

Actual Size = 9 x 14mm

Product Features

- Frequencies available between 65 and 168 MHz
- High frequency fundamental-mode crystal
- No internal PLL or frequency multiplication
- Less than 0.5 ps RMS jitter
- LVPECL compatible output
- Commercial and industrial operation
- ±20 ppM stability (or as specified)
- ±50 ppM absolute (net) pull range
- 9x14mm true SMT design

Product Description

The \$1569 is a voltage controlled crystal oscillator that achieves superb jitter and temperature stability over a broad range of operating conditions and frequencies. The device is constructed with a hermetically sealed, fundamental-mode quartz crystal resonator exhibiting a high-Q for exceptional phase noise performance. The device, available on tape and reel, is contained in a 9x14mm FR4 package.

Applications

The \$1569 Series VCXO is an ideal component in phase locked loop circuits that perform clock smoothing, clock/data recovery, or frequency translation and card synchronization functions, supporting jitter-sensitive applications such as:

- SMPTE-compliant Video networking
- SONET/SDH/DWDM/E4 timing control & line cards
- 1 & 10 Gigabit Ethernet and FibreChannel
- Satellite, microwave and cellular base stations
- Server & Storage platforms

Package Outline

Pin Functions

Pad	Function			
1	Control voltage			
2	Output Enable/Disable			
3	Ground			
4	Q Output			
5	Q Output			
6	Supply voltage			

Full Mechanical Drawings page 7.
Dimensions are in mm/inches.

Common Frequencies

65.0000	65.5360	70.6560
74.1758	74.2500	75.0000
77.7600	106.2500	108.0000
125.0000	139.2640	155.5200
156.2500	161.1328	167.3316

Contact SaRonix for additional frequencies

Ordering Information

Electrical Performance

Parameter	Min.	Тур.	Max.	Units	Notes
Output frequency (F _N)	65		168	MHz	As specified
Supply voltage	2.97	3.3	3.63	V	
Supply current			70	mA	
Frequency stability	±20		±50	ррМ	See Note 1 below
Operating temperature	-40		+85	°C	As specified
Output logic 0, V _{OL}			V _{CC} - 1.645	V	0 to +70°C
Output logic 0, V _{OL}			V _{CC} - 1.590	V	-40 to +85°C
Output logic 1, V _{OH}	V _{CC} - 0.995			V	0 to +70°C
Output logic 1, V _{OH}	V _{CC} - 1.045			V	-40 to +85°C
Output load	50Ω to V _{CC} - 2V			output requires termination	
Duty cycle	45		55	%	measured 50% of waveform
Rise and fall time		0.18	0.55	ns	measured 20/80% of waveform
Jitter, phase			1	ps RMS (1-σ)	12kHz to 40MHz frequency band
Jitter, accumulated			3	ps RMS (1-σ)	20,000 adjacent periods
Jitter, total			20	ps pk-pk	100,000 random periods

Notes:

1. As specified. Stability includes all combinations of operating temperature, load changes, rated input (supply) voltage changes, aging (5 years at 40°C average effective ambient temperature), shock and vibration.

Frequency Modulation Function

Parameter	Min.	Тур.	Max.	Units	Notes
Absolute pull range (APR)	±50			ppM	See #1 below
Control voltage range	0.3		3.0	V _{DC}	As rated
Center control voltage	1.32	1.65	1.98	V	For RMT center frequency
Monotonic linearity			10	%	Positive transfer slope
Input impedance	50			kΩ	Control voltage pin
Modulation bandwidth	10			kHz	-3dB

Notes:

1. APR is relative to the nominal output frequency F_N (as specified); APR is inclusive (net) of frequency deviation due to stability.

Output Enable / Disable Function

Parameter	Min.	Тур.	Max.	Units	Notes
Input voltage, Output Enable (pin 2)			$ m V_{OL}$	V	or Open
Input voltage, Output Disable (pin2)	V _{CC} - 1.165V			V	Q Output fixed to V _{OL}

Typical Phase Noise

Typical Stability Characteristics

Typical Pull Characteristics

Typical Supply Current

Typical Output Waveform

Absolute Maximum Ratings

Parameter	Min.	Тур.	Max.	Units	Notes
Storage temperature	-55		+125	°C	
Control voltage range	0		V_{CC}	V	

Test Circuit

Output Waveform

Solder Reflow Guide

Reliability Test Ratings

This product is rated under the following test conditions:

Туре	Parameter	Test Condition
Mechanical	Shock	MIL-STD-883, Method 2002, Condition B
Mechanical	Solderability	MIL-STD-883, Method 2003
Mechanical	Terminal strength	MIL-STD-883, Method 2004, Condition D
Mechanical	Solvent resistance	MIL-STD-202, Method 215
Environmental	Thermal shock	MIL-STD-883, Method 1011, Condition A
Environmental	Moisture resistance	MIL-STD-883, Method 1004
Environmental	Vibration	MIL-STD-883, Method 2007, Condition A
Environmental	Resistance to soldering heat	MIL-STD-202, Method 210, Condition I or J

Mechanical Drawings

Ordering Information

