by subtracting 
1875 from x causes the variable to range from 0 to 1250.  Multiplying by 2 then dividing 
by 125 results in values ranging from 0 to 20, the number of characters across the X-axis 
on the plot. 

 
' Get X-axis tilt & scale to graph. 
PULSIN 6, 1, x             
x = x MIN 1875 MAX 3125    
x = x – 1875               
x = x * 2 / 125            
 

The PULSIN command measures the Y-axis measurement pulse the accelerometer sends 
to P7 and stores it in the y variable, and the MIN and MAX values are again applied to 
prevent the asterisk from wondering off the plot area.  While the plot area is 20 spaces 
wide, it’s only 10 spaces tall.  This time, a measurement that ranges from 1875 to 3125 
has to be mapped to a range of 10 to 0 (not 0 to 10).  Dividing y by 125 gives a scale of 
10, but we want the largest value to map to 0 carriage returns (Y = + 5) on the Debug 
terminal while the smallest value maps to 10 carriage returns down (Y = -5).  That’s what 
y = 10 – y does.  When + 10 is substituted for y on the right side of the equal sign, the 
result on the left is 0.  When 0 is substituted for y on the right side of the equal sign, the 
result on the left is 0.  It works right for 1 through 9 too; give it a try.   

 
' Get Y-axis tilt & scale to graph. 
PULSIN 7, 1, y           
y = y MIN 1875 MAX 3125  
y = y – 1875             
y = y / 125              
y = 10 – y               
 



Page 26 · Smart Sensors and Applications 
 
 
The last steps before repeating the loop in the main routine is to display the new asterisk 
at its new x and y coordinates, then pause for another 50 ms to complete the “on” portion 
of the blinking asterisk. 

 
' Display asterisk at new cursor position. 
DEBUG CRSRXY, x, y, "*" 
PAUSE 50               

Your Turn – A Larger Bubble 

Displaying and erasing the group of asterisks shown in Figure 11 can be done, but 
compared to a single character, it’s a little tricky.  The program has to ensure that none of 
the asterisks will be displayed outside the plot area.  It also has to ensure that all of the 
asterisks will be overwritten with the correct characters from EEPROM.   
 

 

Figure 11 
Group of Asterisks 
with Background 
Refresh 

 
Here is one example of how to modify BubbleGraph.bs2 so that it displays.   
 
√ Save BubbleGraph.bs2 as BubbleGraphYourTurn.bs2. 
√ Add this variable declaration to the program’s Variables section: 

 
temp    VAR     Byte   
 

√ Replace the “Replace asterisk with background character” routine with this:  
 
' Replace asterisk with background character (modified). 



Accelerometer - Tilt, Graphics and Video Games · Page 27 

FOR temp = (x MIN 1 – 1) TO (x MAX 19 + 1) 
  index = (22 * y) + temp + 1 
  READ index, char 
  DEBUG CRSRXY, temp, y, char 
NEXT 
 
FOR temp = (y MIN 1 – 1) TO (y MAX 9 + 1) 
  index = (22 * temp) + x + 1 
  READ index, char 
  DEBUG CRSRXY, x, temp, char 
NEXT 
PAUSE 50  
 

√ Replace the “ Display asterisk at new cursor position” routine with this: 
 
' Display asterisk at new cursor position (modified). 
DEBUG CRSRXY, x,            y,            "*", 
      CRSRXY, x MAX 19 + 1, y,            "*", 
      CRSRXY, x,            y MAX 9 + 1,  "*", 
      CRSRXY, x MIN 1 - 1,  y,            "*", 
      CRSRXY, x,            y MIN 1 - 1,  "*" 
PAUSE 50 
 

√ Run the program and try it.  Test to make sure problems do not occur as one of the 
outermost asterisks is forced off the plot area. 

 

 

MIN and Negative Numbers 

A twos complement "gotcha" to avoid is subtracting 1 from 0 and then setting the MIN value 
afterwards.  Remember from Activity #1 that twos complement system stores the signed 
value -1 as 65535.  That’s why the MIN value was set to 1 before subtracting 1.  The result 
is then a correct minimum of 0.  The same technique was used for setting the MAX values 
even though there really isn’t a problem with y + 1 MAX 10. 

ACTIVITY #4: GAME CONTROL 
Here are the rules of this Activity's tilt controlled game example, shown in Figure 12.  
Tilt your board to control the asterisk.  If you get through the maze and place the asterisk 
on any of the "WIN" characters, the "YOU WIN" screen will display.  If you bump into 
any of the pound signs "#" before you get to the end of the maze, the "YOU LOSE" 
screen is displayed.  As you navigate the maze, try to move your asterisk game character 
through the dollar signs "$" to get more points. 



Page 28 · Smart Sensors and Applications 
 
 
 
Figure 12 - Obstacle Course Game 
 

  

Converting BubbleGraph.bs2 into TiltObstacleGame.bs2 

TiltObstacleGame.bs2 is inarguably a hopped-up version of BubbleGraph.bs2.  Here is a 
list of the main changes and additions: 



Accelerometer - Tilt, Graphics and Video Games · Page 29 

 
• Change the graph into a maze. 
• Add two backgrounds for win and lose to the EEPROM data. 
• Give each background a Symbol name.  
• Write a game player code block that detects which background character the game 

character is in front of and uses that information to enforce the rules of the game.   
 
Try the game first, then we’ll take a closer look at how it works. 

Example Program – TiltObstacleGame.bs2 

√ Enter, and save TiltObstacleGame.bs2. 
√ Before you run the program, make sure your board is level.  Also, make sure you are 

holding it the same way you did in Activity 3, with the breadboard is closest to you, 
and the serial cable is furthest away. 

√ If you want to refresh the “$” characters, click your BASIC Stamp Editor’s Run 
button.  If you want to just practice navigating and not worry about points, press and 
release the Reset button on your board.     

 
' -----[ Title ]-------------------------------------------------------------- 
' Accelerometer Projects                     ' Program info 
' TiltObstacleGame.bs2 
 
'{$STAMP BS2}                                ' Stamp/PBASIC directives 
'{$PBASIC 2.5} 
 
' -----[ EEPROM Data ]-------------------------------------------------------- 
' Store background to EEPROM                 ' 3 backgrounds used in game 
 
Maze DATA @0, HOME,                          ' Maze background 
"#####################", CR, 
"######   $   ########", CR, 
"##      ###       ###", CR, 
"#   ###########   ###", CR, 
"#$     #         ####", CR, 
"#####  #   $ #####WIN", CR, 
"#     ##    ##  $   #", CR, 
"# $  ########### #  #", CR, 
"#   ##$##        #  #", CR, 
"#         ########  #", CR, 
"#####################", CR 
 
YouLose DATA @243, HOME,                     ' YouLose background 
"#####################", CR, 
"#####################", CR, 



Page 30 · Smart Sensors and Applications 
 
 
"###    #######   ####", CR, 
"###    #######   ####", CR, 
"#####################", CR, 
"########## ##########", CR, 
"#####################", CR, 
"###              ####", CR, 
"###  YOU LOSE    ####", CR, 
"###              ####", CR, 
"#####################", CR 
 
YouWin DATA @486, HOME,                      ' YouWin background 
"     ###########     ", CR, 
"  #################  ", CR, 
"#####   #####   #####", CR, 
"####     ###     ####", CR, 
"# ###   #####   ### #", CR, 
"#  ###############  #", CR, 
"##   ###########   ##", CR, 
"##                 ##", CR, 
" ####  YOU WIN  #### ", CR, 
"   ####       ####   ", CR, 
"      #########      ", CR 
 
' -----[ Variables ]---------------------------------------------------------- 
x         VAR     Word                       ' x & y tilts & graph coordinates 
y         VAR     Word 
 
index     VAR     Word                       ' EEPROM address and character 
char      VAR     Byte 
 
symbol    VAR     Word                       ' Symbol address for EEPROM DATA 
points    VAR     Byte                       ' Points during game 
 
' -----[ Initialization ]----------------------------------------------------- 
x = 10                                       ' Start game character in middle 
y = 5 
 
DEBUG CLS                                    ' Clear screen 
 
' Display maze. 
symbol = Maze                                ' Set Symbol to Maze EEPROM DATA 
 
FOR index = 0 TO 242                         ' Display maze 
  READ index + symbol, char 
  DEBUG char 
NEXT 
 
' -----[ Main Routine ]------------------------------------------------------- 
DO 
 
  ' Display background at cursor position. 



Accelerometer - Tilt, Graphics and Video Games · Page 31 

  index = (22 * y) + x + 1                   ' Coordinates -> EEPROM address 
  READ index + symbol, char                  ' Get background character 
  DEBUG CRSRXY, x, y, char                   ' Display background character 
  PAUSE 50                                   ' Pause for blink effect 
 
  ' Get X-axis tilt & scale to graph. 
  PULSIN 6, 1, x                             ' Get X-axis tilt 
  x = x MIN 1875 MAX 3125                    ' Keep inside X-axis domain 
  x = x - 1875                               ' Offset to zero 
  x = x * 2 / 125                            ' Scale 
 
  ' Get Y-axis tilt & scale to graph. 
  PULSIN 7, 1, y                             ' Get Y-Axis tilt 
  y = y MIN 1875 MAX 3125                    ' Keep in Y-Axis range 
  y = y - 1875                               ' Offset to zero 
  y = y / 125                                ' Scale 
  y = 10 - y                                 ' Offset Cartesian -> Debug 
 
  ' Display asterisk at new position. 
  DEBUG CRSRXY, x,  y, "*"                   ' Display asterisk 
  PAUSE 50                                   ' Pause again for blink effect 
 
  ' Display score 
  DEBUG CRSRXY, 0, 11,                       ' Display points 
        "Score: ", DEC3 points 
 
  ' Did you move the asterisk over a $, W, I, N, or #? 
  SELECT char                                ' Check background character 
    CASE "$"                                 ' If "$" 
      points = points + 10                   ' Add points 
      WRITE index, "%"                       ' Write "%" over "$" 
    CASE "#"                                 ' If "#", set Symbol to YouLose 
      symbol = YouLose 
    CASE "W", "I", "N"                       ' If W,I,orN, Symbol -> YouWin 
      symbol = YouWin 
  ENDSELECT 
 
  ' This routine gets skipped while symbol is still = Maze.  If symbol 
  ' was changed to YouWin or YouLose, display new background and end game. 
  IF (symbol = YouWin) OR (symbol = YouLose) THEN 
    FOR index = 0 TO 242                     ' 242 characters 
      READ index + symbol, char              ' Get character 
      DEBUG char                             ' Display character 
    NEXT                                     ' Next iteration of loop 
    END                                      ' End game 
  ENDIF                                      ' End symbol-if code block 
 
LOOP                                         ' Repeat main loop 



Page 32 · Smart Sensors and Applications 
 
 
How it Works – From BubbleGraph.bs2 to TiltObstacleGame.bs2 

Two of the DATA directive’s optional features were used here. Each of the three 
backgrounds was given a Symbol name, Maze, YouWin, and YouLose.  These Symbol 
names make it easy for the program to select which background to display.  The optional 
@Address operator was also used to set each directive’s beginning EEPROM address.  In 
BubbleGraph.bs2’s background, the first character is CLS to clear the screen.  The 
problem with CLS in these DATA directives is that it erases the entire Debug Terminal, 
including the score, which is displayed below the background.  By substituting HOME for 
CLS, the entire backgrounds can be drawn and redrawn without erasing the score.  
 

Maze DATA @0, HOME,              
"#####################", CR, 
"######   $   ########", CR, 
   · 
   · 
   · 
YouLose DATA @243, HOME,         
"#####################", CR, 
"#####################", CR, 
   · 
   · 
   · 
YouWin DATA @486, HOME,          
"     ###########     ", CR, 
"  #################  ", CR, 
   · 
   · 
   · 

 

 

Verifying Symbol Values 

You can also try commands like DEBUG DEC YouWin to verify that YouWin stores the 
value 486.   

 
Two variables are added, symbol to keep track of which background to retrieve 
characters from, and points to keep track of the player’s score.   

 
symbol    VAR     Word   
points    VAR     Byte   
 

The initial values of x and y have to start in the middle of the obstacle course.  Since all 
variables initialize to zero in PBASIC, and that would cause the game character to start in 
the top-left corner, instead of in the middle.   



Accelerometer - Tilt, Graphics and Video Games · Page 33 

 
x = 10                         
y = 5 
 

The symbol variable is set to Maze before executing the FOR…NEXT loop that displays the 
background.  Since all variables are initialized to zero in PBASIC, this happens anyhow.  
However, if you were to insert a DATA directive before the Maze background, it would be 
crucial to have this statement.   

 
' Display maze. 
symbol = Maze                  
 

The code block that follows the variable initialization is the background display.  Look 
carefully at the READ command.  It has been changed from READ index, char to READ 
index + symbol, char.  Since the symbol variable was set to store Maze, all the 
characters in the first background will be displayed.  If symbol stored YouLose, all the 
characters in the second background would be displayed.  If it stored YouWin, all the 
characters in the third background would be displayed.  Since either "You Lose" or "You 
Win" will have to be displayed, this routine will be used again later in the program. 

 
FOR index = 0 TO 242           
  READ index + symbol, char 
  DEBUG char 
NEXT 
 

Three routines have to be added to the DO...LOOP in the main routine.  The first simply 
displays the player’s score: 

 
  ' Display score 
  DEBUG CRSRXY, 0, 11,                    ' Display points 
        "Score: ", DEC3 points 
 

The second routine is crucial; it’s a SELECT…CASE statement that enforces the rules of the 
game.  The SELECT...CASE statement looks at the character in the background at the 
asterisk’s current location.  If the asterisk is over a space " ", the SELECT…CASE 
statement doesn’t need to change anything, so the main routine’s DO...LOOP just keeps 
on repeating itself, checking the accelerometer measurements and updating the asterisk’s 
location.  If the asterisk is moved over a "$", the program has to add 10 to the points 
variable, and write a "%" character over the "$" in EEPROM.  This prevents the program 
from adding 10 points several times per second while the asterisk is held over the "$".   
If the asterisk is moved over a "#", the YouLose symbol is stored in the symbol variable.  



Page 34 · Smart Sensors and Applications 
 
 
If the asterisk moves over any one of the "W" "I" or "N" letters, YouWin is stored in the 
symbol variable.   

 
  ' Did you move the asterisk over a $, W, I, N, or #? 
  SELECT char                              ' Check background character 
    CASE "$"                               ' If "$" 
      points = points + 10                 ' Add points 
      WRITE index, "%"                     ' Write "%" over "$" 
    CASE "#"                               ' If "#", set Symbol to YouLose 
      symbol = YouLose 
    CASE "W", "I", "N"                     ' If W,I,orN, Symbol -> YouWin 
      symbol = YouWin 
  ENDSELECT 
 

As you’re navigating your asterisk over " ", "$", or "%", this next routine gets skipped 
because symbol still stores Maze.  The SELECT…CASE statement only changes that when 
the asterisk was moved over "#", "W", "I", or "N".  Whenever the SELECT…CASE 
statement changes symbol to either YouWin or YouLose, this routine displays the 
corresponding background, then ends the game. 

 
  ' This routine gets skipped while symbol is still = Maze.  If symbol 
  ' was changed to YouWin or YouLose, display new background and end game. 
  IF (symbol = YouWin) OR (symbol = YouLose) THEN 
    FOR index = 0 TO 242                   ' 242 characters 
      READ index + symbol, char           ' Get character 
      DEBUG char                          ' Display character 
    NEXT                                  ' Next iteration of loop 
    END                                   ' End game 
  ENDIF                                  ' End symbol-if code block 

Your Turn – Modifications and Bug Fixes 

The game doesn't refresh the "$" symbols when you re-run it with the Board of 
Education's RESET button. It only works when you click the Run button on the BASIC 
Stamp Editor.  That's because the DATA directive only writes to the EEPROM when the 
program is downloaded.  If the program is restarted with the RESET button, the BASIC 
Stamp Editor doesn't get the chance to store the spaces, dollar signs, etc, so the percent 
signs that were written to EEPROM are still there.  To fix the problem, all you have to do 
is check each character that gets read from EEPROM during the initialization.  If that 
character turns bout to be a "%", use the WRITE command to change it back to a "$". 
 
√ Save TiltObstacleGame.bs2 as TiltObstacleGameYourTurn.bs2 
√ Modify the FOR...NEXT loop in the initialization that displays the maze like this: 

 



Accelerometer - Tilt, Graphics and Video Games · Page 35 

FOR index = 0 TO 242                         ' Display maze 
  READ index + symbol, char 
  IF(char = "%") THEN                        ' <--- Add 
    char = "$"                               ' <--- Add 
    WRITE index + symbol, char               ' <--- Add 
  ENDIF                                      ' <--- Add 
  DEBUG char 
NEXT 
 

√ Verify that both the BASIC Stamp Editor's Run button and the Board of Education's 
Reset button both behave the same after this modification. 

 
If the player rapidly changes the board's tilt, it is possible to jump over the "#" walls.  
There are two ways to fix this, one would be to add jumping animation and call it a 
"feature".  Another way to fix it would be to only allow the asterisk to move by 1 
character in either the X or Y directions.  To fix this, the program will need to keep track 
of the previous position.  This is a job for the xOld and yOld variables introduced in 
Activity #2.   
 
√ Add these variable declarations to the Variables section in 

TiltObstacleGameYourTurn.bs2: 
 
x         VAR     Word                       ' x & y tilts & coordinates 
y         VAR     Word 
 
xOld      VAR     Word                       ' <--- Add 
yOld      VAR     Word                       ' <--- Add 
 

√ Add initialization statements for xOld and yOld. 
 
x    = 10                                    ' Start game char in middle 
xOld = 10                                    ' <--- Add 
y    = 5 
yOld = 5                                     ' <--- Add 
 

√ Modify the main routine so that it x can only be greater than or less than xOld by an 
increment or decrement of 1.  Repeat for y and yOld. 
 
y = 10 - y                                   ' Offset Cartesian -> Debug 
 
IF (x > xOld) THEN x = xOld MAX 19 + 1       ' <--- Add 
IF (x < xOld) THEN x = xOld MIN 1 - 1        ' <--- Add 
 
IF (y > yOld) THEN y = yOld MAX 9 + 1        ' <--- Add 
IF (y < yOld) THEN y = yOld MIN 1 - 1        ' <--- Add 
 



Page 36 · Smart Sensors and Applications 
 
 

' Display asterisk at new position. 
DEBUG CRSRXY, x,  y, "*"                     ' Display asterisk 
PAUSE 50                                     ' Pause again for blink 
effect 
 
xOld = x                                     ' <--- Add 
yOld = y                                     ' <--- Add 
 
' Display score 

 
√ Run and test your modified program and verify that the asterisk can no longer skip 

"#" walls. 



Accelerometer - Tilt, Graphics and Video Games · Page 37 

SUMMARY 
Activity #1 introduced control characters, techniques for keeping characters inside a 
display’s boundaries, and algebra for mapping coordinates to a display.  Control character 
examples included CRSRXY and CLRDN.  Display boundary examples included the MIN and 
MAX operators and an IF…THEN technique.  Mapping techniques included simple PBASIC 
equations to change the values of X and Y-coordinates from Cartesian to their Debug 
Terminal equivalents. 
 
Activity #2 introduced a means of storing, displaying and refreshing a background 
character display image from EEPROM.  This is a useful ingredient for many product 
displays, and will also come in handy for tilt display and games.  An entire display 
background can be printed with a FOR…NEXT loop.  A READ command in the loop depends 
on the FOR…NEXT loop’s index variable to address the next character in the sequence.  
After the READ command loads the next character in the variable, the DEBUG command 
can be used to send the character to the Debug Terminal.  For erasing the tracks left by a 
character moving over the background, the character’s previous position can be stored in 
one or more variables.  The previous position information is then used along with the 
READ command to look up the character that should replace the moving character after it 
has moved to its next position.   
 
Activity #3 demonstrated how the accelerometer measurements from Chapter 1 can be 
combined with cursor positioning and character recall techniques from Activity #1 in this 
chapter to create a tilt controlled display.  Simple PULSIN measurements were used to 
measure the accelerometer’s X and Y axis tilt.  The tilt values were then scaled, offset, 
and displayed in the Debug Terminal as an asterisk over a Cartesian plane.  The asterisk's 
position indicated the position of the hottest pocked of gas inside the MX2125’s chamber, 
and as it moved, the background at its previous position was redrawn. 
 
Activity #4 introduced tilt mode game control.  The rules of simple games can be 
implemented with SELECT...CASE statements that use the character in the background at 
the location of the game character to decide what action to take next.  Multiple 
backgrounds can be incorporated into a game by making use of the DATA directive's 
optional @Address operator and Symbol name.  Since the Symbol name is actually the 
EEPROM address at the beginning of a given DATA directive, your program can access 
elements in different backgrounds by adding the value of Symbol make to the READ 
command's Address argument.   



Page 38 · Smart Sensors and Applications 
 
 
Questions 

1. What does HID stand for? 
2. What two arguments do you need along with DEBUG CRSRXY to place the cursor 

at a location in the Debug Terminal? 
3. What control character clears the any printed characters that come after the 

cursor in the Debug Terminal? 
4. Where is the Debug Terminal’s transmit windowpane in relation to its receive 

windowpane? 
5. What formatter stores a single digit that you type into the Debug Terminal’s 

transmit windowpane in the X variable? 
6. What operator can you use to make sure the value a variable stores does not 

exceed a maximum value? 
7. Are there other coding techniques you can use other operators to prevent the 

value a variable stores from exceeding a maximum or minimum value? 
8. What statements did CrsrXYPlot.bs2 use to convert Cartesian coordinates to 

Debug Terminal CRSRXY coordinates? 
9. If the BASIC Stamp sends a negative value to the Debug Terminal, what can you 

say about the unsigned value of that number? 
10. How does scale affect mapping Cartesian coordinates to the Debug Terminal? 
11. What are the refresh rates of common CRT computer monitors? 
12. Name two types of displays that do not need have all their pixels repeatedly 

refreshed by the BASIC Stamp? 
13. What kind of routine do you need to display all the background characters stored 

in a DATA directive? 
14. Why is it important to know how many background characters are in each row? 
15. Why are word variables better for storing signed values? 
16. What is the key to redrawing the background with the same variables used to 

store a character’s current position? 
17. When you tilt the accelerometer to the left, which way does the asterisk bubble 

travel? 
18. If the coordinates of the asterisk moved from (0, 0) to (0, 3), which direction did 

you tilt it? 
19. If the coordinates of the asterisk started at (-5,0), and ended at (5, 0), what do 

you think happened to the accelerometer? 
20. If the coordinates of the asterisk started at (3, -3) and ended at (-3, 3) what tilt 

did the accelerometer start in, and what tilt did it end in? 
21. Which axis was the fulcrum if the accelerometer started at (2, 2) and ended at (-

2, 2)? 



Accelerometer - Tilt, Graphics and Video Games · Page 39 

22. Here are four unusual coordinates for a single motion: (0, 5), (-5, 0), (0, -5), (5, 
0).  What motion can you perform on the accelerometer to cause it to report this 
sequence of coordinates? 

23. If the accelerometer’s readings travel from (0, 5) to (0, -5), then back again 
repeatedly, what two motion sequences are likely? 

24. What's the beginning address of the YouLose background? 
25. What's the value of YouWin? 
26. In TiltObstacleGame.bs2, why were the control characters at the beginning of 

each background changed from CLS to HOME? 
27. What command can you use to check the value of a DATA directive's Symbol 

name? 
28. What's the difference between displaying the 23rd character in the YouLose 

EEPROM DATA and the 23rd character in YouWin? 
29. If you change the Maze DATA directive's @Address operator from 0 to 10, what 

will you have to do to the other DATA directives in the program? 
30. If you change the YouWin DATA directive's optional @Address operator from 

486 to 500, what else in the program will you have to change? 
31. In TiltObstacleGame.bs2, what kind of code block enforces the rules of the 

game? 
32. What variable has to change for the game to end? 
33. What command changes the "%" values back to "$" values in EEPROM? 
34. How can you prevent the asterisk from skipping over the "#" wall? 

Exercises 

1. Write a DEBUG command that places the cursor five spaces over, seven space 
down, and then prints the message “* this is the coordinate (5, 7) in 
the Debug Terminal”. 

2. Write a DEBUG command that displays a Cartesian coordinate system from -2 to 2 
on the X and Y axes. 

3. Calculate the scale and offset for you will need for a coordinate system that goes 
from -2 to 2 on both the X and Y axes. 

4. Write a DEBUG command that displays a Cartesian coordinates from -5 to 5 on 
the X and Y axes. 

5. Calculate the scale and offset you will need for a coordinate system that goes 
from -5 to 5 on both the X and Y axes. 

6. Write a routine that draws a line of + characters that extends from (1, 1) to (5, 5) 
in Cartesian coordinates. 



Page 40 · Smart Sensors and Applications 
 
 

7. Write a routine that draws a rectangle with asterisks.  This routine should be 15 
asterisks wide and 5 asterisks high. 

8. Write a routine that makes a shape such as a rectangle, triangle or circle, then 
causes it to disappear one asterisk at a time. 

9. If your background is 5 characters wide by 3 characters high, predict the 
minimum size variable you can use to set the address for your read command 
and explain your choice.  Will you have any room for additional characters such 
as CLS? 

10. Modify the background for a coordinate system from -3 to 3 on both the X and Y 
axes. 

11. Modify the background display initialization for a coordinate system from -3 to 3 
on both the X and Y axes. 

12. Modify the scale and offset calculations for a -3 to 3 coordinate system. 
13. Modify the scale and offset calculations so that the asterisk travels the same 

direction you tip the board instead of the opposite direction.  When you tip the 
board left, the asterisk should go left, etc. 

14. Modify the code block that adds to your score so that it gives you 100 points per 
"$".  Explain what else needs to be modified for the program to work properly. 

15. Explain how to modify the program so that you can choose between three 
different mazes. 

16. Explain what will happen to the program if you remove the @Address operators 
from the DATA directives. 

17. Write a segment of code that remembers the highest score. 

Projects 

1. Modify CrsrXYPlot.bs2 so that it redraws the background before it plots the 
asterisk.  The net effect should be that only one asterisk is visible at any given 
time.  A better way of doing this is introduced in the next activity. 

2. Modify PlotXYGraph.bs2 so that it displays the coordinates of the most recently 
placed asterisk to the right of the plot area. 

3. Modify PlotXYGraph.bs2 so that it plots a line of asterisks from (-3, -3) to (3, 3). 
4. repeats the line plot. 
5. Modify PlotXYGraph.bs2 so that it plots a line of asterisks from from (3,-3) to (-

3,3), then erases it, then repeats the line plot. 
6. Modify PlotXYGraph.bs2 so that it works on a plot from -4 to 4 on both the X 

and Y axes. 
7. Modify PlotXYGraph.bs2 so that it works on a plot from -2 to 2 on the Y axis in 

increments of 0.5 and from -4 to 4 on the X axis. 



Accelerometer - Tilt, Graphics and Video Games · Page 41 

8. Write a program that allows you to move an asterisk around the Cartesian plane 
with the R, L, U, and D keys.  Only one asterisk should appear on the plot at any 
given time. 

9. Write a drawing program that allows you to select characters and draw them over 
the Cartesian plane.  By pressing the enter key twice, the drawing disappears one 
character at a time. 

10. Instead of a coordinate system from -5 to 5 on both axes, modify 
BubbleGraph.bs2 so that it functions on a coordinate system from -4 to 4. 

11. Modify BubbleGraph.bs2 so that it allows you to hold your Board of Education 
(or BASIC Stamp Homework Board) so that you can read the writing on the 
board.  The way the bubble behaves should be the same as it did in the original 
program. 

12. Modify BubbleGraph.bs2 so that the cursor moves in the direction you tilt the 
board and test it. 

13. Add a pushbutton circuit to the game, and modify the program so that you can 
use the pushbutton to toggle between different mazes. 

14. Modify the program so that the "$" character earns you 10 points, and the "#" 
characters deduct 10 points.  The game should start you with 20 points.  If your 
score becomes negative, display "You Lose". 

15. Create a 4 X 16 character version of this game.  That's 4 characters high by 16 
characters wide. 

16. Rearrange the program so that the main routine calls subroutines for everything 
except executive decision making.  That means subroutines have to handle 
accelerometer, measurements, cursor placement, and display updates. 

17. Modify the game so that it displays a character in the direction you are traveling.  
Use "v", "<", ">", and "^".  Add a pushbutton circuit that shoots an asterisk that 
makes a "#" disappear when it hits it.  

 



 Accelerometer - Getting Started · Page 1 

Accelerometer - Getting Started 
 
Acceleration is a measure of how quickly speed changes.  Just as a speedometer is a 
meter that measures speed, an accelerometer is a meter that measures acceleration.  You 
can use an accelerometer's ability to sense acceleration to measure a variety of things that 
are very useful to electronic and robotic projects and designs: 
 

• Acceleration 
• Tilt and tilt angle 
• Incline 
• Rotation 
• Vibration 
• Collision 
• Gravity 

 
Accelerometers are already used in a wide variety of machines, specialized equipment 
and personal electronics.  Here are just a few examples: 
 

• Self balancing robots  
• Tilt-mode game controllers 
• Model airplane auto pilot 
• Car alarm systems  
• Crash detection/airbag deployment 
• Human motion monitoring  
• Leveling tool 

 
Once upon a time, accelerometers were large, clunky and expensive instruments that did 
not lend themselves to electronic and robotic projects.  This all changed thanks to the 
advent of MEMS, micro-electro-mechanical-systems.  MEMS technology is responsible 
for an ever increasing number of formerly mechanical devices designed right onto silicon 
chips.   
_____________________________________________________________________________________________ 
  

The draft material in this Chapter is part of a forthcoming Stamps in Class text by Andy Lindsay. 
(c) 2005 by Parallax Inc - all rights reserved. 
To post feedback or suggestions, go to http://forums.parallax.com/forums/default.aspx?f=6&m=55816. 
Software for BASIC Stamp® Modules and applications are available for free download from www.parallax.com.    



Page 2 · Smart Sensors and Applications 
 
 
The accelerometer you will be working with in the forthcoming activities is the Parallax 
Memsic 2125 Dual Axis Accelerometer module shown in Figure 1.  This module 
measures less than 1/2” X 1/2” X 1/2”, and the accelerometer chip itself is less than 1/4” X 
1/4” X 1/8”. 
 
Figure 1 - Accelerometer Module and MX2125 Chip  
 

                      
 
People naturally sense acceleration on three axes, forward/backward, left/right and 
up/down.  Just think about the last time you were in the passenger seat of a car on a hilly 
and curvy road.  Forward/backward acceleration is the sensation of speeding up and 
slowing down.  Left/right acceleration involved making turns, and up down acceleration 
is what you felt going over hills.   
 
Up/down acceleration is also the way we sense gravity.  When on the ground, people tend 
to sense gravity as their own weight.  In free-fall, they sense gravity as weightlessness.  
In physics terms, gravity is a form of acceleration.  When an object is on the ground, 
gravity is sometimes called static acceleration.  When an object is rolling down hill or 
falling, gravity becomes dynamic acceleration. 
 
Instead of the three axes people sense, the MX2125 accelerometer senses acceleration on 
two axes.  The acceleration it senses depends on how it’s positioned.  By holding it one 
way, it can sense forward/backward and left/right.  If you hold it a different way, it can 
sense up/down and forward/backward.  Two axes of acceleration is enough for many of 
the applications listed earlier.  However, you can always mount and monitor a second 
accelerometer to capture that third axis.   



 Accelerometer - Getting Started · Page 3 

THE MX2125 ACCELEROMETER – HOW IT WORKS 
The MX2125’s design is amazingly simple.  It has a chamber of gas with a heating 
element in the center and four temperature sensors around its edge.  Just as hot air rises 
and cooler air sinks, the same applies to hot and cool gasses.  If you hold the 
accelerometer still, all it senses is gravity, and tilting it gives us an example of how it 
senses static acceleration.  When you hold the accelerometer level, the hot gas pocket is 
rises to the top-center of the accelerometer’s chamber, and all the temperature sensors 
measure the same temperature.  Depending on how you tilt the accelerometer, the hot gas 
will collect closer to one or maybe two of the temperature sensors.   
 
Figure 2 - Accelerometer Heated Gas Pocket  
 

 
Both static acceleration (gravity and tilt) and dynamic acceleration (like taking a ride in a 
car) are detected by the temperature sensors.  If you take the accelerometer for a car ride, 
the hotter and cooler gasses slosh around in the chamber in a manner similar to a 
container that is partially filled with water.   
 
In most situations, making sense out of these measurements is a simple task thanks to the 
electronics inside the MX2125.  The MX2125 converts the temperature measurements 
into signals (pulse durations) that are easy for the BASIC Stamp module to measure and 
decipher. 



Page 4 · Smart Sensors and Applications 
 
 
ACTIVITY #1: CONNECTING AND TILT-TESTING THE MX2125 
In this activity, you will connect the accelerometer module to the BASIC Stamp, run a 
test program, and verify that it can be used to sense tilt. 

Accelerometer Parts 

The parts you will need for this activity are listed here, and Figure 3 shows their 
drawings.   
 
Parallax  
Part Number      Quantity Description 
800-00016 (2) 3-inch Jumper wires 
150-02210 (2) Resistor – 220 Ω 
28017 (1) Memsic MX2125 Dual-Axis Accelerometer 
 
Figure 3 - Accelerometer Part Drawings 
 

 

Accelerometer Electrical and Signal Connections 

Figure 4 shows how to connect the accelerometer module to the Board of Education's 
power supply along with the BASIC Stamp I/O pin connections you will need to make to 
run the example program.     
 
√ Connect the accelerometer module using the schematic and wiring diagram as your 

guides. 

http://www.parallax.com/detail.asp?product_id=800-00016
http://www.parallax.com/detail.asp?product_id=150-02210
http://www.parallax.com/detail.asp?product_id=28017


 Accelerometer - Getting Started · Page 5 

Figure 4 - Accelerometer Schematic and Wiring Diagram  

Listening to the Accelerometer's Signals with the BASIC Stamp 

The two axes the MX2125 uses to sense gravity and acceleration are labeled X and Y in 
Figure 5.  It will help if you set your board flat on the table in front of you as shown in 
the figure.  That way, the X and Y axes point the same directions they do on most XY 
plots.  For room temperature testing, you can get a pretty good indication of tilt by just 
measuring the high times of the pulses sent by the MX2125’s Xout and Yout pins with 
the PULSIN command.  Depending on how far you tilt the board and in which direction, 
the PULSIN time measurements should range from 1775 to 3125.  When the board is 
level, the PULSIN command should store values in the neighborhood of 2500.   
 
 



Page 6 · Smart Sensors and Applications 
 
 
Figure 5 - Accelerometer Axis Pulse Measurements  

 
 
 
 



 Accelerometer - Getting Started · Page 7 

√ Make sure your board is sitting flat on the table, oriented with its X and Y axes as 
shown in the Figure 5. 

√ Enter and run SimpleTilt.bs2. 
 
' SimpleTilt.bs2 
' Measure room temperature tilt. 
  
'{$STAMP BS2} 
'{$PBASIC 2.5} 
  
x              VAR     Word 
y              VAR     Word 
  
DO 
  
  PULSIN 6, 1, x 
  PULSIN 7, 1, y 
  
  DEBUG CLS, ? X, ? Y 
  
  PAUSE 100 
  
LOOP 

 
√ Check to make sure the Debug Terminal reports that the x and y variables are both 

storing values around of 2500. 
 
Figure 6 - Debug Terminal Output  
 

 
 



Page 8 · Smart Sensors and Applications 
 
 
√ Grab the edge of the board with the Y-Axis label and gradually lift it toward you.  

The y value should increase as you increase the tilt.   
√ Keep tilting the board toward you until it's straight up and down.  The Debug 

Terminal should report that the y variable stores a value near 3125. 
√ Lay the board flat again. 
√ Next, instead of tilting the board toward you, gradually tilt it away from you.  The y 

axis value should drop below 2500 and gradually decrease to 1875 as you tilt the 
board until it’s straight up and down. 

√ Lay the board flat again. 
√ Repeat this test with the X-axis.  As you tilt the board up with your right hand, the x 

value should increase and reach a value near 3125 when the board is vertical.  As you 
tilt the board upward with your left hand, the x value should approach 1875. 

√ Finally, hold your board in front of you, straight up and down like a steering wheel. 
√ As you slowly rotate your board, the x and y values should change.  These values 

will be used in another activity to determine the rotation angle in degrees. 

COMING SOON... 
Activity #2: Measure 360 Degree Rotation with Arctangent 
Activity #3: Measure Tilt Angle with Arcsine 
Activity #4: Use Duty Cycle to Improve Your Accelerometer Measurements 
Summary 
 
 
 
 
 
 
 




