

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

M16C/60, M16C/20, M16C/Tiny
Series
Software Manual

16

Rev. 4.00 2004.01

RENESAS 16-BIT SINGLE-CHIP
MICROCOMPUTER

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

U
ser’s M

anual

Keep safety first in your circuit designs!

Notes regarding these materials

1. Renesas Technology Corporation puts the maximum effort into making semiconductor prod-
ucts better and more reliable, but there is always the possibility that trouble may occur with
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with ap-
propriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-
flammable material or (iii) prevention against any malfunction or mishap.

1. These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corporation product best suited to the customer's application; they do
not convey any license under any intellectual property rights, or any other rights, belonging
to Renesas Technology Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringe-
ment of any third-party's rights, originating in the use of any product data, diagrams, charts,
programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, pro-
grams and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corporation without notice
due to product improvements or other reasons. It is therefore recommended that custom-
ers contact Renesas Technology Corporation or an authorized Renesas Technology Cor-
poration product distributor for the latest product information before purchasing a product
listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or
other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by
various means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product
data, diagrams, charts, programs, and algorithms, please be sure to evaluate all informa-
tion as a total system before making a final decision on the applicability of the information
and products. Renesas Technology Corporation assumes no responsibility for any dam-
age, liability or other loss resulting from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for
use in a device or system that is used under circumstances in which human life is poten-
tially at stake. Please contact Renesas Technology Corporation or an authorized Renesas
Technology Corporation product distributor when considering the use of a product con-
tained herein for any specific purposes, such as apparatus or systems for transportation,
vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or
reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions,
they must be exported under a license from the Japanese government and cannot be im-
ported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/
or the country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or
the products contained therein.

A table of symbols, a glossary, and an index are appended at the end of this manual.

Using This Manual

This manual is written for the M16C/60, M16C/20, M16C/Tiny series software. This manual

can be used for all types of microcomputers having the M16C/60 series CPU core.

The reader of this manual is expected to have the basic knowledge of electric and logic

circuits and microcomputers.

This manual consists of five chapters. The following lists the chapters and sections to be

referred to when you want to know details on some specific subject.

• To understand the outline of the M16C/60, M16C/20, M16C/Tiny series and its features

..Chapter 1, “Overview”

• To understand the operation of each addressing modeChapter 2, “Addressing Modes”

• To understand instruction functions

(Syntax, operation, function, selectable src/dest (label), flag changes, description example,

related instructions).. Chapter 3, “Functions”

• To understand instruction code and cycles Chapter 4, “Instruction Code/Number of Cycles”

This manual also contains quick references immediately after the Table of Contents. These

quick references will help you quickly find the pages for the functions or instruction code/

number of cycles you want to know.

• To find pages from mnemonic Quick Reference in Alphabetic Order

• To find pages from function and mnemonic Quick Reference by Function

• To find pages from mnemonic and addressingQuick Reference by Addressing

M16C Family Documents

 The following documents were prepared for the M16C family. (1)

 Document Contents

Short Sheet Hardware overview

Data Sheet Hardware overview and electrical characteristics

Hardware Manual Hardware specifications (pin assignments, memory maps, peripheral specifi-

cations, electrical characteristics, timing charts)

Software Manual Detailed description of assembly instructions and microcomputer perfor-

mance of each instruction

Application Note • Application examples of peripheral functions

• Sample programs

• Introduction to the basic functions in the M16C family

• Programming method with Assembly and C languages

Technical Update Preliminary report about the specification of a product, a document, etc.

 NOTES :

1. Before using this material, please visit the our website to confirm that this is the most current document

available.

A-1

Table of Contents

Chapter 1 Overview ___

1.1 Features of M16C/60, M16C/20, M16C/Tiny series ...2

1.1.1 Features of M16C/60, M16C/20, M16C/Tiny series ...2

1.1.2 Speed performance ..2

1.2 Address Space ... 3

1.3 Register Configuration ..4

1.3.1 Data registers (R0, R0H, R0L, R1, R1H, R1L, R2, and R3) ..4

1.3.2 Address registers (A0 and A1) ..5

1.3.3 Frame base register (FB).. 5

1.3.4 Program counter (PC)...5

1.3.5 Interrupt table register (INTB) ... 5

1.3.6 User stack pointer (USP) and interrupt stack pointer (ISP) ..5

1.3.7 Static base register (SB) ...5

1.3.8 Flag register (FLG) ...5

1.4 Flag Register(FLG) ...6

1.4.1 Bit 0: Carry flag (C flag) ..6

1.4.2 Bit 1: Debug flag (D flag) .. 6

1.4.3 Bit 2: Zero flag (Z flag) ..6

1.4.4 Bit 3: Sign flag (S flag) ..6

1.4.5 Bit 4: Register bank select flag (B flag) ...6

1.4.6 Bit 5: Overflow flag (O flag) ...6

1.4.7 Bit 6: Interrupt enable flag (I flag) ...6

1.4.8 Bit 7: Stack pointer select flag (U flag) ..6

1.4.9 Bits 8-11: Reserved area .. 6

1.4.10 Bits 12-14: Processor interrupt priority level (IPL) ... 7

1.4.11 Bit 15: Reserved area ..7

1.5 Register Bank ...8

1.6 Internal State after Reset is Cleared ...9

1.7 Data Types ...10

1.7.1 Integer...10

1.7.2 Decimal ... 11

1.7.3 Bits .. 12

1.7.4 String ..15

1.8 Data Arrangement .. 16

1.8.1 Data Arrangement in Register ..16

1.8.2 Data Arrangement in Memory ... 17

1.9 Instruction Format ... 18

1.9.1 Generic format (:G) ...18

1.9.2 Quick format (:Q) .. 18

1.9.3 Short format (:S) ...18

1.9.4 Zero format (:Z) ...18

1.10 Vector Table ...19

1.10.1 Fixed Vector Table .. 19

1.10.2 Variable Vector Table ..20

A-2

Chapter 2 Addressing Modes ___

2.1 Addressing Modes ..22

2.1.1 General instruction addressing ...22

2.1.2 Special instruction addressing ..22

2.1.3 Bit instruction addressing..22

2.2 Guide to This Chapter ...23

2.3 General Instruction Addressing ..24

2.4 Specific Instruction Addressing ...27

2.5 Bit Instruction Addressing ...30

Chapter 3 Functions___

3.1 Guide to This Chapter ...34

3.2 Functions ..39

Chapter 4 Instruction Code/Number of Cycles ______________________________

4.1 Guide to This Chapter ...138

4.2 Instruction Code/Number of Cycles ..140

Chapter 5 Interrupt __

5.1 Outline of Interrupt ..248

5.1.1 Types of Interrupts ..248

5.1.2 Software Interrupts ...249

5.1.3 Hardware Interrupts ..250

5.2 Interrupt Control ..251

5.2.1 Interrupt Enable Flag (I Flag) ..251

5.2.2 Interrupt Request Bit ...251

5.2.3 Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)252

5.2.4 Rewrite the Interrupt Control Register ...253

5.3 Interrupt Sequence ...254

5.3.1 Interrupt Response Time ..255

5.3.2 Changes of IPL When Interrupt Request Acknowledged ..256

5.3.3 Saving Registers ...256

5.4 Return from Interrupt Routine ...258

5.5 Interrupt Priority ..259

5.6 Multiple Interrupts ...260

5.7 Precautions for Interrupts ...262

5.7.1 Reading address 0000016 ..262

5.7.2 Setting the SP ..262

5.7.3 Rewrite the Interrupt Control Register ...262

Chapter 6 Calculation Number of Cycles ___________________________________

6.1 Instruction queue buffer ..266

Quick Reference-1

DIVU

DIVX

DSBB

DSUB

ENTER

EXITD

EXTS

FCLR

FSET

INC

INT

INTO

JCnd

 JEQ/Z

 JGE

 JGEU/C

 JGT

 JGTU

 JLE

 JLEU

 JLT

 JLTU/NC

 JN

 JNE/NZ

 JNO

 JO

 JPZ

JMP

JMPI

JMPS

JSR

JSRI

JSRS

LDC

LDCTX

LDE

LDINTB

LDIPL

MOV

MOVA

ABS

ADC

ADCF

ADD

ADJNZ

AND

BAND

BCLR

BMCnd

 BMEQ/Z

 BMGE

 BMGEU/C

 BMGT

 BMGTU

 BMLE

 BMLEU

 BMLT

 BMLTU/NC

 BMN

 BMNE/NZ

 BMNO

 BMO

 BMPZ

BNAND

BNOR

BNOT

BNTST

BNXOR

BOR

BRK

BSET

BTST

BTSTC

BTSTS

BXOR

CMP

DADC

DADD

DEC

DIV

See page for

function
 Mnemonic See page for

instruction code

/number of cycles

Quick Reference in Alphabetic Order

See page for

function
 Mnemonic

39

40

41

42

44

45

47

48

49

140

140

142

142

148

149

152

152

154

49

49

49

49

49

49

49

49

49

49

49

49

49

49

154

154

154

154

154

154

154

154

154

154

154

154

154

154

68

69

70

71

72

73

74

75

76

77

78

79

80
80

80

80

80

80

80

80

80

80

80

80

80

80

80

81

82

83

84

85

86

87

88

89

90

91

92

94

185

187

188

189

190

191

191

192

193

194

195

195

202

184

184

184

184

184

184

184

184

184

184

184

184

184

184

175

177

179

180

180

181

182

182

183

184

184

173

174

50

51

52

53

54

55

56

57

58

59

60

61

62

64

65

66

67

155

156

156

157

158

158

159

159

160

161

162

162

163

167

169

171

172

See page for

instruction code

/number of cycles

Quick Reference-2

MOVDir

 MOVHH

 MOVHL

 MOVLH

 MOVLL

MUL

MULU

NEG

NOP

NOT

OR

POP

POPC

POPM

PUSH

PUSHA

PUSHC

PUSHM

REIT

RMPA

ROLC

RORC

 96

 97

 98

 99

100

101

103

104

105

106

107

108

109

110

111

112

113

205

207

209

209

210

211

213

215

215

216

218

218

219

219

220

220

221

116

117

118

119

120

121

122

123

124

125

126

127

128

129

131

132

133

134

135

222

223

224

226

227

230

232

233

233

234

235

235

237

237

238

238

241

243

243

244

245

ROT

RTS

SBB

SBJNZ

SHA

SHL

SMOVB

SMOVF

SSTR

STC

STCTX

STE

STNZ

STZ

STZX

SUB

TST

UND

WAIT

XCHG

XOR

Quick Reference in Alphabetic Order

See page for

function
 Mnemonic See page for

function
 Mnemonic

114

115

203

203

203

203

203

95

95

95

95

95

See page for

instruction code

/number of cycles

See page for

instruction code

/number of cycles

Quick Reference-3

MOV Transfer

MOVA Transfer effective address

MOVDir Transfer 4-bit data

POP Restore register/memory

POPM Restore multiple registers

PUSH Save register/memory/immediate data

PUSHA Save effective address

PUSHM Save multiple registers

LDE Transfer from extended data area

STE Transfer to extended data area

STNZ Conditional transfer

STZ Conditional transfer

STZX Conditional transfer

XCHG Exchange

BAND Logically AND bits

BCLR Clear bit

BMCnd Conditional bit transfer

BNAND Logically AND inverted bits

BNOR Logically OR inverted bits

BNOT Invert bit

BNTST Test inverted bit

BNXOR Exclusive OR inverted bits

BOR Logically OR bits

BSET Set bit

BTST Test bit

BTSTC Test bit & clear

BTSTS Test bit & set

BXOR Exclusive OR bits

ROLC Rotate left with carry

RORC Rotate right with carry

ROT Rotate

SHA Shift arithmetic

SHL Shift logical

ABS Absolute value

ADC Add with carry

ADCF Add carry flag

ADD Add without carry

CMP Compare

DADC Decimal add with carry

Transfer

Bit

manipulation

Shift

Arithmetic

62

64

Quick Reference by Function

ContentMnemonicFunction See page for

function

See page for

instruction code

/number of cycles

39

40

41

42

118

119

219

235

237

237

238

213

19389

103

215

216

218

109

105

106

107

244
152

152

154

155

156

156

157

158

158

47

48

49

50

51

52

53

54

55

92

94

95

125

126

127

128

134

57

58

59

60

61

112

113

114

140

140

142

142

227

230

220

221

222

159

160

161

162

162

195

202

203

163

167

Quick Reference-4

116

DADD Decimal add without carry

DEC Decrement

DIV Signed divide

DIVU Unsigned divide

DIVX Singed divide

DSBB Decimal subtract with borrow

DSUB Decimal subtract without borrow

EXTS Extend sign

INC Increment

MUL Signed multiply

MULU Unsigned multiply

NEG Two’s complement

RMPA Calculate sum-of-products

SBB Subtract with borrow

SUB Subtract without borrow

AND Logical AND

NOT Invert all bits

OR Logical OR

TST Test

XOR Exclusive OR

ADJNZ Add & conditional jump

SBJNZ Subtract & conditional jump

JCnd Jump on condition

JMP Unconditional jump

JMPI Jump indirect

JMPS Jump to special page

JSR Subroutine call

JSRI Indirect subroutine call

JSRS Special page subroutine call

RTS Return from subroutine

SMOVB Transfer string backward

SMOVF Transfer string forward

SSTR Store string

BRK Debug interrupt

ENTER Build stack frame

EXITD Deallocate stack frame

FCLR Clear flag register bit

FSET Set flag register bit

INT Interrupt by INT instruction

INTO Interrupt on overflow

LDC Transfer to control register

Quick Reference by Function

ContentMnemonicFunction See page for

function

See page for

instruction code

/number of cycles

75

76

Arithmetic

Logical

Jump

String

Other

148

149

159

169

171

172

173

174

175

177

179

180

180

181

182

182

183

184

184

185

187

188

189

190

191

191

205

207

209

210

211

220

223

224

226

232

233

233

238

100

101

111

115

117

120

121

122

129

131

135

44

80

81

82

83

84

85

86

87

56

72

73

45

96

97

98

77

74

65

66

67

68

69

70

71

241
245

78

79

Quick Reference-5

Other

132

133

LDCTX Restore context

LDINTB Transfer to INTB register

LDIPL Set interrupt enable level

NOP No operation

POPC Restore control register

PUSHC Save control register

REIT Return from interrupt

STC Transfer from control register

STCTX Save context

UND Interrupt for undefined instruction

WAIT Wait

234

235

Quick Reference by Function

ContentMnemonicFunction See page for

function

See page for

instruction code

/number of cycles

192

194

195

209

215

218

219

104

108

110

123

124

243

243

99

88

90

91

Quick Reference-6

R
0L

/R
0

R
0H

/R
1

R
1L

/R
2

R
1H

/R
3

A
n

[A
n]

ds
p:

8[
A

n]

ds
p:

8[
S

B
/F

B
]

ds
p:

16
[A

n]

ds
p:

16
[S

B
]

ab
s1

6

#I
M

M
8

#I
M

M
16

#I
M

M
20

#I
M

M

See page

for function

See page for

instruction

code

/number of

cycles

AddressingMnemonic

Quick Reference by Addressing (general instruction addressing)

77

78

39

40

41

42

44

45

74

82

83

85

86

87

89

163

167

169

171

172

173

174

175

177

179

180

182

183

187

188

190

191

191

193

140

140

142

142

148

149

62

64

65

66

67

68

69

70

71

72

*1 Has special instruction addressing.

*2 Only R1L can be selected.

*3 Only R0L can be selected.

*4 Only R0H can be selected.

ABS

ADC

ADCF

ADD*1

ADJNZ*1

AND

CMP

DADC

DADD

DEC

DIV

DIVU

DIVX

DSBB

DSUB

ENTER

EXTS *2

INC *3 *4

INT

JMPI*1

JMPS

JSRI*1

JSRS

LDC*1

LDE*1

Quick Reference-7

LDINTB

LDIPL

MOV*1

MOVA

MOVDir

MUL

MULU

NEG

NOT

OR

POP

POPM*1

PUSH

PUSHA

PUSHM*1

ROLC

RORC

ROT

SBB

SBJNZ*1

SHA*1

SHL*1

STC*1

STCTX*1

STE*1

R
0L

/R
0

R
0H

/R
1

R
1L

/R
2

R
1H

/R
3

A
n

[A
n]

ds
p:

8[
A

n]

ds
p:

8[
S

B
/F

B
]

ds
p:

16
[A

n]

ds
p:

16
[S

B
]

ab
s1

6

#I
M

M
8

#I
M

M
16

#I
M

M
20

#I
M

M

194

195

195

202

203

219

210

211

213

215

216

218

220

221

222

100

101

103

105

106

107

109

112

113

114

116

117

118

119

224

226

227

230

234

235

235

123

124

125

90

91

92

94

95

96

97

98

205

207

209

See page

for function

See page for

instruction

code

/number of

cycles

AddressingMnemonic

Quick Reference by Addressing (general instruction addressing)

*1 Has special instruction addressing.

Quick Reference-8

R
0L

/R
0

R
0H

/R
1

R
1L

/R
2

R
1H

/R
3

A
n

[A
n]

ds
p:

8[
A

n]

ds
p:

8[
S

B
/F

B
]

ds
p:

16
[A

n]

ds
p:

16
[S

B
]

ab
s1

6

#I
M

M
8

#I
M

M
16

#I
M

M
20

#I
M

M

STNZ

STZ

STZX

SUB

TST

XCHG

XOR

134

135

126

127

128

129

131

237

237

238

238

241

244

245

See page

for function

See page for

instruction

code

/number of

cycles

AddressingMnemonic

Quick Reference by Addressing (general instruction addressing)

Quick Reference-9

ADD*1

ADJNZ*1

JCnd

JMP

JMPI*1

JSR

JSRI*1

LDC*1

LDCTX

LDE*1

MOV*1

POPC

POPM*1

PUSHC

PUSHM*1

SBJNZ*1

SHA*1

SHL*1

STC*1

STCTX*1

STE*1

ds
p:

20
[A

0]

ds
p:

20
[A

1]

ab
s2

0

R
2R

0/
R

3R
1

A
1A

0

[A
1A

0]

ds
p:

8[
S

P
]

la
be

l

S
B

/F
B

IS
P

/U
S

P

F
LG

IN
T

B
L/

IN
T

B
H

P
C

104

105

108

109

117

118

119

123

124

125

191

192

193

215

215

218

219

226

227

230

234

235

235

195

189

190

184

185

187

142

148

42

44

80

81

82

84

85

87

88

89

92

AddressingMnemonic

Quick Reference by Addressing (special instruction addressing)

See page

for function

See page for

instruction

code

/number of

cycles

*1 Has general instruction addressing.

*2 INTBL and INTBH cannot be set simultaneously when using the LDINTB instruction.

Quick Reference-10

BAND

BCLR

BMCnd

BNAND

BNOR

BNOT

BNTST

BNXOR

BOR

BSET

BTST

BTSTC

BTSTS

BXOR

FCLR

FSET

bi
t,R

n

bi
t,A

n

[A
n]

ba
se

:8
[A

n]

bi
t,b

as
e:

8[
S

B
/F

B
]

ba
se

:1
6[

A
n]

bi
t,b

as
e:

16
[S

B
]

bi
t,b

as
e:

16

bi
t,b

as
e:

11

U
/I/

O
/B

/S
/Z

/D
/C

47

48

49

50

51

52

53

54

55

57

58

59

60

61

75

76

152

152

154

155

156

156

157

158

158

159

160

161

162

162

181

182

AddressingMnemonic

Quick Reference by Addressing (bit instruction addressing)

See page

for function

See page for

instruction

code

/number of

cycles

Chapter 1

Overview

1.1 Features of M16C/60, M16C/20, M16C/Tiny series

1.2 Address Space

1.3 Register Configuration

1.4 Flag Register (FLG)

1.5 Register Bank

1.6 Internal State after Reset is Cleared

1.7 Data Types

1.8 Data Arrangement

1.9 Instruction Format

1.10 Vector Table

2

Chapter 1 Overview

1.1 Features of M16C/60, M16C/20, M16C/Tiny series
The M16C/60, M16C/20, M16C/Tiny series are single-chip microcomputer developed for built-in applica-

tions where the microcomputer is built into applications equipment.

The M16C/60, M16C/20, M16C/Tiny series support instructions suitable for the C language with frequently

used instructions arranged in one- byte op-code. Therefore, it allows you for efficient program development

with few memory capacity regardless of whether you are using the assembly language or C language.

Furthermore, some instructions can be executed in clock cycle, making fast arithmetic processing possible.

Its instruction set consists of 91 discrete instructions matched to the M16C’s abundant addressing modes.

This powerful instruction set allows to perform register-register, register-memory, and memory-memory

operations, as well as arithmetic/logic operations on bits and 4-bit data.

Some models incorporate a multiplier, allowing for high-speed computation.

1.1.1 Features of M16C/60, M16C/20, M16C/Tiny series
• Register configuration

Data registers Four 16-bit registers (of which two registers can be used as 8-bit registers)

Address registers Two 16-bit registers

Base registers Two 16-bit registers

• Versatile instruction set

C language-suited instructions (stack frame manipulation): ENTER, EXITD, etc.

Register and memory-indiscriminated instructions: MOV, ADD, SUB, etc.

Powerful bit manipulate instructions: BNOT, BTST, BSET, etc.

4-bit transfer instructions: MOVLL, MOVHL, etc.

Frequently used 1-byte instructions: MOV, ADD, SUB, JMP, etc.

High-speed 1-cycle instructions: MOV, ADD, SUB, etc.

• 1M-byte linear address space

Relative jump instructions matched to distance of jump

• Fast instruction execution time

Shortest 1-cycle instructions: 91 instructions include 20 1-cycle instructions.

(Approximately 75% of instructions execute in five cycles or under.)

1.1.2 Speed performance
Register-register transfer 0.125 µs

Register-memory transfer 0.125 µs

Register-register addition/subtraction 0.125 µs

8 bits x 8 bits register-register operation 0.25 µs

16 bits x 16 bits register-register operation 0.313 µs

16 bits / 8 bits register-register operation 1.13 µs

32 bits / 16 bits register-register operation 1.56 µs

•Conditions

-Products with built-in Multiplier

-Clock frequency 16 MHz

1.1 Features of M16C/60, M16C/20, M16C/Tiny series

3

Chapter 1 Overview

The SFR area in each

model extends toward

lower-address locations

as much as available.

The RAM area in each

model extends toward

higher-address loca-

tions as much as

available.

1.2 Address Space

1.2 Address Space
Fig. 1.2.1 shows an address space.

Addresses 0000016 through 003FF16 make up an SFR (special function register) area. In individual models

of the M16C/60, M16C/20, M16C/Tiny series, the SFR area extends from 003FF16 toward lower addresses.

Addresses from 0040016 on make up a memory area. In individual models of the M16C/60, M16C/20,

M16C/Tiny series, a RAM area extends from address 0040016 toward higher addresses, and a ROM area

extends from FFFFF16 toward lower addresses. Addresses FFE0016 through FFFFF16 make up a fixed

vector area.

Figure 1.2.1 Address space

0000016

0040016

0FFFF16

1000016

FFE0016

FFFFF16

*1 Locations above address 1000016 have restrictions on the types of instructions that

can be used.

SFR area

Internal RAM area

External memory area

External memory area*1

Internal ROM area

Fixed vector area

The ROM area in each

model extends toward

lower-address locations

as much as available.

4

Chapter 1 Overview
1.3 Register Configuration

1.3 Register Configuration
The central processing unit (CPU) contains the 13 registers shown in Figure 1.3.1. Of these registers, R0,

R1, R2, R3, A0, A1, and FB each consist of two sets of registers configuring two register banks.

1.3.1 Data registers (R0, R0H, R0L, R1, R1H, R1L, R2, and R3)
The data registers (R0, R1, R2, and R3) consist of 16 bits, and are used primarily for transfers and

arithmetic/logic operations.

Registers R0 and R1 can be halved into separate high-order (R0H, R1H) and low-order (R0L, R1L) parts

for use as 8-bit data registers. For some instructions, moreover, you can combine R2 and R0 or R3 and

R1 to configure a 32-bit data register (R2R0 or R3R1).

R0*1 H L
b15 b8b7 b0

b15 b8b7 b0

R2*1

b15 b0

R3*1

b15 b0

A0*1

b15 b0

A1*1

b15 b0









FB*1

b15 b0

















PC
b19 b0

INTB H L
b19 b0

b15 b0

USP

b15 b0

ISP

b15 b0

SB

b15 b0

FLG

IPL U I O B S Z D C

*1 These registers have two register banks.

Frame

base

register

Data

registers

Address

registers

Program

counter

Interrupt table

register

User stack

pointer

Interrupt stack

pointer

Static base

register

Flag register

R1*1 H L

Figure 1.3.1 CPU register configuration

5

Chapter 1 Overview

1.3.2 Address registers (A0 and A1)
The address registers (A0 and A1) consist of 16 bits, and have the similar functions as the data regis-

ters. These registers are used for address register-based indirect addressing and address register-

based relative addressing.

For some instructions, registers A1 and A0 can be combined to configure a 32-bit address register

(A1A0).

1.3.3 Frame base register (FB)
The frame base register (FB) consists of 16 bits, and is used for FB-based relative addressing.

1.3.4 Program counter (PC)
The program counter (PC) consists of 20 bits, indicating the address of an instruction to be executed

next.

1.3.5 Interrupt table register (INTB)
The interrupt table register (INTB) consists of 20 bits, indicating the initial address of an interrupt vector

table.

1.3.6 User stack pointer (USP) and interrupt stack pointer (ISP)
There are two types of stack pointers: user stack pointer (USP) and interrupt stack pointer (ISP), each

consisting of 16 bits.

The stack pointer (USP/ISP) you want can be switched by a stack pointer select flag (U flag).

The stack pointer select flag (U flag) is bit 7 of the flag register (FLG).

1.3.7 Static base register (SB)
The static base register (SB) consists of 16 bits, and is used for SB-based relative addressing.

1.3.8 Flag register (FLG)
The flag register (FLG) consists of 11 bits, and is used as a flag, one bit for one flag. For details about

the function of each flag, see Section 1.4, “Flag Register (FLG).”

1.3 Register Configuration

6

Chapter 1 Overview

1.4 Flag Register (FLG)
Figure 1.4.1 shows a configuration of the flag register (FLG). The function of each flag is detailed below.

1.4.1 Bit 0: Carry flag (C flag)
This flag holds a carry, borrow, or shifted-out bit that has occurred in the arithmetic/logic unit.

1.4.2 Bit 1: Debug flag (D flag)
This flag enables a single-step interrupt.

When this flag is set (= 1), a single-step interrupt is generated after an instruction is executed. When an

interrupt is acknowledged, this flag is cleared to 0.

1.4.3 Bit 2: Zero flag (Z flag)
This flag is set when an arithmetic operation resulted in 0; otherwise, this flag is 0.

1.4.4 Bit 3: Sign flag (S flag)
This flag is set when an arithmetic operation resulted in a negative value; otherwise, this flag is 0.

1.4.5 Bit 4: Register bank select flag (B flag)
This flag selects a register bank. If this flag is 0, register bank 0 is selected; if the flag is 1, register bank

1 is selected.

1.4.6 Bit 5: Overflow flag (O flag)

This flag is set when an arithmetic operation resulted in overflow.

1.4.7 Bit 6: Interrupt enable flag (I flag)
This flag enables a maskable interrupt.

When this flag is 0, the interrupt is disabled; when the flag is 1, the interrupt is enabled. When the

interrupt is acknowledged, this flag is cleared to 0.

1.4.8 Bit 7: Stack pointer select flag (U flag)
When this flag is 0, the interrupt stack pointer (ISP) is selected; when the flag is 1, the user stack pointer

(USP) is selected.

This flag is cleared to 0 when a hardware interrupt is acknowledged or an INT instruction of software

interrupt numbers 0 to 31 is executed.

1.4.9 Bits 8-11: Reserved area

1.4 Flag Register (FLG)

7

Chapter 1 Overview
1.4 Flag Register (FLG)

Figure 1.4.1 Configuration of flag register (FLG)

IPL U I O B S Z D C

b15 b0

Carry flag

Debug flag

Zero flag

Sign flag

Register bank select flag

Overflow flag

Interrupt enable flag

Stack pointer select flag

Reserved area

Processor interrupt priority level

Reserved area

Flag register (FLG)

1.4.10 Bits 12-14: Processor interrupt priority level (IPL)
The processor interrupt priority level (IPL) consists of three bits, allowing you to specify eight processor

interrupt priority levels from level 0 to level 7. If a requested interrupt’s priority level is higher than the

processor interrupt priority level (IPL), this interrupt is enabled.

1.4.11 Bit 15: Reserved area

8

Chapter 1 Overview
1.5 Register Bank

R0 H L
b15 b8b7 b0

R3

A0

A1

FB

R1 H L

R2

R0 H L
b15 b8b7 b0

R3

A0

A1

FB

R1 H L

R2

Register bank 0 (B flag = 0) Register bank 1 (B flag = 1)

Figure 1.5.1 Configuration of register banks

1.5 Register Bank
The M16C has two register banks, each configured with data registers (R0, R1, R2, and R3), address

registers (A0 and A1), and frame base register (FB). These two register banks are switched over by the

register bank select flag (B flag) of the flag register (FLG).

Figure 1.5.1 shows a configuration of register banks.

9

Chapter 1 Overview
1.6 Internal State after Reset is Cleared

1.6 Internal State after Reset is Cleared
The following lists the content of each register after a reset is cleared.

• Data registers (R0, R1, R2, and R3): 000016

• Address registers (A0 and A1): 000016

• Frame base register (FB): 000016

• Interrupt table register (INTB): 0000016

• User stack pointer (USP): 000016

• Interrupt stack pointer (ISP): 000016

• Static base register (SB): 000016

• Flag register (FLG): 000016

10

Chapter 1 Overview
1.7 Data Types

b7 b0

b7 b0

 S

b15 b0

 S

Signed byte (8 bit) integer

Unsigned byte (8 bit) integer

Signed word (16 bit) integer

Unsigned word (16 bit) integer

Signed long word (32 bit) integer

Unsigned long word (32 bit) integer

S: Sign bit

 S

b31 b0

b31 b0

b15 b0

Figure 1.7.1 Integer data

1.7 Data Types
There are four data types: integer, decimal, bit, and string.

1.7.1 Integer
An integer can be a signed or an unsigned integer. A negative value of a signed integer is represented

by two’s complement.

11

Chapter 1 Overview
1.7 Data Types

1.7.2 Decimal
This type of data can be used in DADC, DADD, DSBB, and DSUB.

Pack format

(2 digits)

Pack format

(4 digits)

Figure 1.7.2 Decimal data

b15 b0

b7 b0

12

Chapter 1 Overview
1.7 Data Types

1.7.3 Bits
● Register bits

Figure 1.7.3 shows register bit specification.

Register bits can be specified by register direct (bit, Rn or bit, An). Use bit, Rn to specify a bit in data

register (Rn); use bit, An to specify a bit in address register (An).

Bits in each register are assigned bit numbers 0-15, from LSB to MSB. For bit in bit, Rn and bit, An, you

can specify a bit number in the range of 0 to 15.

Figure 1.7.3 Register bit specification

● Memory bits

Figure 1.7.4 shows addressing modes used for memory bit specification. Table 1.7.1 lists the address

range in which you can specify bits in each addressing mode. Be sure to observe the address range in

Table 1.7.1 when specifying memory bits.

b15 b0
bit,Rn

(bit: 0 to 15, n: 0 to 3)

Rn b15 b0
bit,An

(bit: 0 to 15, n: 0 to 1)

An

bit,base:8
bit,base:16

bit,base:8[SB]
bit,base:11[SB]
bit,base:16[SB]

bit,base:8[FB]

[An]

base:8[An]
base:16[An]

Addressing modes Absolute addressing

SB-based relative
addressing

FB-based relative
addressing
Address register-based indirect
addressing
Address register-based relative
addressing

bit,base:16

Figure 1.7.4 Addressing modes used for memory bit specification

Addressing Specification range
 Remarks Lower limit (address) Upper limit (address)

bit,base:16 0000016 01FFF16

bit,base:8[SB] [SB] [SB]+0001F16 The access range is 0000016 to 0FFFF16.

bit,base:11[SB] [SB] [SB]+000FF16 The access range is 0000016 to 0FFFF16.

bit,base:16[SB] [SB] [SB]+01FFF16 The access range is 0000016 to 0FFFF16.

bit,base:8[FB] [FB]Å|0001016 [FB]+0000F16 The access range is 0000016 to 0FFFF16.

[An] 0000016 01FFF16

base:8[An] base:8 base:8+01FFF16 The access range is 0000016 to 020FE16.

base:16[An] base:16 base:16+01FFF16 The access range is 0000016 to 0FFFF16.

Table 1.7.1 Bit-Specifying Address Range

13

Chapter 1 Overview

0

n-1

n
n+1

nÅ{1 n nÅ|1 0
b7 b0b7 b0b7 b0 b7 b0

b7 b0

BSET 2,AH ;

b7 b2 b0

b15 b10 b8b7 b0

b87 b82 b80b79 b72 b7 b0

b23 b18 b16b15 b8b7 b0

BSET 10,9H ;

BSET 18,8H ;

BSET 82,0H ;

Address 0000916

These specifica-
tion examples all
specify bit 2 of
address 0000A16.

Address 0000016

Address 0000816

Address 0000A16

1.7 Data Types

Figure 1.7.6 Examples of how to specify bit 2 of address 0000A16

(1) Bit specification by bit, base

Figure 1.7.5 shows the relationship between memory map and bit map.

Memory bits can be handled as an array of consecutive bits. Bits can be specified by a given combina-

tion of bit and base. Using bit 0 of the address that is set to base as the reference (= 0), set the desired

bit position to bit. Figure 1.7.6 shows examples of how to specify bit 2 of address 0000A16.

Bit mapMemory map

Address

n+1 n n–1

Figure 1.7.5 Relationship between memory map and bit map

14

Chapter 1 Overview
1.7 Data Types

(2) SB/FB relative bit specification

For SB/FB-based relative addressing, use bit 0 of the address that is the sum of the address set to

static base register (SB) or frame base register (FB) plus the address set to base as the reference (=

0), and set your desired bit position to bit.

(3) Address register indirect/relative bit specification

For address register-based indirect addressing, use bit 0 of address 0000016 as the reference (= 0)

and set your desired bit position to address register (An).

For address register-based relative addressing, use bit 0 of the address set to base as the reference

(= 0) and set your desired bit position to address register (An).

15

Chapter 1 Overview
1.7 Data Types

1.7.4 String
String is a type of data that consists of a given length of consecutive byte (8-bit) or word (16-bit) data.

This data type can be used in three types of string instructions: character string backward transfer

(SMOVB instruction), character string forward transfer (SMOVF instruction), and specified area initialize

(SSTR instruction).

b15 b0

b7 b0

b7 b0

b7 b0

b15 b0

b15 b0

•

•

•

•

•

•

•

•

Figure 1.7.7 String data

Byte (8-bit) data Word (16-bit) data

16

Chapter 1 Overview
1.8 Data Arrangement

1.8 Data Arrangement
1.8.1 Data Arrangement in Register

Figure 1.8.1 shows the relationship between a register’s data size and bit numbers.

b15 b0

b3 b0

b7 b0

MSB LSB

b31 b0

Nibble (4-bit) data

Byte (8-bit) data

Word (16-bit) data

Long word (32-bit) data

Figure 1.8.1 Data arrangement in register

17

Chapter 1 Overview

b7 b0

N DATA(L)

N+1 DATA(H)

N+2

N+3

b7 b0

N DATA

N+1

N+2

N+3

MOV.B N,R0H

MOV.W N,R0

R0
H L

b15 b0

R0
H L

b15 b0

DATA

DATA(H) DATA(L)

Word (16-bit) data

Byte (8-bit) data

1.8 Data Arrangement

Figure 1.8.2 Data arrangement in memory

Does not change.

1.8.2 Data Arrangement in Memory
Figure 1.8.2 shows data arrangement in memory. Figure 1.8.3 shows some examples of operation.

b7 b0

N DATA

N+1

N+2

N+3

b7 b0

N DATA(L)

N+1 DATA(H)

N+2

N+3

b7 b0

N DATA(L)

N+1 DATA(M)

N+2 DATA(H)

N+3

b7 b0

N DATA(LL)

N+1 DATA(LH)

N+2 DATA(HL)

N+3 DATA(HH)

Word (16-bit) dataByte (8-bit) data

Long Word (32-bit) data20-bit (Address) data

Figure 1.8.3 Examples of operation

18

Chapter 1 Overview
1.9 Instruction Format

1.9 Instruction Format
The instruction format can be classified into four types: generic, quick, short, and zero. The number of

instruction bytes that can be chosen by a given format is least for the zero format, and increases succes-

sively for the short, quick, and generic formats in that order.

The following describes the features of each format.

1.9.1 Generic format (:G)
Op-code in this format consists of two bytes. This op-code contains information on operation and src*1

and dest*2 addressing modes.

Instruction code here is comprised of op-code (2 bytes), src code (0-3 bytes), and dest code (0-3 bytes).

1.9.2 Quick format (:Q)
Op-code in this format consists of two bytes. This op-code contains information on operation and imme-

diate data and dest addressing modes. Note however that the immediate data in this op-code is a

numeric value that can be expressed by -7 to +8 or -8 to +7 (varying with instruction).

Instruction code here is comprised of op-code (2 bytes) containing immediate data and dest code (0-2

bytes).

1.9.3 Short format (:S)
Op-code in this format consists of one byte. This op-code contains information on operation and src and

dest addressing modes.Note however that the usable addressing modes are limited.

Instruction code here is comprised of op-code (1 byte), src code (0-2 bytes), and dest code (0-2 bytes).

1.9.4 Zero format (:Z)
Op-code in this format consists of one byte. This op-code contains information on operation (plus

immediate data) and dest addressing modes. Note however that the immediate data is fixed to 0, and

that the usable addressing modes are limited.

Instruction code here is comprised of op-code (1 byte) and dest code (0-2 bytes).

*1 src is the abbreviation of “source.”

*2 dest is the abbreviation of “destination.”

19

Chapter 1 Overview

255

254

18

1.10 Vector Table

1.10 Vector Table
The vector table comes in two types: a special page vector table and an interrupt vector table. The special

page vector table is a fixed vector table. The interrupt vector table can be a fixed or a variable vector table.

1.10.1 Fixed Vector Table

The fixed vector table is an address-fixed vector table. The special page vector table is allocated to

addresses FFE0016 through FFFDB16, and part of the interrupt vector table is allocated to addresses

FFFDC16 through FFFFF16. Figure 1.10.1 shows a fixed vector table.

The special page vector table is comprised of two bytes per table. Each vector table must contain the 16

low-order bits of the subroutine’s entry address. Each vector table has special page numbers (18 to

255) which are used in JSRS and JMPS instructions.

The interrupt vector table is comprised of four bytes per table. Each vector table must contain the

interrupt handler routine’s entry address.

FFFDC16

FFFE016

FFFE416

FFFE816

FFFEC16

FFFF016

FFFF416

FFFF816

FFFFC16

○

○

○

○

○

FFE0016

FFE0216

FFFDB16

FFFDC16

FFFFF16











Special page number

Special page

vector table

Interrupt

vector table

Figure 1.10.1 Fixed vector table

Undefined instruction
Overflow

BRK instruction

Address match

Single step

Watchdog timer

DBC

NMI

Reset

20

Chapter 1 Overview
1.10 Vector Table

1.10.2 Variable Vector Table
The variable vector table is an address-variable vector table. Specifically, this vector table is a 256-byte

interrupt vector table that uses the value indicated by the interrupt table register (INTB) as the entry

address (IntBase). Figure 1.10.2 shows a variable vector table.

The variable vector table is comprised of four bytes per table. Each vector table must contain the

interrupt handler routine’s entry address.

Each vector table has software interrupt numbers (0 to 63). The INT instruction uses these software

interrupt numbers.

Interrupts from the peripheral functions built in each M16C model are allocated to software interrupt

numbers 0 through 31.

b19 b0

0

1

32

31

63

33

INTB IntBase











IntBase+4

IntBase+8

IntBase+252





















Vectors accommodat-

ing peripheral I/O

interrupts

Software interrupt

numbers

Figure 1.10.2 Variable vector table

Chapter 2

Addressing Modes

2.1 Addressing Modes

2.2 Guide to This Chapter

2.3 General Instruction Addressing

2.4 Special Instruction Addressing

2.5 Bit Instruction Addressing

22

Chapter 2 Addressing Modes

2.1 Addressing Modes
This section describes addressing mode-representing symbols and operations for each addressing mode.

The M16C/60, M16C/20, M16C/Tiny series have three addressing modes outlined below.

2.1.1 General instruction addressing
This addressing accesses an area from address 0000016 through address 0FFFF16.

The following lists the name of each general instruction addressing:

• Immediate

• Register direct

• Absolute

• Address register indirect

• Address register relative

• SB relative

• FB relative

• Stack pointer relative

2.1.2 Special instruction addressing
This addressing accesses an area from address 0000016 through address FFFFF16 and control regis-

ters.

The following lists the name of each specific instruction addressing:

• 20-bit absolute

• Address register relative with 20-bit displacement

• 32-bit address register indirect

• 32-bit register direct

• Control register direct

• Program counter relative

2.1.3 Bit instruction addressing
This addressing accesses an area from address 0000016 through address 0FFFF16.

The following lists the name of each bit instruction addressing:

• Register direct

• Absolute

• Address register indirect

• Address register relative

• SB relative

• FB relative

• FLG direct

2.1 Addressing Modes

23

Chapter 2 Addressing Modes

2.2 Guide to This Chapter
The following shows how to read this chapter using an actual example.

Address register relative

dsp:8[A0]

dsp:8[A1]

dsp:16[A0]

dsp:16[A1]

 Memory

A0 / A1

 Register

address

dsp

(1) Name
Indicates the name of addressing.

(2) Symbol
Represents the addressing mode.

(3) Explanation
Describes the addressing operation and the effective address range.

(4) Operation diagram
Diagrammatically explains the addressing operation.

(2)

(1)

(3)

(4)

2.2 Guide to This Chapter

The value indicated by displacement
(dsp) plus the content of address
register (A0/A1)—added not includ-
ing the sign bits—constitutes the
effective address to be operated on.

However, if the addition resulted in
exceeding 0FFFF16, the bits above
bit 17 are ignored, and the address
returns to 0000016.

24

Chapter 2 Addressing Modes

#IMM

#IMM8

#IMM16

#IMM20

Immediate

The immediate data indicated by #IMM
is the object to be operated on.

Register direct

R0L

R0H

R1L

R1H

R0

R1

R2

R3

A0

A1

b8 b7 b0b15

b15 b8

b0

RegisterThe specified register is the object to
be operated on.

b15 b7b8 b0

b15 b7b8 b0

b0

b19

abs16

Absolute

abs16

[A0]

[A1]

Address register indirect

A0 / A1 address

 Memory

R0L / R1L

R0H / R1H

R0 / R1 / R2 /

R3 / A0 / A1

#IMM8

#IMM16

#IMM20

b7

2.3 General Instruction Addressing

Register Memory

2.3 General Instruction Addressing

The value indicated by abs16 constitutes the
effective address to be operated on.

The effective address range is 0000016 to
0FFFF16.

The value indicated by the content of
address register (A0/A1) constitutes
the effective address to be operated
on.

The effective address range is 0000016

to 0FFFF16.

25

Chapter 2 Addressing Modes

address

address

AAA

Address register relative

dsp:8[A0]

dsp:8[A1]

dsp:16[A0]

dsp:16[A1]

dsp:8[SB]

dsp:16[SB]

SB relative

FB relative

dsp:8[FB]

The value indicated by displacement
(dsp) plus the content of address
register (A0/A1)—added not including
the sign bits—constitutes the effective
address to be operated on.

However, if the addition resulted in
exceeding 0FFFF16, the bits above bit
17 are ignored, and the address
returns to 0000016.

address

dsp

dsp

FB

SB

dsp

The address indicated by the content
of frame base register (FB) plus the
value indicated by displacement
(dsp)—added including the sign bits—
constitutes the effective address to be
operated on.

However, if the addition resulted in
exceeding 0000016- 0FFFF16, the bits
above bit 17 are ignored, and the
address returns to 0000016 or
0FFFF16.

Memory

addressA0 / A1

 If the dsp value is negative

 If the dsp value is positive

dsp
Register

MemoryRegister

Memory

Register

2.3 General Instruction Addressing

address

The address indicated by the content
of static base register (SB) plus the
value indicated by displacement
(dsp)—added not including the sign
bits—constitutes the effective address
to be operated on.

However, if the addition resulted in
exceeding 0FFFF16, the bits above bit
17 are ignored, and the address
returns to 0000016.

26

Chapter 2 Addressing Modes

dsp:8[SP]

Stack pointer relative

AAA
dsp

dsp

SP
Register

Memory
If the dsp value is negative

If the dsp value is positive

address

2.3 General Instruction Addressing

The address indicated by the content of stack
pointer (SP) plus the value indicated by
displacement (dsp)—added including the sign
bits—constitutes the effective address to be
operated on. The stack pointer (SP) here is
the one indicated by the U flag.

However, if the addition resulted in exceeding
0000016- 0FFFF16, the bits above bit 17 are
ignored, and the address returns to 0000016

or 0FFFF16.

This addressing can be used in MOV
instruction.

27

Chapter 2 Addressing Modes

20-bit absolute

abs20

abs20

dsp:20[A0]

dsp:20[A1]

Address register relative with

20-bit displacement

addressA0

LDE, STE instructions

JMPI, JSRI instructions

PC

address
Register

A0 / A1

dsp

dsp

 32-bit address register indirect

address

A0A1

address-L
b16 b15 b0b31

address-H

[A1A0] The address indicated by 32 concat-
enated bits of address registers (A0
and A1) constitutes the effective
address to be operated on.

However, if the concatenated register
value exceeds FFFFF16, the bits
above bit 21 are ignored.

This addressing can be used in LDE
and STE instructions.

Memory

Memory

Memory

Memory

Register

Register

2.4 Special Instruction Addressing

The value indicated by abs20 constitutes
the effective address to be operated on.

The effective address range is 0000016 to
FFFFF16.

This addressing can be used in LDE, STE,
JSR, and JMP instructions.

The address indicated by displacement
(dsp) plus the content of address register
(A0/A1)—added not including the sign
bits—constitutes the effective address to
be operated on.

However, if the addition resulted in exceed-
ing FFFFF16, the bits above bit 21 are
ignored, and the address returns to
0000016.

This addressing can be used in LDE, STE,
JMPI, and JSRI instructions.

The following lists the addressing mode and
instruction combinations that can be used.

dsp:20[A0]
 LDE, STE, JMPI, and JSRI in-
 structions

dsp:20[A1]
 JMPI and JSRI instructions

2.4 Special Instruction Addressing

28

Chapter 2 Addressing Modes

 32-bit register direct

R2R0

R3R1

A1A0

 SHL, SHA instructions

JMPI, JSRI instructions

R2R0

R3R1

A1A0

b0b31 b15b16R2R0

R3R1

b0b31 b15b16

PC

The 32-bit concatenated register content of two
specified registers is the object to be operated
on.

This addressing can be used in SHL, SHA,
JMPI, and JSRI instructions.

The following lists the register and instruction
combinations that can be used.

R2R0, R3R1
 SHL, SHA, JMPI, and JSRI in-
 structions

A1A0
 JMPI and JSRI instructions

Control register direct

INTBL

INTBH

ISP

SP

SB

FB

FLG

The specified control register is the
object to be operated on.

This addressing can be used in LDC,
STC, PUSHC, and POPC instructions.

If you specify SP, the stack pointer
indicated by the U flag is the object to
be operated on.

Register

INTBL

INTBH

ISP

USP

SB

FB

FLG

b0b15

b0b15 b4 b3

b0b15

b0b15

b0b15

b0b15

b0b15

2.4 Special Instruction Addressing

29

Chapter 2 Addressing Modes

 +0 dsp +7

Memory
label

 Program counter relative

label

 Base address

 dsp

dsp

AAA
dsp

label

label

Memory

 Base address

If the dsp value is positive

2.4 Special Instruction Addressing

 If the dsp value is negative

• If the jump length specifier (.length)
is (.S)...
the base address plus the value
indicated by displacement (dsp)—
added not including the sign bits—
constitutes the effective address.

This addressing can be used in JMP
instruction.

• If the jump length specifier (.length) is
(.B) or (.W)...
the base address plus the value indicated
by displacement (dsp)—added including
the sign bits—constitutes the effective
address.

However, if the addition resulted in
exceeding 0000016- FFFFF16, the bits
above bit 21 are ignored, and the address
returns to 0000016 or FFFFF16.

This addressing can be used in JMP and
JSR instructions.

*1 The base address is the (start address of instruction + 2).

*2 The base address varies with each instruction.

If the specifier is (.B), -128 ≤ dsp ≤ +127

If the specifier is (.W), -32768 ≤ dsp ≤ +32767

30

Chapter 2 Addressing Modes

The specified register bit is the object
to be operated on.

For the bit position (bit) you can
specify 0 to 15.

Register direct

 Address register indirect

The bit that is as much away from bit 0 at
address 0000016 as the number of bits
indicated by address register (A0/A1) is
the object to be operated on.

Bits at addresses 0000016 through
01FFF16 can be the object to be operated
on.

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

b0b15

bit , R0

Absolute

The bit that is as much away from bit
0 at the address indicated by base as
the number of bits indicated by bit is
the object to be operated on.

Bits at addresses 0000016 through
01FFF16 can be the object to be
operated on.

0000016

b7 b0

b7 b0

R0

base

Bit position

Bit position

Bit position

bit,base:16

2.5 Bit Instruction Addressing

2.5 Bit Instruction Addressing
This addressing can be used in the following instructions:

BCLR, BSET, BNOT, BTST, BNTST, BAND, BNAND, BOR, BNOR, BXOR, BNXOR, BMCnd, BTSTS,

BTSTC

31

Chapter 2 Addressing Modes

base

address

 Address register relative

base:8[A0]

base:8[A1]

base:16[A0]

base:16[A1]

SB relative

bit,base:8[SB]

bit,base:11[SB]

bit,base:16[SB]

b7 b0

b7 b0
Memory

address
Register

SB

base

Bit position

Bit position

2.5 Bit Instruction Addressing

The bit that is as much away
from bit 0 at the address indi-
cated by base as the number of
bits indicated by address register
(A0/A1) is the object to be
operated on.

However, if the address of the bit
to be operated on exceeds
0FFFF16, the bits above bit 17
are ignored and the address
returns to 0000016.

The address range that can be
specified by address register
(A0/A1) is 8,192 bytes from
base.

The bit that is as much away from
bit 0 at the address indicated by
static base register (SB) plus the
value indicated by base (added not
including the sign bits) as the
number of bits indicated by bit is the
object to be operated on.

However, if the address of the bit to
be operated on exceeds 0FFFF16,
the bits above bit 17 are ignored and
the address returns to 0000016.

The address ranges that can be
specified by bit,base: 8, bit,base:
11, and bit,base:16 respectively are
32 bytes, 256 bytes, and 8,192
bytes from the static base register
(SB) value.

32

Chapter 2 Addressing Modes

address

 FB relative

bit,base:8[FB]

FB address
Register

base

base

If the base value is negative

 If the base value is positive

 Memory

Bit position

FLG direct

U

I

O

B

S

Z

D

C

U I O B S Z D C

b0b7

FLG

Register

2.5 Bit Instruction Addressing

The specified flag is the object to
be operated on.

This addressing can be used in
FCLR and FSET instructions.

The bit that is as much away from bit 0 at
the address indicated by frame base
register (FB) plus the value indicated by
base (added including the sign bit) as the
number of bits indicated by bit is the
object to be operated on.

However, if the address of the bit to be
operated on exceeds 0000016-0FFFF16,
the bits above bit 17 are ignored and the
address returns to 0000016 or 0FFFF16.

The address range that can be specified
by bit,base: 8 is 16 bytes toward lower
addresses or 15 bytes toward higher
addresses from the frame base register
(FB) value.

 (Bit position)

Chapter 3

Functions

3.1 Guide to This Chapter

3.2 Functions

34

3.1 Guide to This Chapter
Chapter 3 Functions

[Operation]

dest src

92

MOVe MOV

[Function]

[Reated Instruction] LDE,STE,XCHG

[Description Example]

MOV.B:S #0ABH,R0L

MOV.W #-1,R2

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 dsp:8[SP] R2R0 R3R1 A1A0 dsp:8[SP]

 [Selectable src/dest]

[Syntax]

MOV.size (:format) src,dest

3.1 Guide to This Chapter

This chapter describes the functionality of each instruction by showing syntax, operation, function, select-

able src/dest, flag changes, description examples, and related instructions.

The following shows how to read this chapter by using an actual page as an example.

U I O B S Z D C

MOV Transfer

G , Q , Z , S (Can be specified)

B , W

 [Flag Change]

(2)

(6)

(7)

(5)

(4)

(3)

(1)

(8)

(9)

[Instruction Code/Number of Cycles]

Page=195

3.2 Functions
Chapter 3 Functions

(See the next page for src/dest classified by format.)

• This instruction transfers src to dest.

• If dest is an address register when the size specifier (.size) you selected is (.B), src is zero-expanded to transfer data in

16 bits. If src is an address register, data is transferred from the address register’s 8 low-order bits.

Conditions

S : The flag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.

Z : The flag is set when the transfer resulted in 0; otherwise cleared.

 Flag

Change

35

3.1 Guide to This ChapterChapter 3 Functions

(1) Mnemonic
Indicates the mnemonic explained in this page.

(2) Instruction code/Number of Cycles
Indicates the page in which instruction code/number of cycles is listed.

Refer to this page for instruction code and number of cycles.

(3) Syntax
Indicates the syntax of the instruction using symbols. If (:format) is omitted, the assembler chooses the

optimum specifier.

MOV.size (: format) src , dest

 G , Q , S , Z (f)

 B , W (e)

 (a) (b) (c) (d)

(a) Mnemonic MOV

Describes the mnemonic.

(b) Size specifier size

Describes the data size in which data is handled. The following lists the data sizes that can be speci

fied:

.B Byte (8 bits)

.W Word (16 bits)

.L Long word (32 bits)

Some instructions do not have a size specifier.

(c) Instruction format specifier (: format)

Describes the instruction format. If (.format) is omitted, the assembler chooses the optimum speci

fier. If (.format) is entered, its content is given priority. The following lists the instruction formats that

can be specified:

:G Generic format

:Q Quick format

:S Short format

:Z Zero format

Some instructions do not have an instruction format specifier.

(d) Operand src, dest

Describes the operand.

(e) Indicates the data size you can specify in (b).

(f) Indicates the instruction format you can specify in (c).

36

3.1 Guide to This Chapter
Chapter 3 Functions

9292

MOVe MOV

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 dsp:8[SP] R2R0 R3R1 A1A0 dsp:8[SP]

 [Selectable src/dest]

U I O B S Z D C

Transfer

G , Q , Z , S (Can be specified)

B , W

(2)

(6)

(7)

(5)

(4)

(3)

(1)

(8)

(9)

MOV

(See the next page for src/dest classified by format.)

3.2 Functions
Chapter 3 Functions

[Instruction Code/Number of Cycles]

Page=195[Syntax]

MOV.size (:format) src,dest

[Operation]

dest src

[Function]
• This instruction transfers src to dest.

• If dest is an address register when the size specifier (.size) you selected is (.B), src is zero-expanded to transfer data in

16 bits. If src is an address register, data is transferred from the address register’s 8 low-order bits.

 [Flag Change]

 Flag

Change
Conditions

S : The flag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.

Z : The flag is set when the transfer resulted in 0; otherwise cleared.

[Description Example]

MOV.B:S #0ABH,R0L

MOV.W #-1,R2

[Reated Instruction] LDE,STE,XCHG

37

3.1 Guide to This ChapterChapter 3 Functions

(4) Operation
Explains the operation of the instruction using symbols.

(5) Function
Explains the function of the instruction and precautions to be taken when using the instruction.

(6) Selectable src / dest (label)
If the instruction has an operand, this indicates the format you can choose for the operand.

(a) Items that can be selected as src(source).

(b) Items that can be selected as dest(destination).

(c) Addressing that can be selected.

(d) Addressing that cannot be selected.

(e) Shown on the left side of the slash (R0H) is the addressing when data is handled in bytes (8 bits).

 Shown on the right side of the slash (R1) is the addressing when data is handled in words (16 bits).

(7) Flag change
Indicates a flag change that occurs after the instruction is executed. The symbols in the table mean the

following:

“
—

” The flag does not change.

“O” The flag changes depending on condition.

(8) Description example
Shows a description example for the instruction.

(9) Related instructions
Shows related instructions that cause an operation similar or opposite that of this instruction.

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 dsp:8[SP] R2R0 R3R1 A1A0 dsp:8[SP]

(a)

(b)

(c)

(d)

(e)

38

3.1 Guide to This Chapter
Chapter 3 Functions

The following explains the syntax of each jump instruction—JMP, JPMI, JSR, and JSRI by using an actual

example.

(3) Syntax
Indicates the instruction syntax using a symbol.

(a) (b) (c)

(a) Mnemonic JMP

Describes the mnemonic.

(b) Jump distance specifier .length

Describes the distance of jump. If (.length) is omitted in JMP or JSR instruction, the assembler

chooses the optimum specifier. If (.length) is entered, its content is given priority.

The following lists the jump distances that can be specified:

.S 3-bit PC forward relative (+2 to +9)

.B 8-bit PC relative

.W 16-bit PC relative

.A 20-bit absolute

(c) Operand label

Describes the operand.

(d) Shows the jump distance that can be specified in (b).

JuMP
 Unconditional jump

JMP (.length) label

S, B, W, A (d)

[Syntax]

JMP (.length) label

JMP

S, B, W, A (Can be specified)

(2)

(3)

(1)

3.2 Functions
Chapter 3 Functions

JMP
[Instruction Code/Number of Cycles]

Page=195

39

3.2 Functions
Chapter 3 Functions

Absolute value
ABSolute

[Syntax]

ABS.size dest

ABS.B R0L

ABS.W A0

[Selectable dest]

ABS

[Function]
• This instruction takes on an absolute value of dest and stores it in dest.

[Description Example]

ABS

Conditions

O : The flag is set (= 1) when dest before the operation is –128 (.B) or –32768 (.W); otherwise cleared (= 0).

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is indeterminate.

[Flag Change]

[Operation]

 dest dest

B , W

U I O B S Z D C

140

dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

[Instruction Code/Number of Cycles]

Page=

Flag

Change

40

3.2 Functions
Chapter 3 Functions

[Instruction Code/Number of Cycles]

Page=

Add with carry
ADdition with Carry

[Related Instructions] ADCF,ADD,SBB,SUB

[Selectable src/dest]

[Syntax]

ADC.size src,dest

ADCADC

[Function]

[Description Example]

B , W

[Operation]

dest src + dest + C

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

[Flag Change]

• This instruction adds dest, src, and C flag together and stores the result in dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B), src is zero-expanded to

perform calculation in 16 bits. If src is an A0 or A1, operation is performed on the eight low-order bits

of the A0 or A1.

; A0’s 8 low-order bits and R0L are added.

; R0L is zero-expanded and added with A0.

U I O B S Z D C

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-

neously.

Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.W) or –32768 (.W) or

+127 (.B) or –128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in exceeding +65535 (.W) or +255 (.B);

otherwise cleared.

Change

ADC.B #2,R0L

ADC.W A0,R0

ADC.B A0,R0L

ADC.B R0L,A0

140

Flag

41

3.2 Functions
Chapter 3 Functions

Add carry flag
ADdition Carry Flag

[Selectable dest]

dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

ADCF ADCF

[Function]

[Flag Change]

Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.W) or –32768 (.W) or

+127 (.B) or –128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in exceeding +65535 (.W) or +255 (.B);

otherwise cleared.

[Description Example]

ADCF.B R0L

ADCF.W Ram:16[A0]

[Related Instructions] ADC,ADD,SBB,SUB

B , W

[Syntax]

ADCF.size dest

[Operation]

dest dest + C

U I O B S Z D C

This instruction adds dest and C flag together and stores the result in dest.

142

[Instruction Code/Number of Cycles]

Page=

Change

Flag

42

3.2 Functions
Chapter 3 Functions

Add without carry
ADDition

[Related Instructions] ADC,ADCF,SBB,SUB

ADD ADD
[Syntax]

ADD.size (:format) src,dest

[Flag Change]

ADD.B A0,R0L

ADD.B R0L,A0

ADD.B Ram:8[SB],R0L

ADD.W #2,[A0]

G , Q , S (Can be specified)

B , W
[Operation]

dest dest + src

Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.W) or –32768 (.W) or

+127 (.B) or –128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in exceeding +65535 (.W) or +255 (.B);

otherwise cleared.

[Description Example]

; A0’s 8 low-order bits and R0L are added.

; R0L is zero-expanded and added with A0.

U I O B S Z D C

142

[Instruction Code/Number of Cycles]

Page=

Change

Flag

[Function]

• This instruction adds dest and src together and stores the result in dest.
• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B), src is zero-expanded to

perform calculation in 16 bits. If src is an A0 or A1, operation is performed on the eight low-order bits
of the A0 or A1.

• If dest is a stack pointer when the size specifier (.size) you selected is (.B), src is sign extended to
perform calculation in 16 bits.

[Selectable src/dest]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP*2

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0
*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simultaneously.

*2 Operation is performed on the stack pointer indicated by the U flag. You can choose only #IMM for src.

(See the next page for src/dest classified by format.)

43

3.2 Functions
Chapter 3 Functions

[src/dest Classified by Format]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*3 dsp:20[A0] dsp:20[A1] abs20 SP/SP*2

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

G format

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP*2

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simultaneously.

*2 Operation is performed on the stack pointer indicated by the U flag. You can choose only #IMM for src.

src dest

R0L R0H dsp:8[SB] dsp:8[FB] R0L R0H dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

R0L*5 R0H*5 dsp:8[SB] dsp:8[FB] R0L*5 R0H*5 dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

*4 You can only specify (.B) for the size specifier (.size).

*5 You cannot choose the same register for src and dest.

*2 Operation is performed on the stack pointer indicated by the U flag. You can choose only #IMM for src.

*3 The range of values that can be taken on is –8 < #IMM < +7.

S format*4

Q format

44

3.2 Functions
Chapter 3 Functions

U I O B S Z D C

Add & conditional jump
ADdition then Jump on Not Zero

ADJNZ.W #–1,R0,label

[Related Instructions] SBJNZ

[Function]

ADJNZ ADJNZ
[Syntax]

ADJNZ.size src,dest,label

[Flag Change]

[Description Example]

B , W

[Operation]

dest dest + src

if dest 0 then jump label

src dest label

R0L/R0 R0H/R1 R1L/R2

R1H/R3 A0/A0 A1/A1

#IMM*1 [A0] [A1] dsp:8[A0] PC*2–126 label PC*2+129

dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB]

abs16

[Selectable src/dest/label]

• This instruction adds dest and src together and stores the result in dest.

• If the addition resulted in any value other than 0, control jumps to label. If the addition resulted in 0,

the next instruction is executed.

• The op-code of this instruction is the same as that of SBJNZ.

*1 The range of values that can be taken on is –8 < #IMM < +7.

*2 PC indicates the start address of the instruction.

148

[Instruction Code/Number of Cycles]

Page=

Flag

Change

45

3.2 Functions
Chapter 3 Functions

AND
Logically AND

[Related Instructions] OR,XOR,TST

[Function]

AND AND
[Syntax]

AND.size (:format) src,dest

[Selectable src/dest]

[Flag Change]

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

[Description Example]

AND.B Ram:8[SB],R0L

AND.B:G A0,R0L

AND.B:G R0L,A0

AND.B:S #3,R0L

G , S (Can be specified)

B , W
[Operation]

dest src dest

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

• This instruction logically ANDs dest and src together and stores the result in dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B), src is zero-expanded to

perform calculation in 16 bits. If src is an A0 or A1, operation is performed on the eight low-order bits

of the A0 or A1.

; A0’s 8 low-order bits and R0L are ANDed.

; R0L is zero-expanded and ANDed with A0.

U I O B S Z D C

(See the next page for src/dest classified by format.)

[Instruction Code/Number of Cycles]

Page=149

Change

Flag

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-

neously.

46

3.2 Functions
Chapter 3 Functions

[src/dest Classified by Format]

G format

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

S format*2

src dest

R0L R0H dsp:8[SB] dsp:8[FB] R0L R0H dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

R0L*3 R0H*3 dsp:8[SB] dsp:8[FB] R0L*3 R0H*3 dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

*2 You can only specify (.B) for the size specifier (.size).

*3 You cannot choose the same register for src and dest.

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-

neously.

47

3.2 Functions
Chapter 3 Functions

• This instruction logically ANDs the C flag and src together and stores the result in the C flag.

Bit AND carry flag
Logically AND bits

[Related Instructions] BOR,BXOR,BNAND,BNOR,BNXOR

[Function]

BAND BAND
[Syntax]

BAND src

[Selectable src]

[Flag Change]

Conditions

C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]
BAND flag

BAND 4,Ram

BAND 16,Ram:16[SB]

BAND [A0]

[Operation]

 C src C

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

U I O B S Z D C
Change

[Instruction Code/Number of Cycles]

Page=152

Flag

48

3.2 Functions
Chapter 3 Functions

Bit CLeaR
Clear bit

[Syntax]

BCLR (:format) dest

[Related Instructions] BSET,BNOT,BNTST,BTST,BTSTC,BTSTS

[Function]

dest

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]*1

*1 This dest can only be selected when in S format.

BCLR

[Selectable dest]

[Description Example]
BCLR flag

BCLR 4,Ram:8[SB]

BCLR 16,Ram:16[SB]

BCLR [A0]

G , S (Can be specified)

[Operation]

dest 0

• This instruction stores 0 in dest.

U I O B S Z D C

BCLR
[Instruction Code/Number of Cycles]

Page= 152

Flag

Change

[Flag Change]

49

3.2 Functions
Chapter 3 Functions

Cnd Condition Expression Cnd Condition Expression

GEU/C C=1 Equal to or greater than LTU/NC C=0 Smaller than

C flag is 1. C flag is 0.

EQ/Z Z=1 Equal to = NE/NZ Z=0 Not equal

Z flag is 1. Z flag is 0.

GTU

C Z=1 Greater than LEU

C Z=0 Equal to or smaller than

PZ S=0 Positive or zero 0 N S=1 Negative 0

GE S O=0 Equal to or greater than LE (S O) Z=1 Equal to or smaller than

(signed value) (signed value)

GT (S O) Z=0 Greater than (signed value) LT S O=1 Smaller than (signed value)

O O=1 O flag is 1. NO O=0 O flag is 0.

≠

Bit Move Condition
Conditional bit transfer

[Related Instructions] JCnd

BMCnd BMCnd
[Syntax]

BMCnd dest

[Operation]

if true then dest 1

else dest 0

[Flag Change]

[Selectable dest]

dest

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

[Description Example]
BMN 3,Ram:8[SB]

BMZ C

• This instruction transfers the true or false value of the condition indicated by Cnd to dest. If the

condition is true, 1 is transferred; if false, 0 is transferred.

• There are following kinds of Cnd.

*1 The flag changes if you specified the C flag for dest.

U I O B S Z D C
*1

[Function]

[Instruction Code/Number of Cycles]

Page=154

Change

Flag

A

A A

A

50

3.2 Functions
Chapter 3 Functions

Bit Not AND carry flag
Logically AND inverted bits

[Related Instructions] BAND,BOR,BXOR,BNOR,BNXOR

[Function]

BNAND
[Syntax]

BNAND src

• This instruction logically ANDs the C flag and inverted src together and stores the result in the C flag.

[Selectable src]

[Flag Change]

[Description Example]

BNAND flag

BNAND 4,Ram

BNAND 16,Ram:16[SB]

BNAND [A0]

 [Operation]

 C src C

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

Condition

C : The flag is set when the operation resulted in 1; otherwise cleared.

U I O B S Z D C

BNAND
[Instruction Code/Number of Cycles]

Page=155

Change

Flag

51

Chapter 3 Functions
3.2 Functions

[Instruction Code/Number of Cycles]

Page=

Bit Not OR carry flag
Logically OR inverted bits

[Syntax]

BNOR src

[Description Example]

[Related Instructions] BAND,BOR,BXOR,BNAND,BNXOR

[Function]

• This instruction logically ORs the C flag and inverted src together and stores the result in the C flag.

[Selectable src]

BNOR BNOR

[Flag Change]

BNOR flag

BNOR 4,Ram

BNOR 16,Ram:16[SB]

BNOR [A0]

[Operation]

C src C

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

U I O B S Z D C

Condition

C : The flag is set when the operation resulted in 1; otherwise cleared.

156

Flag

Change

52

Chapter 3 Functions
3.2 Functions

U I O B S Z D C

Bit NOT
Invert bit

 [Syntax]

BNOT(:format) dest

[Flag Change]

[Description Example]
BNOT flag

BNOT 4,Ram:8[SB]

BNOT 16,Ram:16[SB]

BNOT [A0]

[Related Instructions] BCLR,BSET,BNTST,BTST,BTSTC,BTSTS

[Function]

dest

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]*1

*1 This dest can only be selected when in S format.

BNOTBNOT

[Selectable dest]

G , S (Can be specified)

Change

[Operation]

 dest dest

[Instruction Code/Number of Cycles]

Page=156

• This instruction inverts dest and stores the result in dest.

Flag

53

Chapter 3 Functions
3.2 Functions

Bit Not TeST
Test inverted bit

[Flag Change]

[Description Example]

[Function]

[Selectable src]

BNTST BNTST
[Syntax]

BNTST src

Conditions

Z : The flag is set when src is 0; otherwise cleared.

C : The flag is set when src is 0; otherwise cleared.

BNTST flag

BNTST 4,Ram:8[SB]

BNTST 16,Ram:16[SB]

BNTST [A0]

[Related Instructions] BCLR,BSET,BNOT,BTST,BTSTC,BTSTS

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

[Operation]

Z src

C src

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 157

• This instruction transfers inverted src to the Z flag and inverted src to the C flag.

Flag

Change

54

Chapter 3 Functions
3.2 Functions

Bit Not eXclusive OR carry flag
Exclusive OR inverted bits

[Flag Change]

[Description Example]

[Related Instructions] BAND,BOR,BXOR,BNAND,BNOR

[Function]

[Selectable src]

BNXOR
[Syntax]

BNXOR src

BNXOR flag

BNXOR 4,Ram

BNXOR 16,Ram:16[SB]

BNXOR [A0]

[Operation]

 C src C

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

• This instruction exclusive ORs the C flag and inverted src and stores the result in the C flag.

U I O B S Z D C

Conditions

C : The flag is set when the operation resulted in 1; otherwise cleared.

BNXOR
[Instruction Code/Number of Cycles]

Page= 158

Flag

Change

A

55

Chapter 3 Functions
3.2 Functions

Bit OR carry flag
Logically OR bits

[Syntax]

BOR src

[Description Example]

[Related Instructions] BAND,BXOR,BNAND,BNOR,BNXOR

[Function]

[Selectable src]

BOR BOR

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

[Flag Change]

BOR flag

BOR 4,Ram

BOR 16,Ram:16[SB]

BOR [A0]

[Operation]

C src C

U I O B S Z D C

Conditions

C : The flag is set when the operation resulted in 1; otherwise cleared.

• This instruction logically ORs the C flag and src together and stores the result in the C flag.

[Instruction Code/Number of Cycles]

Page= 158

Flag

Change

56

Chapter 3 Functions
3.2 Functions

BReaK
Debug interrupt

BRK
[Description Example]

[Related Instructions] INT,INTO

[Function]

BRK BRK

[Flag Change]*1

*1 The flags are saved to the stack area before the BRK in-

struction is executed. After the interrupt, the flags

change state as shown on the left.Conditions

U : The flag is cleared.

I : The flag is cleared.

D : The flag is cleared.

[Syntax]

BRK

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 159

• This instruction generates a BRK interrupt.

• The BRK interrupt is a nonmaskable interrupt.

Flag

Change

[Operation]
SP SP – 2
M(SP) (PC + 1)H, FLG
SP SP – 2
M(SP) (PC + 1)ML

PC M(FFFE416)

57

Chapter 3 Functions
3.2 Functions

Bit SET
Set bit

 [Flag Change]

[Related Instructions] BCLR,BNOT,BNTST,BTST,BTSTC,BTSTS

[Function]

[Selectable dest]

BSET BSET
[Syntax]

BSET (:format) dest

[Description Example]
BSET flag

BSET 4,Ram:8[SB]

BSET 16,Ram:16[SB]

BSET [A0]

G , S (Can be specified)

dest

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]*1

*1 This dest can only be selected when in S format.

• This instruction stores 1 in dest.

U I O B S Z D C
Change

159

[Instruction Code/Number of Cycles]

Page=

Flag

[Operation]

 dest 1

58

Chapter 3 Functions
3.2 Functions

Bit TeST
Test bit

[Flag Change]

[Function]

[Related Instructions] BCLR,BSET,BNOT,BNTST,BTSTC,BTSTS

[Selectable src]

BTST BTST
[Syntax]

BTST (:format) src

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]*1

*1 This src can only be selected when in S format.

[Description Example]

BTST flag

BTST 4,Ram:8[SB]

BTST 16,Ram:16[SB]

BTST [A0]

G , S (Can be specified)

[Operation]

Z src

C src

U I O B S Z D C

Conditions

Z : The flag is set when src is 0; otherwise cleared.

C : The flag is set when src is 1; otherwise cleared.

• This instruction transfers inverted src to the Z flag and non-inverted src to the C flag.

Change

[Instruction Code/Number of Cycles]

Page=160

Flag

59

Chapter 3 Functions
3.2 Functions

Bit TeST & Clear
Test bit & clear

[Flag Change]

[Description Example]

[Related Instructions] BCLR,BSET,BNOT,BNTST,BTST,BTSTS

dest

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

BTSTC BTSTC
[Syntax]

BTSTC dest

[Selectable dest]

BTSTC flag

BTSTC 4,Ram

BTSTC 16,Ram:16[SB]

BTSTC [A0]

[Operation]

Z

 dest

C dest

dest 0

[Function]

U I O B S Z D C

Conditions

Z : The flag is set when dest is 0; otherwise cleared.

C : The flag is set when dest is 1; otherwise cleared.

• This instruction transfers inverted dest to the Z flag and non-inverted dest to the C flag. Then it

stores 0 in dest.

[Instruction Code/Number of Cycles]

Page= 161

Flag

Change

60

Chapter 3 Functions
3.2 Functions

Bit TeST & Set
Test bit & set

[Flag Change]

[Description Example]

[Related Instructions] BCLR,BSET,BNOT,BNTST,BTST,BTSTC

[Selectable dest]

dest

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

BTSTS BTSTS

[Function]

• This instruction transfers inverted dest to the Z flag and non-inverted dest to the C flag. Then it stores

1 in dest.

Conditions

Z : The flag is set when dest is 0; otherwise cleared.

C : The flag is set when dest is 1; otherwise cleared.

BTSTS flag

BTSTS 4,Ram

BTSTS 16,Ram:16[SB]

BTSTS [A0]

[Syntax]

BTSTS dest

[Operation]

Z

 dest

C dest

dest 1

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 162

Flag

Change

61

3.2 Functions
Chapter 3 Functions

Bit eXclusive OR carry flag
Exclusive OR bits

[Flag Change]

[Description Example]

[Related Instructions] BAND,BOR,BNAND,BNOR,BNXOR

[Function]

[Selectable src]

BXOR
[Syntax]

BXOR src

BXOR

• This instruction exclusive ORs the C flag and src together and stores the result in the C flag.

src

bit,R0 bit,R1 bit,R2 bit,R3

bit,A0 bit,A1 [A0] [A1]

base:8[A0] base:8[A1] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16

C bit,base:11[SB]

BXOR flag

BXOR 4,Ram

BXOR 16,Ram:16[SB]

BXOR [A0]

[Operation]

C src C

U I O B S Z D C

Conditions

C : The flag is set when the operation resulted in 1; otherwise cleared.

[Instruction Code/Number of Cycles]

Page= 162

Flag

Change

A

62

3.2 Functions
Chapter 3 Functions

[Instruction Code/Number of Cycles]

Page=

 Compare

[Syntax]

CMP.size (:format) src,dest

[Description Example]

[Selectable src/dest]

[Function]

[Flag Change]

CMP CMP

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

(See the next page for src/dest classified by format.)

CMP.B:S #10,R0L

CMP.W:G R0,A0

CMP.W #–3,R0

CMP.B #5,Ram:8[FB]

CMP.B A0,R0L

[Operation]

dest – src

CoMPare

• Each flag bit of the flag register varies depending on the result of subtraction of src from dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B), src is zero-expanded to

perform operation in 16 bits. If src is an A0 or A1, operation is performed on the 8 low-order bits of A0

or A1.

U I O B S Z D C

Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.W) or –32768 (.W), or

+127 (.B) or –128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than 0;

otherwise cleared.

; A0’s 8 low-order bits and R0L are compared.

G , Q , S (Can be specified)

B , W

163

Flag

Change

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-

neously.

63

3.2 Functions
Chapter 3 Functions

[src/dest Classified by Format]

S format*3

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*2 dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

Q format

G format

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

src dest

R0L R0H dsp:8[SB] dsp:8[FB] R0L R0H dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

R0L*4 R0H*4 dsp:8[SB] dsp:8[FB] R0L*4 R0H*4 dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

*3 You can only specify (.B) for the size specifier (.size).

*4 You cannot choose the same register for src and dest.

*2 The range of values that can be taken on is –8 < #IMM < +7.

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-

neously.

64

3.2 Functions
Chapter 3 Functions

Decimal ADdition with Carry
Decimal add with carry

[Syntax]

DADC.size src,dest

[Flag Change]

[Description Example]

[Related Instructions] DADD,DSUB,DSBB

[Function]

[Selectable src/dest]

DADC DADC

DADC.B #3,R0L

DADC.W R1,R0

B , W

[Operation]

dest src + dest + C

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when the operation resulted in exceeding +9999 (.W) or +99 (.B); otherwise

cleared.

• This instruction adds dest, src, and C flag together in decimal and stores the result in dest.

[Instruction Code/Number of Cycles]

Page= 167

Flag

Change

65

3.2 Functions
Chapter 3 Functions

Decimal ADDition
Decimal add without carry

[Flag Change]

[Description Example]
DADD.B #3,R0L

DADD.W R1,R0

[Related Instructions] DADC,DSUB,DSBB

[Function]

[Selectable src/dest]

DADD DADD

B , W

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

[Syntax]

DADD.size src,dest

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when the operation resulted in exceeding +9999 (.W) or +99 (.B); otherwise

cleared.

• This instruction adds dest and src together in decimal and stores the result in dest.

[Instruction Code/Number of Cycles]

Page= 169

Flag

Change

[Operation]

dest src + dest

66

3.2 Functions
Chapter 3 Functions

U I O B S Z D C

DECrement
Decrement

[Syntax]

DEC.size dest

[Flag Change]

[Related Instructions] INC

[Function]

DEC DEC

[Description Example]
DEC.W A0

DEC.B R0L

B , W

[Selectable dest]

[Operation]

dest dest – 1

dest

R0L*1 R0H*1 dsp:8[SB]*1 dsp:8[FB]*1

abs16*1 A0*2 A1*2

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

• This instruction decrements 1 from dest and stores the result in dest.

*1 You can only specify (.B) for the size specifier (.size).

*2 You can only specify (.W) for the size specifier (.size).

[Instruction Code/Number of Cycles]

Page= 171

Flag

Change

67

3.2 Functions
Chapter 3 Functions

Signed divide
DIVide

DIV.B A0 ;A0’s 8 low-order bits is the divisor.

DIV.B #4

DIV.W R0

[Related Instructions] DIVU,DIVX,MUL,MULU

DIV DIV
[Syntax]

DIV.size src
B , W

[Operation]

If the size specifier (.size) is (.B)

R0L (quotient), R0H (remainder) R0 src

If the size specifier (.size) is (.W)

R0 (quotient), R2 (remainder) R2R0 src

[Flag Change]

[Function]
• This instruction divides R2R0 (R0)*1 by signed src and stores the quotient in R0 (R0L)*1 and the re-

mainder in R2 (R0H)*1. The remainder has the same sign as the dividend. Shown in ()*1 are the

registers that are operated on when you selected (.B) for the size specifier (.size).

• If src is an A0 or A1 when the size specifier (.size) you selected is (.B), operation is performed on the

8 low-order bits of A0 or A1.

• If you specify (.B) for the size specifier (.size), the O flag is set when the operation resulted in the

quotient exceeding 8 bits or the divisor is 0. At this time, R0L and R0H are indeterminate.

• If you specify (.W) for the size specifier (.size), the O flag is set when the operation resulted in the

quotient exceeding 16 bits or the divisor is 0. At this time, R0 and R2 are indeterminate.

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM

R2R0 R3R1 A1A0

[Description Example]

U I O B S Z D C

Conditions

O : The flag is set when the operation resulted in the quotient exceeding 16 bits (.W) or 8 bits (.B) or

the divisor is 0; otherwise cleared.

[Instruction Code/Number of Cycles]

Page= 172

[Selectable src]

Flag

Change

68

3.2 Functions
Chapter 3 Functions

DIVide Unsigned
Unsigned divide

[Description Example]

[Related Instructions] DIV,DIVX,MUL,MULU

DIVU DIVU
[Syntax]

DIVU.size src

DIVU.B A0 ;A0’s 8 low-order bits is the divisor.

DIVU.B #4

DIVU.W R0

B , W

[Operation]

If the size specifier (.size) is (.B)

R0L (quotient), R0H (remainder) R0 src

If the size specifier (.size) is (.W)

R0 (quotient), R2 (remainder) R2R0 src

[Flag Change]

• This instruction divides R2R0 (R0)*1 by unsigned src and stores the quotient in R0 (R0L)*1 and the
remainder in R2 (R0H)*1. Shown in ()*1 are the registers that are operated on when you selected (.B)
for the size specifier (.size).

• If src is an A0 or A1 when the size specifier (.size) you selected is (.B), operation is performed on the

8 low-order bits of A0 or A1.

• If you specify (.B) for the size specifier (.size), the O flag is set when the operation resulted in the

quotient exceeding 8 bits or the divisor is 0. At this time, R0L and R0H are indeterminate.

• If you specify (.W) for the size specifier (.size), the O flag is set when the operation resulted in the

quotient exceeding 16 bits or the divisor is 0. At this time, R0 and R2 are indeterminate.

Conditions

O : The flag is set when the operation resulted in the quotient exceeding 16 bits (.W) or 8 bits (.B) or

the divisor is 0; otherwise cleared.

[Function]

[Selectable src]

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM

R2R0 R3R1 A1A0

[Instruction Code/Number of Cycles]

Page= 173

U I O B S Z D CFlag

Change

69

3.2 Functions
Chapter 3 Functions

DIVide eXtension
Singed divide

[Syntax]

DIVX.size src

[Description Example]

[Related Instructions] DIV,DIVU,MUL,MULU

DIVX DIVX

DIVX.B A0 ;A0’s 8 low-order bits is the divisor.

DIVX.B #4

DIVX.W R0

B , W

[Operation]

If the size specifier (.size) is (.B)

R0L (quotient), R0H (remainder) R0 src

If the size specifier (.size) is (.W)

R0 (quotient), R2 (remainder) R2R0 src

[Flag Change]

U I O B S Z D CFlag

Conditions

O : The flag is set when the operation resulted in the quotient exceeding 16 bits (.W) or 8 bits (.B) or

the divisor is 0; otherwise cleared.

[Function]

• This instruction divides R2R0 (R0)*1 by signed src and stores the quotient in R0 (R0L)*1 and the remainder in R2
(R0H)*1. The remainder has the same sign as the divisor. Shown in ()*1 are the registers that are operated on
when you selected (.B) for the size specifier (.size).

• If src is an A0 or A1 when the size specifier (.size) you selected is (.B), operation is performed on the

8 low-order bits of A0 or A1.

• If you specify (.B) for the size specifier (.size), the O flag is set when the operation resulted in the

quotient exceeding 8 bits or the divisor is 0. At this time, R0L and R0H are indeterminate.

• If you specify (.W) for the size specifier (.size), the O flag is set when the operation resulted in the

quotient exceeding 16 bits or the divisor is 0. At this time, R0 and R2 are indeterminate.

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM

R2R0 R3R1 A1A0

[Selectable src]

Change

[Instruction Code/Number of Cycles]

Page= 174

70

3.2 Functions
Chapter 3 Functions

Decimal SuBtract with Borrow
Decimal subtract with borrow

[Syntax]

DSBB.size src,dest

[Flag Change]

[Description Example]

[Function]

[Selectable src/dest]

DSBB DSBB

• This instruction subtracts src and inverted C flag from dest in decimal and stores the result in dest.

DSBB.B #3,R0L

DSBB.W R1,R0

[Related Instructions] DADC,DADD,DSUB

B , W

[Operation]

dest dest – src – C

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when the operation resulted in any value equal to or greater than 0; otherwise

cleared.

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 175

Flag

Change

71

3.2 Functions
Chapter 3 Functions

Decimal SUBtract
Decimal subtract without borrow

 [Syntax]

DSUB.size src,dest

 [Flag Change]

 [Description Example]

 [Related Instructions] DADC,DADD,DSBB

 [Function]

 [Selectable src/dest]

DSUB DSUB

DSUB.B #3,R0L

DSUB.W R1,R0

B , W

 [Operation]

dest dest – src

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

U I O B S Z D CFlag

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when the operation resulted in any value equal to or greater than 0; otherwise

cleared.

• This instruction subtracts src from dest in decimal and stores the result in dest.

Change

[Instruction Code/Number of Cycles]
Page= 177

72

Chapter 3 Functions 3.2 Functions

179

ENTER function
Build stack frame

[Description Example]
ENTER #3

[Related Instructions] EXITD

ENTER ENTER

[Flag Change]

[Operation]

SP SP – 2

M(SP) FB

FB SP

SP SP – src

[Syntax]

ENTER src

src

#IMM8

[Selectable src]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=

Flag

Change

Return address (L)

Return address (M)

Return address (H)

Argument of function

SP

FB

SP

After instruction execution

Auto variable area
Direction in
which address
increases

Number of bytes
indicated by src

FB (L)

FB (H)

Return address (L)

Return address (M)

Return address (H)

Argument of function

Before instruction execution

[Function]

• This instruction generates a stack frame. src represents the size of the stack frame.

• The diagrams below show the stack area status before and after the ENTER instruction is executed at

the beginning of a called subroutine.

73

Chapter 3 Functions 3.2 Functions

Argument of function

[Instruction Code/Number of Cycles]

Page= 180

EXIT and Deallocate stack frame

[Description Example]

[Syntax]

EXITD

[Related Instructions] ENTER

EXITD EXITD

[Operation]

SP FB

FB M(SP)

SP SP + 2

PCML M(SP)

SP SP + 2

PCH M(SP)

SP SP + 1

 [Function]

EXITD

Deallocate stack frame

• This instruction deallocates the stack frame and exits from the subroutine.

• Use this instruction in combination with the ENTER instruction.

• The diagrams below show the stack area status before and after the EXITD instruction is executed

at the end of a subroutine in which an ENTER instruction was executed.

[Flag Change]

U I O B S Z D CFlag

Change

FB (L)

FB (H)

Return address (L)
Return address (M)

Return address (H)

Argument of function

Auto variable area

SP

FB

SP

Direction in which
address increases

Before instruction execution After instruction execution

74

Chapter 3 Functions 3.2 Functions

EXTend Sign
Extend sign

[Description Example]

[Function]

[Flag Change]

EXTS EXTS
[Syntax]

EXTS.size dest

• This instruction sign extends dest and stores the result in dest.

• If you selected (.B) for the size specifier (.size), dest is sign extended to 16 bits.

• If you selected (.W) for the size specifier (.size), R0 is sign extended to 32 bits. In this case, R2 is used

for the upper bytes.

dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

EXTS.B R0L

EXTS.W R0

B , W

[Operation]

dest EXT(dest)

U I O B S Z D C

Conditions

S : If you selected (.B) for the size specifier (.size), the flag is set when the operation resulted in MSB

= 1; otherwise cleared. The flag does not change if you selected (.W) for the size specifier (.size).

Z : If you selected (.B) for the size specifier (.size), the flag is set when the operation resulted in 0;

otherwise cleared. The flag does not change if you selected (.W) for the size specifier (.size).

[Selectable dest]

[Instruction Code/Number of Cycles]

Page= 180

Flag

Change

75

Chapter 3 Functions 3.2 Functions

Flag register CLeaR
Clear flag register bit

[Flag Change]

[Description Example]

[Related Instructions] FSET

[Function]

dest

C D Z S B O I U

FCLR
[Syntax]

FCLR dest

FCLR I

FCLR S

[Operation]

dest 0

*1 The selected flag is cleared to 0.

U I O B S Z D C
*1 *1 *1 *1 *1 *1 *1 *1

• This instruction stores 0 in dest.

[Selectable dest]

FCLR
[Instruction Code/Number of Cycles]

Page= 181

Flag

Change

76

Chapter 3 Functions 3.2 Functions

Flag register SET
Set flag register bit

[Description Example]

[Related Instructions] FCLR

[Function]

[Selectable dest]
dest

C D Z S B O I U

[Syntax]

FSET dest

[Flag Change]

FSET I

FSET S

FSET FSET

[Operation]

dest 1

U I O B S Z D C
*1 *1 *1 *1 *1 *1 *1 *1 *1 The selected flag is set (= 1).

• This instruction stores 1 in dest.

[Instruction Code/Number of Cycles]

Page= 182

Flag

Change

77

Chapter 3 Functions 3.2 Functions

INCrement
Increment

[Description Example]
INC.W A0

INC.B R0L

[Related Instructions] DEC

[Function]

[Selectable dest]

INC INC

[Flag Change]

B , W

[Syntax]

INC.size dest

[Operation]

dest dest + 1

*1 You can only specify (.B) for the size specifier (.size).

*2 You can only specify (.W) for the size specifier (.size).

dest

R0L*1 R0H*1 dsp:8[SB]*1 dsp:8[FB]*1

abs16*1 A0*2 A1*2

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

• This instruction adds 1 to dest and stores the result in dest.

[Instruction Code/Number of Cycles]

Page= 182

Flag

Change

78

Chapter 3 Functions 3.2 Functions

Interrupt by INT instruction
INTerrupt

[Related Instructions] BRK,INTO

[Flag Change]

INT INT
[Syntax]

INT src

[Description Example]
INT #0

[Operation]
SP SP – 2
M(SP) (PC + 2)H, FLG
SP SP – 2
M(SP) (PC + 2)ML

PC M(IntBase + src 4)

src

#IMM*1*2

*1 #IMM denotes a software interrupt number.

*2 The range of values that can be taken on is 0 < #IMM < 63.

[Selectable src]

*3 The flags are saved to the stack area before the INT in-

struction is executed. After the interrupt, the flags

change state as shown on the left.

U I O B S Z D CFlag

Conditions

U : The flag is cleared if the software interrupt number is 31 or smaller. The flag does not change if

the software interrupt number is 32 or larger.

I : The flag is cleared.

D : The flag is cleared.

Change

[Instruction Code/Number of Cycles]

Page= 183

[Function]

• This instruction generates a software interrupt specified by src. src represents a software interrupt
number.

• If src is 31 or smaller, the U flag is cleared to 0 and the interrupt stack pointer (ISP) is used.
• If src is 32 or larger, the stack pointer indicated by the U flag is used.
• The interrupts generated by the INT instruction are nonmaskable interrupts.

79

Chapter 3 Functions 3.2 Functions

INTerrupt on Overflow
Interrupt on overflow

[Syntax]

INTO

[Related Instructions] BRK,INT

[Flag Change]

INTO INTO

[Description Example]

INTO

[Operation]
SP SP – 2
M(SP) (PC + 1)H, FLG
SP SP – 2
M(SP) (PC + 1)ML

PC M(FFFE016)

*1 The flags are saved to the stack area before the INTO

instruction is executed. After the interrupt, the flags

change state as shown on the left.

U I O B S Z D C

Conditions

U : The flag is cleared.

I : The flag is cleared.

D : The flag is cleared.

[Instruction Code/Number of Cycles]

Page= 184

Flag

Change

[Function]

• If the O flag is 1, this instruction generates an overflow interrupt. If the flag is 0, the next instruction is

executed.

• The overflow interrupt is a nonmaskable interrupt.

80

Chapter 3 Functions 3.2 Functions

Cnd Condition Expression Cnd Condition Expression

GEU/C C=1 Equal to or greater than LTU/NC C=0 Smaller than

C flag is 1. C flag is 0.

EQ/Z Z=1 Equal to = NE/NZ Z=0 Not equal

Z flag is 1. Z flag is 0.

GTU

C Z=1 Greater than LEU

C Z=0 Equal to or smaller than

PZ S=0 Positive or zero 0 N S=1 Negative 0

GE S O=0 Equal to or greater than LE (S O) Z=1 Equal to or smaller than

(signed value) (signed value)

GT (S O) Z=0 Greater than (signed value) LT S O=1 Smaller than (signed value)

O O=1 O flag is 1. NO O=0 O flag is 0.

≠

Jump on Condition
Jump on condition

[Syntax]

JCnd label

[Selectable label]

[Description Example]
JEQ label

JNE label

[Related Instructions] BMCnd

[Function]

[Operation]

if true then jump label

JCnd

[Flag Change]

label Cnd

PC*1–127 label PC*1+128 GEU/C,GTU,EQ/Z,N,LTU/NC,LEU,NE/NZ,PZ

PC*1–126 label PC*1+129 LE,O,GE,GT,NO,LT

U I O B S Z D C

*1 PC indicates the start address of the instruction.

JCnd
[Instruction Code/Number of Cycles]

Page= 184

• This instruction causes program flow to branch off after checking the execution result of the preceding
instruction against the following condition. If the condition indicated by Cnd is true, control jumps to
label. If false, the next instruction is executed.

• The following conditions can be used for Cnd:

Flag

Change

A

A A

A

81

Chapter 3 Functions 3.2 Functions

JuMP
Unconditional jump

[Syntax]

JMP(.length) label

[Description Example]

[Related Instructions] JMPI,JMPS

JMP JMP

[Function]

[Selectable label]

JMP label

S , B , W , A (Can be specified)

[Operation]

PC label

.length label

.S PC*1+2 label PC*1+9

.B PC*1–127 label PC*1+128

.W PC*1–32767 label PC*1+32768

.A abs20

*1 The PC indicates the start address of the instruction.

• This instruction causes control to jump to label.

[Instruction Code/Number of Cycles]

Page= 185

[Flag Change]

U I O B S Z D CFlag

Change

82

Chapter 3 Functions 3.2 Functions

[Operation]

When jump distance specifier (.length) is (.W) When jump distance specifier (.length) is (.A)

PC PC src PC src

JuMP Indirect
Jump indirect

[Description Example]

[Related Instructions] JMP,JMPS

JMPI JMPI
[Syntax]

JMPI.length src

[Selectable src]

JMPI.A A1A0

JMPI.W R0

W , A

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

[Flag Change]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 187

If you selected (.A) for the jump distance specifier (.length)

If you selected (.W) for the jump distance specifier (.length)

Flag

Change

[Function]

• This instruction causes control to jump to the address indicated by src. If src is memory, specify the
address at which the low-order address is stored.

• If you selected (.W) for the jump distance specifier (.length), control jumps to the start address of the instruction
plus the address indicated by src (added including the sign bits). If src is memory, the required memory
capacity is 2 bytes.

• If src is memory when you selected (.A) for the jump distance specifier (.length), the required memory
capacity is 3 bytes.

83

Chapter 3 Functions
3.2 Functions

JuMP Special page
Jump to special page

[Syntax]

JMPS src

JMPS JMPS

[Operation]

PCH 0F16

PCML M(FFFFE16 – src 2)

src

#IMM*1*2

*1 #IMM denotes a special page number.

*2 The range of values that can be taken on is 18 < #IMM < 255.

[Selectable src]

[Related Instructions] JMP,JMPI

[Description Example]

JMPS #20

U I O B S Z D C

[Flag Change]

[Instruction Code/Number of Cycles]

Page=188

Flag

Change

• This instruction causes control to jump to the address set in each table of the special page vector table

plus F000016. The area across which control can jump is from address F000016 to address FFFFF16.

• The special page vector table is allocated to an area from address FFE0016 to address FFFDA16.

• src represents a special page number. The special page number is 255 for address FFE0016, and 18

for address FFFDA16.

[Function]

84

Chapter 3 Functions 3.2 Functions

Jump SubRoutine
Subroutine call

[Syntax]

JSR(.length) label

[Flag Change]

[Description Example]

[Related Instructions] JSRI,JSRS

JSR JSR

JSR.W func

JSR.A func

[Function]
• This instruction causes control to jump to a subroutine indicated by label.

[Selectable label]

.length label

.W PC*1–32767 label PC*1+32768

.A abs20

W , A (Can be specified)

U I O B S Z D C

*1 The PC indicates the start address of the instruction.

[Instruction Code/Number of Cycles]

Page= 189

Flag

Change

[Operation]

SP SP – 1

M(SP) (PC + n)H

SP SP – 2

M(SP) (PC + n)ML

PC label
*1 n denotes the number of instruction bytes.

85

Chapter 3 Functions
3.2 Functions

U I O B S Z D C

Indirect subroutine call

[Related Instructions] JSR,JSRS

W , A

Jump SubRoutine Indirect JSRI

190

[Instruction Code/Number of Cycles]

Page=

[Syntax]

JSRI.length src

JSRI

JSRI.A A1A0

JSRI.W R0

[Description Example]

[Selectable src]

[Flag Change]

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

Flag

Change

If you selected (.W) for the jump distance specifier (.length)

If you selected (.A) for the jump distance specifier (.length)

[Function]

*1 n denotes the number of instruction bytes.

• This instruction causes control to jump to a subroutine at the address indicated by src. If src is
memory, specify the address at which the low-order address is stored.

• If you selected (.W) for the jump distance specifier (.length), control jumps to a subroutine at the start
address of the instruction plus the address indicated by src (added including the sign bits). If src is
memory, the required memory capacity is 2 bytes.

• If src is memory when you selected (.A) for the jump distance specifier (.length), the required memory
capacity is 3 bytes.

[Operation]
When jump distance specifier (.length) is (.W) When jump distance specifier (.length) is (.A)

SP SP – 1 SP SP – 1
M(SP) (PC + n)H M(SP) (PC + n)H
SP SP – 2 SP SP – 2
M(SP) (PC + n)ML M(SP) (PC + n)H
PC PC src PC src

86

Chapter 3 Functions 3.2 Functions

Jump SubRoutine Special page
Special page subroutine callJSRS JSRS

[Syntax]

JSRS src

[Function]

• This instruction causes control to jump to a subroutine at the address set in each table of the special

page vector table plus F000016. The area across which program flow can jump to a subroutine is from

address F000016 to address FFFFF16.

• The special page vector table is allocated to an area from address FFE0016 to address FFFDA16.

• src represents a special page number. The special page number is 255 for address FFE0016, and 18

for address FFFDA16.

[Operation]

SP SP – 1

M(SP) (PC + 2)H

SP SP – 2

M(SP) (PC + 2)ML

PCH 0F16

PCML M (FFFFE16 – src 2)

[Flag Change]

[Selectable src]

src

#IMM*1*2

U I O B S Z D CFlag

*1 #IMM denotes a special page number.

*2 The range of values that can be taken on is 18 < #IMM < 255.

Change

[Related Instructions] JSR,JSRI

[Description Example]
JSRS #18

[Instruction Code/Number of Cycles]

Page= 191

87

Chapter 3 Functions
3.2 Functions

LoaD Control register
Transfer to control register

[Flag Change]

[Description Example]

[Related Instructions] POPC,PUSHC,STC,LDINTB

[Selectable src/dest]

[Function]

LDC LDC
[Syntax]

LDC src,dest

• This instruction transfers src to the control register indicated by dest. If src is memory, the required

memory capacity is 2 bytes.

• If the destination is INTBL or INTBH, make sure that bytes are transferred in succession.

• No interrupt requests are accepted immediately after this instruction.

LDC R0,SB

LDC A0,FB

[Operation]

dest src

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 FB SB SP*1 ISP

A0/A0 A1/A1 [A0] [A1] FLG INTBH INTBL

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM

R2R0 R3R1 A1A0

U I O B S Z D C
*2 *2 *2 *2 *2 *2 *2 *2 *2 The flag changes only when dest is FLG.

*1 Operation is performed on the stack pointer indicated by the U flag.

[Instruction Code/Number of Cycles]

Page= 191

Flag

Change

88

Chapter 3 Functions 3.2 Functions

Register information for the task whose task number = 0. (See the above diagram.)
SP correction value for the task whose task number = 0. (See the above diagram.)
Register information for the task whose task number = 1. (See the above diagram.)
SP correction value for the task whose task number = 1. (See the above diagram.)

Register information for the task whose task number = n*1. (See the above diagram.)
SP correction value for the task whose task number = n*1. (See the above diagram.)

LoaD ConTeXt
Restore context

[Related Instructions] STCTX

LDCTX LDCTX
[Syntax]

LDCTX abs16,abs20

LDCTX Ram,Rom_TBL
[Description Example]

[Flag Change]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=192

Flag

Change

[Function]
• This instruction restores task context from the stack area.
• Set the RAM address that contains the task number in abs16 and the start address of table data in abs20.
• The required register information is specified from table data by the task number and the data in the stack area

is transferred to each register according to the specified register information. Then the SP correction value is
added to the stack pointer (SP). For this SP correction value, set the number of bytes you want to the trans-
ferred.

• Information on transferred registers is configured as shown below. Logic 1 indicates a register to be
transferred and logic 0 indicates a register that is not transferred.

FB SB A1 A0 R3 R2 R1 R0

LSBMSB

Transferred sequentially
beginning with R0

• The table data is comprised as shown below.The address indicated by abs20 is the base address of
the table. The data stored at an address apart from the base address as much as twice the content of
abs16 indicates register information, and the next address contains the stack pointer correction value.

abs20 Base address
of table

D i r e c t i o n i n
which address
increases

abs16 2

*1 n=0 to 255

89

Chapter 3 Functions
3.2 Functions

LoaD from EXtra far data area
Transfer from extended data area

[Flag Change]

[Description Example]

[Related Instructions] STE,MOV,XCHG

B , W

[Selectable src/dest]

[Function]

LDE LDE
[Syntax]

LDE.size src,dest

• This instruction transfers src from extended area to dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B), src is zero-expanded to

transfer data in 16 bits.

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 [A1A0] R2R0 R3R1 A1A0

Conditions

S : The flag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.

Z : The flag is set when the transfer resulted in dest = 0; otherwise cleared.

LDE.W [A1A0],R0

LDE.B Rom_TBL,A0

U I O B S Z D CFlag

Change

[Instruction Code/Number of Cycles]

Page=193

[Operation]

dest src

90

Chapter 3 Functions 3.2 Functions

LoaD INTB register
Transfer to INTB register

[Flag Change]

[Description Example]

[Related Instructions] LDC,STC,PUSHC,POPC

LDINTB LDINTB
[Syntax]

LDINTB src

[Function]

• This instruction transfers src to INTB.

• The LDINTB instruction is a macro-instruction consisting of the following:

 LDC #IMM, INTBH

 LDC #IMM, INTBL

LDINTB #0F0000H

[Operation]

INTBHL src

U I O B S Z D C

[Selectable src]

src

#IMM20

[Instruction Code/Number of Cycles]

Page=194

Flag

Change

91

Chapter 3 Functions
3.2 Functions

LoaD Interrupt Permission Level
Set interrupt enable level

[Syntax]

LDIPL src

[Flag Change]

[Description Example]
LDIPL #2

LDIPL LDIPL

[Function]

[Selectable src]

src

#IMM*1

• This instruction transfers src to IPL.

[Operation]

IPL src

U I O B S Z D C

*1 The range of values that can be taken on is 0 < #IMM < 7

[Instruction Code/Number of Cycles]

Page= 195

Flag

Change

92

3.2 Functions
Chapter 3 Functions

MOVe
Transfer

[Related Instructions] LDE,STE,XCHG

[Description Example]

[Selectable src/dest]

[Function]

MOV MOV
[Syntax]

MOV.size (:format) src,dest

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*2 dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 dsp:8[SP]*3 R2R0 R3R1 A1A0 dsp:8[SP]*2 *3

(See the next page for src/dest classified by format.)

MOV.B:S #0ABH,R0L

MOV.W #–1,R2

G , Q , Z , S (Can be specified)
B , W

[Operation]

dest src

• This instruction transfers src to dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B), src is zero-expanded to

transfer data in 16 bits. If src is an A0 or A1, data is transferred from the 8 low-order bits of A0 or A1.

[Instruction Code/Number of Cycles]

Page= 195

[Flag Change]

U I O B S Z D C

Conditions

S : The flag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.

Z : The flag is set when the transfer resulted in 0; otherwise cleared.

Flag

Change

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-
neously.

*2 If src is #IMM, you cannot choose dsp:8 [SP] for dest.
*3 Operation is performed on the stack pointer indicated by the U flag. You cannot choose dsp:8 [SP] for

src and dest simultaneously.

93

3.2 Functions
Chapter 3 Functions

[src/dest Classified by Format]

G format

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*2 dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 dsp:8[SP]*3 R2R0 R3R1 A1A0 dsp:8[SP]*2*3

src dest

R0L R0H dsp:8[SB] dsp:8[FB] R0L R0H dsp:8[SB] dsp:8[FB]

abs16 #0 abs16 A0 A1

Z format

S format

src dest

R0L*5*6*7 R0H*5*6*8 dsp:8[SB]*5 dsp:8[FB]*5 R0L*5*6 R0H*5*6 dsp:8[SB] dsp:8[FB]

abs16*5 #IMM abs16 A0*5*8 A1*5*7

R0L*5*6 R0H*5*6 dsp:8[SB] dsp:8[FB] R0L*5*6 R0H*5*6 dsp:8[SB]*5 dsp:8[FB]*5

abs16 #IMM abs16*5 A0 A1

R0L R0H dsp:8[SB] dsp:8[FB] R0L*5 R0H*5 dsp:8[SB]*5 dsp:8[FB]*5

abs16 #IMM*9 abs16*5 A0*9 A1*9

*5 You can only specify (.B) for the size specifier (.size).
*6 You cannot choose the same register for src and dest.
*7 If src is R0L, you can only choose A1 for dest as the address register.
*8 If src is R0H, you can only choose A0 for dest as the address register.
*9 You can specify (.B) and (.W) for the size specifier (.size).

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*4 dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

Q format

*4 The range of values that can be taken on is –8 < #IMM < +7.

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-
neously.

*2 If src is #IMM, you cannot choose dsp:8 [SP] for dest.
*3 Operation is performed on the stack pointer indicated by the U flag. You cannot choose dsp:8 [SP] for

src and dest simultaneously.

94

3.2 Functions
Chapter 3 Functions

MOVe effective Address
Transfer effective address

[Flag Change]

[Description Example]

[Related Instructions] PUSHA

[Function]

[Selectable src/dest]

MOVA MOVA
[Syntax]

MOVA src,dest

[Operation]

dest EVA(src)

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

U I O B S Z D C

• This instruction transfers the affective address of src to dest.

MOVA Ram:16[SB],A0

[Instruction Code/Number of Cycles]

Page=202

Flag

Change

95

3.2 Functions
Chapter 3 Functions

MOVe nibble
Transfer 4-bit dataMOVDir MOVDir

[Operation]

[Syntax]

MOVDir src,dest

[Description Example]

Dir Operation

HH H4:dest H4:src

HL L4:dest H4:src

LH H4:dest L4:src

LL L4:dest L4:src

[Function]

Dir Function

HH Transfers src’s 4 high-order bits to dest’s 4 high-order bits.

HL Transfers src’s 4 high-order bits to dest’s 4 low-order bits.

LH Transfers src’s 4 low-order bits to dest’s 4 high-order bits.

LL Transfers src’s 4 low-order bits to dest’s 4 low-order bits.

[Selectable src/dest]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

[Flag Change]

U I O B S Z D C

MOVHH R0L,[A0]

MOVHL R0L,[A0]

[Instruction Code/Number of Cycles]

Page= 203

• Be sure to choose R0L for either src or dest.

Flag

Change

96

3.2 Functions
Chapter 3 Functions

MULtiple
Signed multiply

[Syntax]

MUL.size src,dest

[Description Example]

[Related Instructions] DIV,DIVU,DIVX,MULU

[Function]

MUL MUL

B , W

[Operation]

dest dest src

• This instruction multiplies src and dest together including the sign bits and stores the result in dest.

• If you selected (.B) for the size specifier (.size), src and dest both are operated on in 8 bits and the

result is stored in 16 bits. If you specified an A0 or A1 for either src or dest, operation is performed on

the 8 low-order bits of A0 or A1.

• If you selected (.W) for the size specifier (.size), src and dest both are operated on in 16 bits and the

result is stored in 32 bits. If you specified R0, R1, or A0 for dest, the result is stored in R2R0, R3R1, or

A1A0 accordingly.

MUL.B A0,R0L

MUL.W #3,R0

MUL.B R0L,R1L

MUL.W A0,Ram

[Selectable src/dest]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-

neously.

[Flag Change]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 205

Flag

Change

; R0L and A0’s 8 low-order bits are multiplied.

97

3.2 Functions
Chapter 3 Functions

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

MULtiple Unsigned
Unsigned multiply

[Description Example]

[Related Instructions] DIV,DIVU,DIVX,MUL

[Syntax]

MULU.size src,dest

MULU MULU

B , W

[Operation]

dest dest src

[Function]

MULU.B A0,R0L ; R0L and A0’s 8 low-order bits are multiplied.
MULU.W #3,R0

MULU.B R0L,R1L

MULU.W A0,Ram

U I O B S Z D C

• This instruction multiplies src and dest together not including the sign bits and stores the result in dest.

• If you selected (.B) for the size specifier (.size), src and dest both are operated on in 8 bits and the

result is stored in 16 bits. If you specified an A0 or A1 for either src or dest, operation is performed on

the 8 low-order bits of A0 or A1.

• If you selected (.W) for the size specifier (.size), src and dest both are operated on in 16 bits and the

result is stored in 32 bits. If you specified R0, R1, or A0 for dest, the result is stored in R2R0, R3R1, or

A1A0 accordingly.

[Instruction Code/Number of Cycles]

Page= 207

[Selectable src/dest]

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-
neously.

[Flag Change]
Flag

Change

98

3.2 Functions
Chapter 3 Functions

NEGate
Two’s complement

[Syntax]

NEG.size dest

[Flag Change]

[Description Example]

[Related Instructions] NOT

[Function]

NEG NEG

dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

B , W

[Operation]

dest 0 – dest

NEG.B R0L

NEG.W A1

U I O B S Z D C

Conditions

O : The flag is set when dest before the operation is –128 (.B) or –32768 (.W); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when the operation resulted in 0; otherwise cleared.

• This instruction takes the 2’s complement of dest and stores the result in dest.

[Instruction Code/Number of Cycles]

Page= 209

[Selectable dest]

Flag

Change

99

3.2 Functions
Chapter 3 Functions

 No OPeration
No operation

[Flag Change]

[Description Example]
NOP

[Function]

NOP NOP
[Syntax]

NOP

• This instruction adds 1 to PC.

[Operation]

PC PC + 1

U I O B S Z D C

[Instruction Code/Number of Cycles]
Page=209

Flag

Change

100

3.2 Functions
Chapter 3 Functions

NOT
Invert all bits

[Related Instructions] NEG

NOT NOT

[Operation]

dest dest

[Function]

• This instruction inverts dest and stores the result in dest.

[Selectable dest]

dest

R0L*1/R0 R0H*1/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB]*1 dsp:8[FB]*1

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16*1

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

[Flag Change]

[Description Example]

G , S (Can be specified)
B , W

NOT.B R0L

NOT.W A1

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

*1 Can be selected in G and S formats.
In other cases, dest can be selected in G format.

[Instruction Code/Number of Cycles]

Page= 210

[Syntax]

NOT.size (:format) dest

U I O B S Z D CFlag

Change

101

Chapter 3 Functions
3.2 Functions

[Instruction Code/Number of Cycles]

Page=

OR
Logically OR

[Description Example]
OR.B Ram:8[SB],R0L

OR.B:G A0,R0L ; A0’s 8 low-order bits and R0L are ORed.

OR.B:G R0L,A0 ; R0L is zero-expanded and ORed with A0.

OR.B:S #3,R0L

[Related Instructions] AND,XOR,TST

[Selectable src/dest]

• This instruction logically ORs dest and src together and stores the result in dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B), src is zero-expanded to

perform operation in 16 bits. If src is an A0 or A1, operation is performed on the 8 low-order bits of A0

or A1.

[Flag Change]

OR OR
[Syntax]

OR.size (:format) src,dest

[Function]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

(See the next page for src/dest classified by format.)

G , S (Can be specified)

B , W
[Operation]

dest src dest

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

211

Flag

Change

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-

neously.

102

Chapter 3 Functions
3.2 Functions

[src/dest Classified by Format]

G format

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

S format*2

src dest

R0L R0H dsp:8[SB] dsp:8[FB] R0L R0H dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

R0L*3 R0H*3 dsp:8[SB] dsp:8[FB] R0L*3 R0H*3 dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-

neously.

*2 You can only specify (.B) for the size specifier (.size).

*3 You cannot choose the same register for src and dest.

103

Chapter 3 Functions
3.2 Functions

POP
Restore register/memory

[Flag Change]

POP.B R0L

POP.W A0

[Related Instructions] PUSH,POPM,PUSHM

[Selectable dest]

POP POP

[Function]

• This instruction restores dest from the stack area.

dest

R0L*1/R0 R0H*1/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

[Description Example]

[Syntax]

POP.size (:format) dest
G , S (Can be specified)

B , W
[Operation]

*1 Can be selected in G and S formats.

In other cases, dest can be selected in G format.

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 213

Flag

Change

If the size specifier (.size) is (.W)

dest M(SP)

SP SP + 2

If the size specifier (.size) is (.B)

dest M(SP)

SP SP + 1

104

Chapter 3 Functions
3.2 Functions

POP Control register
Restore control register

[Flag Change]

[Description Example]

[Related Instructions] PUSHC,LDC,STC,LDINTB

POPC POPC
[Syntax]

POPC dest

 [Function]

• This instruction restores from the stack area to the control register indicated by dest.

• When restoring the interrupt table register, always be sure to restore INTBH and INTBL in succession.

• No interrupt requests are accepted immediately after this instruction.

POPC SB

[Operation]

dest M(SP)

SP*1 SP + 2

U I O B S Z D C
*3 *3 *3 *3 *3 *3 *3 *3 *3 The flag changes only when dest is FLG.

[Selectable dest]
dest

FB SB SP*2 ISP FLG INTBH INTBL

*2 Operation is performed on the stack pointer indi-

cated by the U flag.

[Instruction Code/Number of Cycles]

Page=215

Flag

Change

*1 When dest is SP or when the U flag = “0” and dest is ISP, the value 2 is not added to SP.

105

Chapter 3 Functions
3.2 Functions

POP Multiple
Restore multiple registers

[Description Example]

[Related Instructions] POP,PUSH,PUSHM

[Selectable dest]

[Function]

FB SB A1 A0 R3 R2 R1 R0

POPM POPM
[Syntax]

POPM dest

• This instruction restores the registers selected by dest collectively from the stack area.

• Registers are restored from the stack area in the following order:

dest*2

R0 R1 R2 R3 A0 A1 SB FB

*2 You can choose multiple dest.

[Flag Change]

POPM R0,R1,A0,SB,FB

[Operation]

dest M(SP)

SP SP + N*1 2

U I O B S Z D C

Restored sequentially beginning with R0

[Instruction Code/Number of Cycles]

Page= 215

*1 Number of registers to be restored

Flag

Change

106

Chapter 3 Functions
3.2 Functions

PUSH
Save register/memory/immediate data

[Flag Change]

[Description Example]

[Related Instructions] POP,POPM,PUSHM

[Selectable src]

PUSH PUSH
[Syntax]

PUSH.size (:format) src

[Function]

• This instruction saves src to the stack area.

PUSH.B #5

PUSH.W #100H

PUSH.B R0L

PUSH.W A0

G , S (Can be specified)

B , W
[Operation]

src

R0L*1/R0 R0H*1/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM

R2R0 R3R1 A1A0

*1 Can be selected in G and S formats.

In other cases, dest can be selected in G format.

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 216

Change

Flag

If the size specifier (.size) is (.B)

SP SP – 1

M(SP) src

If the size specifier (.size) is (.W)

SP SP – 2

M(SP) src

107

Chapter 3 Functions
3.2 Functions

PUSH effective Address
Save effective address

 [Flag Change]

[Description Example]

[Related Instructions] MOVA

[Function]

[Selectable src]

PUSHA PUSHA
[Syntax]

PUSHA src

• This instruction saves the effective address of src to the stack area.

PUSHA Ram:8[FB]

PUSHA Ram:16[SB]

[Operation]

SP SP – 2

M(SP) EVA(src)

src

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

U I O B S Z D CFlag

Change

[Instruction Code/Number of Cycles]

Page= 218

108

Chapter 3 Functions
3.2 Functions

PUSH Control register
Save control register

[Syntax]

PUSHC src

[Flag Change]

[Description Example]

PUSHC SB

[Related Instructions] POPC,LDC,STC,LDINTB

PUSHC PUSHC

[Function]

• This instruction saves the control register indicated by src to the stack area.

[Selectable src]

src

FB SB SP*2 ISP FLG INTBH INTBL

[Operation]

SP SP – 2

M(SP) src*1

*2 Operation is performed on the stack pointer indicated by the U flag.

U I O B S Z D C

218

[Instruction Code/Number of Cycles]

Page=

Flag

Change

*1 When src is SP or when the U flag = “0” and src is ISP, the SP before being subtracted by 2 is saved.

109

Chapter 3 Functions
3.2 Functions

PUSH Multiple
Save multiple registers

[Syntax]

PUSHM src

[Description Example]

[Related Instructions] POP,PUSH,POPM

[Function]

R0 R1 R2 R3 A0 A1 SB FB

PUSHM PUSHM

• This instruction saves the registers selected by src collectively to the stack area.

• The registers are saved to the stack area in the following order:

src*2

R0 R1 R2 R3 A0 A1 SB FB

*2 You can choose multiple src.

PUSHM R0,R1,A0,SB,FB

[Operation]

SP SP – N*1 2

M(SP) src

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 219

*1 Number of registers saved.

Saved sequentially beginning with FB

[Flag Change]

Flag

Change

[Selectable src]

110

Chapter 3 Functions
3.2 Functions

REturn from InTerrupt
Return from interrupt

[Syntax]

REIT

[Flag Change]

[Description Example]

[Function]

REIT REIT

• This instruction restores the PC and FLG that were saved when an interrupt request was accepted to

return from the interrupt handler routine.

REIT

U I O B S Z D C
*1 *1 *1 *1 *1 *1 *1 *1

Flag
*1 The flags are reset to the previous FLG state before the

interrupt request was accepted.

[Instruction Code/Number of Cycles]

Page= 219

Change

[Operation]

PCML M(SP)

SP SP + 2

PCH, FLG M(SP)

SP SP + 2

111

3.2 Functions
Chapter 3 Functions

Repeat MultiPle & Addition
Calculate sum-of-products

[Description Example]

RMPA RMPA
[Syntax]

RMPA.size

B , W

[Function]

• This instruction performs sum-of-product calculations, with the multiplicand address indicated by A0, the multi-
plier address indicated by A1, and the count of operation indicated by R3. Calculations are performed including
the sign bits and the result is stored in R2R0 (R0)*1.

• If an overflow occurs during operation, the O flag is set to terminate the operation. R2R0 (R0)*1

contains the result of the addition performed last. A0, A1 and R3 are indeterminate.

• The content of the A0 or A1 when the instruction is completed indicates the next address of the last-
read data.

• If an interrupt request is received during instruction execution, the interrupt is acknowledged after a sum-of-
product addition is completed (i.e., after the content of R3 is decremented by 1).

• Make sure that R2R0 (R0)*1 has the initial value set.

Shown in ()*1 applies when (.B) is selected for the size specifier (.size).

RMPA.B

[Operation]*1

Repeat

R2R0(R0) *2 R2R0(R0) *2 + M(A0) M(A1)

A0 A0 + 2 (1) *2

A1 A1 + 2 (1) *2

R3 R3 – 1

Until R3 = 0

*1 If you set a value 0 in R3, this instruction is ingored.

*2 Shown in ()*2 applies when (.B) is selected for the size specifier (.size).

Conditions

O : The flag is set when +2147483647 (.W) or –2147483648 (.W), or +32767 (.B) or –32768 (.B) is

exceeded during operation; otherwise cleared.

U I O B S Z D CFlag

[Instruction Code/Number of Cycles]

Page= 220

[Fl ag Change]

Change

112

3.2 Functions
Chapter 3 Functions

ROtate to Left with Carry
Rotate left with carry

C

[Description Example]

[Related Instructions] RORC,ROT,SHA,SHL

[Function]

[Selectable dest]

dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

ROLC ROLC

[Flag Change]

ROLC.B R0L

ROLC.W R0

B , W

[Syntax]

ROLC.size dest

[Operation]

• This instruction rotates dest one bit to the left including the C flag.

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in dest = 0; otherwise cleared.

C : The flag is set when the shifted-out bit is 1; otherwise cleared.

[Instruction Code/Number of Cycles]

Page= 220

MSB dest LSB

Flag

Change

113

3.2 Functions
Chapter 3 Functions

ROtate to Right with Carry
Rotate right with carry

[Syntax]

RORC.size dest

[Flag Change]

[Related Instructions] ROLC,ROT,SHA,SHL

[Function]

[Selectable dest]

RORC RORC

dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

[Description Example]

RORC.B R0L

RORC.W R0

B , W

[Operation]

• This instruction rotates dest one bit to the right including the C flag.

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in dest = 0; otherwise cleared.

C : The flag is set when the shifted-out bit is 1; otherwise cleared.

C

[Instruction Code/Number of Cycles]

Page= 221

MSB dest LSB

Flag

Change

114

3.2 Functions
Chapter 3 Functions

ROTate
Rotate

[Related Instructions] ROLC,RORC,SHA,SHL

ROT ROT
[Syntax]

ROT.size src,dest
B , W

• This instruction rotates dest left or right the number of bits indicated by src. The bit overflowing from LSB
(MSB) is transferred to MSB(LSB) and the C flag.

• The direction of rotate is determined by the sign of src. If src is positive, bits are rotated left; if negative, bits
are rotated right.

• If src is an immediate, the number of rotates is –8 to –1 and +1 to +8. You cannot set values less than –8,
equal to 0, or greater than +8.

• If src is a register and you selected (.B) for the size specifier (.size), the number of rotates is –8 to +8.
Although you can set 0, no bits are rotated and no flags are changed. If you set a value less than –8 or
greater than +8, the result of rotation is indeterminate.

• If src is a register and you selected (.W) for the size specifier (.size), the number of rotates is –16 to +16.
Although you can set 0, no bits are rotated and no flags are changed. If you set a value less than –16 or
greater than +16, the result of rotation is indeterminate.

[Operation]

LSB

srcÅÑ0

srcÅÉ0

C

[Function]

MSB

[Description Example]
ROT.B #1,R0L ; Rotated left

ROT.B #–1,R0L ; Rotated right

ROT.W R1H,R2

[Flag Change]

U I O B S Z D C

*1 If src is R1H, you cannot choose R1 or R1H for dest.

*2 The range of values that can be taken on is –8 < #IMM < +8. However, you cannot set 0.

[Selectable src/dest]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H*1/R3 R0L/R0 R0H/R1*1 R1L/R2 R1H/R3*1

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*2 dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

C

[Instruction Code/Number of Cycles]

Page=222

dest

Flag

Change

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when the bit shifted out last is 1; otherwise cleared.

*1 If the number of rotates is 0, no flags are changed.

115

3.2 Functions
Chapter 3 Functions

ReTurn from Subroutine
Return from subroutine

[Flag Change]

[Description Example]
RTS

RTS RTS
[Syntax]

RTS

[Operation]

PCML M(SP)

SP SP + 2

PCH M(SP)

SP SP + 1

[Function]

Flag

Change

U I O B S Z D C

 • This instruction causes control to return from a subroutine.

[Instruction Code/Number of Cycles]

Page= 223

116

3.2 Functions
Chapter 3 Functions

SuBtract with Borrow
Subtract with borrow

[Syntax]

SBB.size src,dest

[Operation]

dest dest – src – C

[Flag Change]

[Description Example]
SBB.B #2,R0L

SBB.W A0,R0

SBB.B A0,R0L ; A0’s 8 low-order bits and R0L are operated on.

SBB.B R0L,A0 ; R0L is zero-expanded and operated with A0.

[Function]
• This instruction subtracts src and inverted C flag from dest and stores the result in dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B), src is zero-expanded to

perform operation in 16 bits. If src is an A0 or A1, operation is performed on the 8 low-order bits of A0

or A1.

[Selectable src/dest]

SBB SBB

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

[Related Instructions] ADC,ADCF,ADD,SUB

B , W

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-

neously.

Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.W) or –32768 (.W), or

+127 (.B) or –128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than 0;

otherwise cleared.

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page=224

Flag

117

3.2 Functions
Chapter 3 Functions

SuBtract then Jump on Not Zero
Subtract & conditional jump

[Selectable src/dest/label]

[Related Instructions] ADJNZ

[Function]

SBJNZ SBJNZ
[Syntax]

SBJNZ.size src,dest,label

• This instruction subtracts src from dest and stores the result in dest.

• If the operation resulted in any value other than 0, control jumps to label. If the operation resulted in

0, the next instruction is executed.

• The op-code of this instruction is the same as that of ADJNZ.

src dest label

R0L/R0 R0H/R1 R1L/R2

R1H/R3 A0/A0 A1/A1 PC*2–126 < label < PC*2+129

#IMM*1 [A0] [A1] dsp:8[A0]

dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB]

abs16

*1 The range of values that can be taken on is –7 < #IMM < +8.

*2 The PC indicates the start address of the instruction.

[Flag Change]

[Description Example]

SBJNZ.W #1,R0,label

B , W

[Operation]

dest dest – src

if dest ≠ 0 then jump label

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 226

118

3.2 Functions
Chapter 3 Functions

SHift Arithmetic
Shift arithmetic

[Syntax]

SHA.size src,dest

[Related Instructions] ROLC,RORC,ROT,SHL

SHA

B , W , L

 [Function]

[Description Example]
SHA.B #3,R0L ; Arithmetically shifted left

SHA.B #–3,R0L ; Arithmetically shifted right

SHA.L R1H,R2R0

[Operation]

When src < 0

When src > 0

[Flag Change]

U I O B S Z D C

[Selectable src/dest]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H*1/R3 R0L/R0 R0H/R1*1 R1L/R2 R1H/R3*1

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*2 dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0*3 R3R1*3 A1A0

*1 If src is R1H, you cannot choose R1 or R1H for dest.
*2 The range of values that can be taken on is –8 < #IMM < +8. However, you cannot set 0.
*3 You can only specify (.L) for the size specifier (.size). For other dest, you can specify (.B) or (.W).

SHA
[Instruction Code/Number of Cycles]

Page= 227

0

CMSB dest LSB

MSB dest LSBC

overflowing from LSB (MSB) is transferred to the C flag.
• The direction of shift is determined by the sign of src. If src is positive, bits are shifted left; if negative,

bits are shifted right.
• If src is an immediate, the number of shifts is –8 to –1 and +1 to +8. You cannot set values less than

–8, equal to 0, or greater than +8.
• If src is a register and you selected (.B) for the size specifier (.size), the number of shifts is –8 to +8.

Although you can set 0, no bits are shifted and no flags are changed. If you set a value less than –8 or
greater than +8, the result of shift is indeterminate.

• If src is a register and you selected (.W) or (.L) for the size specifier (.size), the number of shifts is –16
to +16. Although you can set 0, no bits are shifted and no flags are changed. If you set a value less
than –16 or greater than +16, the result of shift is indeterminate.

Flag

Change

Conditions
O : The flag is set when the operation resulted in MSB changing its state from 1 to 0 or from 0 to 1; otherwise

cleared. However, the flag does not change if you selected (.L) for the size specifier (.size).
S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared. However, the flag is indeterminate if you

selected (.L) for the size specifier (.size).
C : The flag is set when the bit shifted out last is 1; otherwise cleared. However, the flag is indeterminate if you

selected (.L) for the size specifier (.size).

*1 If the number of shifts is 0, no flags are changed.

119

3.2 Functions
Chapter 3 Functions

SHift Logical
Shift logical

[Syntax]

SHL.size src,dest

[Related Instructions] ROLC,RORC,ROT,SHA

SHL SHL

B , W , L

0

0

[Operation]

When src < 0

 When src > 0

• This instruction logically shifts dest left or right the number of bits indicated by src. The bit overflowing
from LSB (MSB) is transferred to the C flag.

• The direction of shift is determined by the sign of src. If src is positive, bits are shifted left; if negative,
bits are shifted right.

• If src is an immediate, the number of shifts is –8 to –1 and +1 to +8. You cannot set values less than
–8, equal to 0, or greater than +8.

• If src is a register and you selected (.B) for the size specifier (.size), the number of shifts is –8 to +8.
Although you can set 0, no bits are shifted and no flags are changed. If you set a value less than –8 or
greater than +8, the result of shift is indeterminate.

• If src is a register and you selected (.W) or (.L) for the size specifier (.size), the number of shifts is –16
to +16. Although you can set 0, no bits are shifted and no flags are changed. If you set a value less
than –16 or greater than +16, the result of shift is indeterminate.

[Function]

[Description Example]

SHL.B #3,R0L ; Logically shifted left

SHL.B #–3,R0L ; Logically shifted right

SHL.L R1H,R2R0

src dest

R0L/R0 R0H/R1 R1L/R2 R1H*1/R3 R0L/R0 R0H/R1*1 R1L/R2 R1H/R3*1

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM*2 dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0*3 R3R1*3 A1A0

[Selectable src/dest]

[Flag Change]

U I O B S Z D C

Conditions
S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared. However, the flag is

indeterminate if you selected (.L) for the size specifier (.size).
C : The flag is set when the bit shifted out last is 1; otherwise cleared. However, the flag is

indeterminate if you selected (.L) for the size specifier (.size).

[Instruction Code/Number of Cycles]

Page= 230

MSB dest LSB

MSB dest LSB

C

C

Flag

Change

*1 If src is R1H, you cannot choose R1 or R1H for dest.
*2 The range of values that can be taken on is –8 < #IMM < +8. However, you cannot set 0.
*3 You can only specify (.L) for the size specifier (.size). For other dest, you can specify (.B) or (.W).

*1 If the number of shifts is 0, no flags are changed.

120

3.2 Functions
Chapter 3 Functions

String MOVe Backward
 Transfer string backward

[Syntax]

SMOVB.size

[Description Example]

SMOVB.B

[Related Instructions] SMOVF,SSTR

SMOVB SMOVB

B , W

[Operation]*1

Flag

Change

U I O B S Z D C

232

[Instruction Code/Number of Cycles]

Page=

[Flag Change]

[Function]

• This instruction transfers string in successively address decrementing direction from the source ad-

dress indicated by 20 bits to the destination address indicated by 16 bits.

• Set the 4 high-order bits of the source address in R1H, the 16 low-order bits of the source address in

A0, the destination address in A1, and the transfer count in R3.

• The A0 or A1 when the instruction is completed contains the next address of the last-read data.

• If an interrupt request is received during instruction execution, the interrupt is acknowledged after one

data transfer is completed.

*1 If you set a value 0 in R3, this instruction is ingored.

*2 If A0 underflows, the content of R1H is decremented by 1.

When size specifier (.size) is (.B)

Repeat

M(A1) M(216 R1H + A0)

A0*2 A0 – 1

A1 A1 – 1

R3 R3 – 1

Until R3 = 0

When size specifier (.size) is (.W)

Repeat

M(A1) M(216 R1H + A0)

A0*2 A0 – 2

A1 A1 – 2

R3 R3 – 1

Until R3 = 0

121

3.2 Functions
Chapter 3 Functions

String MOVe Forward
Transfer string forward

[Syntax]

SMOVF.size

[Description Example]

[Related Instructions] SMOVB,SSTR

SMOVF SMOVF

[Flag Change]

SMOVF.W

B , W

Flag

Change

U I O B S Z D C

[Operation]*1

[Instruction Code/Number of Cycles]

Page= 233

[Function]

• This instruction transfers string in successively address incrementing direction from the source ad-

dress indicated by 20 bits to the destination address indicated by 16 bits.

 • Set the 4 high-order bits of the source address in R1H, the 16 low-order bits of the source address in

A0, the destination address in A1, and the transfer count in R3.

• The A0 or A1 when the instruction is completed contains the next address of the last-read data.

• If an interrupt request is received during instruction execution, the interrupt is acknowledged after one

data transfer is completed.
• This instruction arithmetically shifts dest left or right the number of bits indicated by src. The bit

*1 If you set a value 0 in R3, this instruction is ingored.

*2 If A0 overflows, the content of R1H is incremented by 1.

When size specifier (.size) is (.W)

Repeat

M(A1) M(216 R1H + A0)

A0*2 A0 + 2

A1 A1 + 2

R3 R3 – 1

Until R3 = 0

When size specifier (.size) is (.B)

Repeat

M(A1) M(216 R1H + A0)

A0*2* A0 + 1

A1 A1 + 1

R3 R3 – 1

Until R3 = 0

122

Chapter 3 Functions
3.2 Functions

String SToRe
Store string

[Function]

[Flag Change]

[Description Example]
SSTR.B

[Related Instructions] SMOVB,SMOVF

SSTR SSTR
[Syntax]

SSTR.size

• This instruction stores string, with the store data indicated by R0, the transfer address indicated by A1,

and the transfer count indicated by R3.

• The A0 or A1 when the instruction is completed contains the next address of the last-written data.

• If an interrupt request is received during instruction execution, the interrupt is acknowledged after one

data transfer is completed.

B , W

[Operation]*1

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 233

*1 If you set a value 0 in R3, this instruction is ingored.

When size specifier (.size) is (.W)

Repeat

M(A1) R0

A1 A1 + 2

R3 R3 – 1

Until R3 = 0

When size specifier (.size) is (.B)

Repeat

M(A1) R0L

A1 A1 + 1

R3 R3 – 1

Until R3 = 0

123

Chapter 3 Functions
3.2 Functions

Transfer from control register

STore from Control register
[Syntax]

STC src,dest

[Description Example]

[Related Instructions] POPC,PUSHC,LDC,LDINTB

[Function]

[Selectable src/dest]

STC STC

• This instruction transfers the control register indicated by src to dest. If dest is memory, specify the

address in which to store the low-order address.

• If dest is memory while src is PC, the required memory capacity is 3 bytes. If src is not PC, the

required memory capacity is 2 bytes.

STC SB,R0

STC FB,A0

[Operation]

dest src

src dest

FB SB SP*1 ISP R0L/R0 R0H/R1 R1L/R2 R1H/R3

FLG INTBH INTBL A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

PC R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0

[Flag Change]

*1 Operation is performed on the stack pointer indicated by the U flag.

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 234

124

Chapter 3 Functions
3.2 Functions

STore ConTeXt
Save context

STCTX Ram,Rom_TBL

[Related Instructions] LDCTX

[Flag Change]

STCTX STCTX
[Syntax]

STCTX abs16,abs20

[Description Example]

[Operation]

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 235

Flag

Change

[Function]
• This instruction saves task context to the stack area.
• Set the RAM address that contains the task number in abs16 and the start address of table data in abs20.
• The required register information is specified from table data by the task number and the data in the stack area is

transferred to each register according to the specified register information. Then the SP correction value is subtracted
to the stack pointer (SP). For this SP correction value, set the number of bytes you want to the transferred.

• Information on transferred registers is configured as shown below. Logic 1 indicates a register to be
transferred and logic 0 indicates a register that is not transferred.

Transferred sequentially beginning with FB

FB SB A1 A0 R3 R2 R1 R0

MSB LSB

abs20 Base address
of table

D i r e c t i o n i n
which address
increases

Register information for the task whose task number = 0. (See the above diagram.)
SP correction value for the task whose task number = 0. (See the above diagram.)
Register information for the task whose task number = 1. (See the above diagram.)
SP correction value for the task whose task number = 1. (See the above diagram.)

Register information for the task whose task number = n*1. (See the above diagram.)
SP correction value for the task whose task number = n*1. (See the above diagram.)

abs16 x 2

*1 n=0 to 255

• The table data is comprised as shown below. The address indicated by abs20 is the base address of
the table. The data stored at an address apart from the base address as much as twice the content of
abs16 indicates register information, and the next address contains the stack pointer correction value.

125

Chapter 3 Functions
3.2 Functions

STore to EXtra far data area
Transfer to extended data area

[Flag Change]

[Description Example]
STE.B R0L,[A1A0]

STE.W R0,10000H[A0]

[Related Instructions] MOV,LDE,XCHG

[Function]

[Selectable src/dest]

STE STE
[Syntax]

STE.size src,dest

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 [A1A0]

[Operation]

dest src

B , W

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

• This instruction transfers src to dest in an extended area.

• If src is an A0 or A1 when the size specifier (.size) you selected is (.B), operation is performed on the
8 low-order bits of A0 or A1. However, the flag changes depending on the A0 or A1 status (16 bits)

before the operation is performed.

[Instruction Code/Number of Cycles]

Page= 235

Flag

Change

126

Chapter 3 Functions
3.2 Functions

STore on Not Zero
Conditional transfer

[Function]

[Flag Change]

[Description Example]

[Related Instructions] STZ,STZX

[Selectable src/dest]

STNZ STNZ
[Syntax]

STNZ src,dest

• This instruction transfers src to dest when the Z flag is 0.

STNZ #5,Ram:8[SB]

src dest

#IMM8 R0L R0H dsp:8[SB] dsp:8[FB]

abs16 A0 A1

[Operation]

if Z = 0 then dest src

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 237

127

Chapter 3 Functions
3.2 Functions

STore on Zero
Conditional transfer

[Syntax]

STZ src,dest

[Function]

[Flag Change]

• This instruction transfers src to dest when the Z flag is 1.

[Description Example]

[Related Instructions] STNZ,STZX

[Selectable src/dest]

STZSTZ

STZ #5,Ram:8[SB]

[Operation]

if Z = 1 then dest src

src dest

#IMM8 R0L R0H dsp:8[SB] dsp:8[FB]

abs16 A0 A1

Flag

Change

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 237

128

Chapter 3 Functions
3.2 Functions

[Instruction Code/Number of Cycles]

Page=

STore on Zero eXtention
Conditional transfer

[Syntax]

STZX src1,src2,dest

[Flag Change]

[Description Example]

STZX #1,#2,Ram:8[SB]

[Related Instructions] STZ,STNZ

STZX STZX

[Selectable src/dest]

[Operation]

If Z = 1 then

dest src1

else

dest src2
[Function]

• This instruction transfers src1 to dest when the Z flag is 1. When the Z flag is 0, it transfers src2 to

dest.

src dest

#IMM8 R0L R0H dsp:8[SB] dsp:8[FB]

abs16 A0 A1

Flag

Change

U I O B S Z D C

238

129

Chapter 3 Functions
3.2 Functions

[Selectable src/dest]

SUBtract
Subtract without borrow

[Syntax]

SUB.size (:format) src,dest

[Operation]

dest dest – src

[Related Instructions] ADC,ADCF,ADD,SBB

[Function]

SUB SUB

• This instruction subtracts src from dest and stores the result in dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B), src is zero-expanded to

perform operation in 16 bits. If src is an A0 or A1, operation is performed on the 8 low-order bits of A0

or A1.

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

[Flag Change]

[Description Example]
SUB.B A0,R0L ; A0’s 8 low-order bits and R0L are operated on.

SUB.B R0L,A0 ; R0L is zero-expanded and operated with A0.

SUB.B Ram:8[SB],R0L

SUB.W #2,[A0]

G , S (Can be specified)

B , W

Flag

Change

U I O B S Z D C

(See the next page for src/dest classified by format.)

Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.W) or –32768 (.W), or

+127 (.B) or –128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than 0;

otherwise cleared.

[Instruction Code/Number of Cycles]

Page= 238

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-

neously.

130

Chapter 3 Functions
3.2 Functions

[src/dest Classified by Format]

G format

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20 SP/SP

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

S format*2

src dest

R0L R0H dsp:8[SB] dsp:8[FB] R0L R0H dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

R0L*3 R0H*3 dsp:8[SB] dsp:8[FB] R0L*3 R0H*3 dsp:8[SB] dsp:8[FB]

abs16 #IMM abs16 A0 A1

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-

neously.

*2 You can only specify (.B) for the size specifier (.size).

*3 You cannot choose the same register for src and dest.

131

Chapter 3 Functions
3.2 Functions

TeST
Test

[Syntax]

TST.size src,dest

[Description Example]
TST.B #3,R0L

TST.B A0,R0L ; A0's 8 low-order bits and ROL are operated on.

TST.B R0L,A0 ; R0L is zero-expanded and operated on with A0.

[Related Instructions] AND,OR,XOR

 [Function]

TST TST

• Each flag in the flag register changes state depending on the result of logical AND of src and dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B), src is zero-expanded to

perform operation in 16 bits. If src is an A0 or A1, operation is performed on the 8 low-order bits of A0

or A1.

B , W

[Operation]

dest src

[Flag Change]

[Selectable src/dest]

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-

neously.

[Instruction Code/Number of Cycles]

Page= 241

Flag

Change

132

Chapter 3 Functions
3.2 Functions

UNDefined instruction
Interrupt for undefined instruction

[Syntax]

UND

[Flag Change]

[Description Example]

UND UND

[Operation]

SP SP – 2

M(SP) (PC + 1)H, FLG

SP SP – 2

M(SP) (PC + 1)ML

PC M(FFFDC16)

*1 The flags are saved to the stack area before the UND

instruction is executed. After the interrupt, the flag status

becomes as shown on the left.

U I O B S Z D C

Conditions

U : The flag is cleared.

I : The flag is cleared.

D : The flag is cleared.

UND

[Instruction Code/Number of Cycles]

Page= 243

Flag

Change

• This instruction generates an undefined instruction interrupt.

• The undefined instruction interrupt is a nonmaskable interrupt.

[Function]

133

Chapter 3 Functions
3.2 Functions

WAIT
Wait

[Syntax]

WAIT

[Flag Change]

[Description Example]

[Function]

WAIT WAIT

• This instruction halts program execution. Program execution is restarted when an interrupt of a higher

priority level than IPL is acknowledged or a reset is generated.

U I O B S Z D C

WAIT

[Operation]

[Instruction Code/Number of Cycles]

Page= 243

Flag

Change

134

Chapter 3 Functions
3.2 Functions

eXCHanGe
Exchange

[Flag Change]

[Description Example]

[Function]

[Selectable src/dest]

XCHG XCHG
[Syntax]

XCHG.size src,dest

• This instruction exchanges contents between src and dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B), 16 bits of zero- expanded src

data are placed in the A0 or A1 and the 8 low-order bits of the A0 or A1 are placed in src.

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0 A1/A1 [A0] [A1] A0/A0 A1/A1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 [A1A0] R2R0 R3R1 A1A0

[Related Instructions] MOV,LDE,STE

B , W

[Operation]

dest src

U I O B S Z D C

[Instruction Code/Number of Cycles]

Page= 244

Flag

Change

XCHG.B R0L,A0 ; A0’s 8 low-order bits and R0L’s zero-expanded value are exchanged.

XCHG.W R0,A1

XCHG.B R0L,[A0]

135

Chapter 3 Functions
3.2 Functions

eXclusive OR
Exclusive OR

[Syntax]

XOR.size src,dest

[Flag Change]

[Selectable src/dest]

[Description Example]

[Related Instructions] AND,OR,TST

[Function]

XOR XOR

src dest

R0L/R0 R0H/R1 R1L/R2 R1H/R3 R0L/R0 R0H/R1 R1L/R2 R1H/R3

A0/A0*1 A1/A1*1 [A0] [A1] A0/A0*1 A1/A1*1 [A0] [A1]

dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16 dsp:16[A0] dsp:16[A1] dsp:16[SB] abs16

dsp:20[A0] dsp:20[A1] abs20 #IMM dsp:20[A0] dsp:20[A1] abs20

R2R0 R3R1 A1A0 R2R0 R3R1 A1A0

XOR.B A0,R0L ; A0’s 8 low-order bits and R0L are exclusive ORed.

XOR.B R0L,A0 ; R0L is zero-expanded and exclusive ORed with A0.

XOR.B #3,R0L

XOR.W A0,A1

B , W

[Operation]

dest dest src

Flag

Change

U I O B S Z D C

Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or A1 for src and dest simulta-

neously.

• This instruction exclusive ORs src and dest together and stores the result in dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B), src is zero-expanded to

perform operation in 16 bits. If src is an A0 or A1, operation is performed on the 8 low-order bits of A0

or A1.

[Instruction Code/Number of Cycles]

Page= 245

A

136

Chapter 3 Functions
3.2 Functions

Chapter 4

Instruction Code/Number of Cycles

4.1 Guide to This Chapter

4.2 Instruction Code/Number of Cycles

138

Chapter 4 Instruction Code
4.1 Guide to This Chapter

4.1 Guide to This Chapter

This chapter describes instruction code and number of cycles for each op-code.

The following shows how to read this chapter by using an actual page as an example.

[Number of Bytes/Number of Cycles]

(1) MOV.size:G #IMM, dest

.size

.B

.W

SIZE

0

1

Rn

[An]

An

dest DEST

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

dsp:8[An]
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

DEST

dest Rn An dsp:16[SB] abs16dsp:8[An] dsp:16[An]dsp:8[SB/FB][An]

(1) LDIPL#IMM

LDIPL

MOV

0 1 1 1 0 1 0 SIZE 1 1 0 0 DEST

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 0 1 0 IMM4

b7 b0 b7 b0 dest code

dsp8

dsp16/abs16

#IMM8

#IMM16)
0000

0001

0010

0011

0100

0101

0110

0111

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

(4)

(3)

(2)

(1)

(1)

(3)

(2)

[Number of Bytes/Number of Cycles](4)

Chapter 4 Instruction Code 4.2 Instruction Code/Number of Cycles

Bytes/Cycles

Bytes/Cycles 5/35/35/34/34/33/33/23/2

2/2

(

139

Chapter 4 Instruction Code
4.1 Guide to This Chapter

(1) Mnemonic
Shows the mnemonic explained in this page.

(2) Syntax
Shows an instruction syntax using symbols.

(3) Instruction code
Shows instruction code. Entered in () are omitted depending on src/dest you selected.

dsp8

dsp16/abs16

#IMM8

#IMM16)0 1 1 1 0 1 0 SIZE 1 1 0 0 DEST

.size

.B

.W

SIZE

0

1

Rn

[An]

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

dest DEST

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

dsp:8[An]
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

DEST

b7 b0 b7 b0

0000

0001

0010

0011

0100

0101

0110

0111

(
dest code

Correspondence
Correspondence

Correspondence
                                   

Contents at addresses following

(start address of instruction + 2)

(See the following figure.)

Content at start address

of instruction

+0 +1 +2

8bit

b7 b0
dsp8
#IMM8

Low-order 8bit

b7 b0

High-order 8bit

b7 b0
dsp16
abs16
#IMM16

Low-order 8bit

b7 b0

Middle-order 8bit

b7 b0

0 0 0 0 High-order
4bit

b7 b0
abs20
dsp20
#IMM20

(4) Table of cycles
Shows the number of cycles required to execute this instruction and the number of instruction bytes.

There is a chance that the number of cycles increases due to an effect of software wait.

Instruction bytes are indicated on the left side of the slash and execution cycles are indicated on the right side.

Contents at addresses following (start address of instruction + 2) are arranged as follows:

Content at (start address

of instruction+1)

140

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

ABS
(1) ABS.size dest

dest code

dsp8)dsp16/abs16

.size

.B

.W

SIZE

0

1

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest

dsp:16[SB]

4/5 4/5

abs16dsp:8[An]

3/5

dsp:16[An]dsp:8[SB/FB]

3/5 4/5

An

2/52/32/3

[An]Rndest

[Number of Bytes/Number of Cycles]

ADC
dest code

dsp8

dsp16/abs16

#IMM8

#IMM16

.size

.B

.W

SIZE

0

1

)(
dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 1 1 1 1 DEST

(1) ADC.size #IMM, dest
b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 0 1 1 0 DEST

(

Bytes/Cycles

 Bytes/Cycles

DESTdestDESTdest

*1 If the size specifier (.size) is (.W), the number of bytes above is increased by 1.

141

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

ADC

b7 b0 b7 b0

1 0 1 1 0 0 0 SIZE SRC DEST

(2) ADC.size src, dest

((

dest
src

142

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

ADCF
(1) ADCF.size dest

dest code

dsp8)dsp16/abs16

.size

.B

.W

SIZE

0

1

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/12/1

[An]Rndest

[Number of Bytes/Number of Cycles]

ADD

#IMM8

#IMM16

.size

.B

.W

SIZE

0

1

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

0 1 1 1 0 1 1 SIZE 0 1 0 0 DEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rn dest

dest code

dsp8)dsp16/abs16

dest

0 1 1 1 0 1 1 SIZE 1 1 1 0 DEST

b7 b0 b7 b0

b7 b0 b7 b0

(1) ADD.size:G #IMM, dest

(

(

Bytes/Cycles

Bytes/Cycles

*1 If the size specifier (.size) is (.W), the number of bytes above is increased by 1.

143

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

ADD
(2) ADD.size:Q #IMM, dest

dest code

dsp8)dsp16/abs16

.size

.B

.W

SIZE

0

1
1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

 0

+1

+2

+3

+4

+5

+6

+7

#IMM IMM4IMM4 #IMM

–8

–7

–6

–5

–4

–3

–2

–1

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

destdest

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

An

DESTDEST

[Number of Bytes/Number of Cycles]

4/3 4/33/3 3/3 4/32/32/12/1

[An]Rndest

1 1 0 0 1 0 0 SIZE IMM4 DEST
b7 b0 b7 b0

dsp:16[SB] abs16dsp:8[An] dsp:16[An]dsp:8[SB/FB]An

(

Bytes/Cycles

144

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

ADD

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

dsp:8[SB/FB]

3/32/1

abs16

4/3

dest

[Number of Bytes/Number of Cycles]

Rn

)
dest code

dsp8

abs16

(3) ADD.B:S #IMM8, dest

#IMM81 0 0 0 0 DEST
b7 b0

(

Bytes/Cycles

145

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

ADD
(4) ADD.size:G src, dest

1 0 1 0 0 0 0 SIZE SRC DEST dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

.size

.B

.W

SIZE

0

1

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

((

src
dest

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

146

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

3/2

[Number of Bytes/Number of Cycles]

ADD

#IMM8

#IMM16

.size

.B

.W

SIZE

0

1

(6) ADD.size:G #IMM, SP

0 1 1 1 1 1 0 SIZE 1 1 1 0 1 0 1 1

dsp:8[SB/FB]

2/3

Rn

1/2

abs16

3/3

[Number of Bytes/Number of Cycles]

DESTdest

R0L

R0H

0

1

src

R0L/R0H

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

0 0

0 1

1 0

1 1

src

ADD
(5) ADD.B:S src, R0L/R0H

0 0 1 0 0 DEST SRC
b7 b0

b7 b0 b7 b0

Bytes/Cycles

Bytes/Cycles

*1 If the size specifier (.size) is (.W), the number of bytes above is increased by 1.

src code

dsp8)abs16(
SRC

147

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

ADD
(7) ADD.size:Q #IMM, SP

[Number of Bytes/Number of Cycles]

2/1

#IMM IMM4IMM4 #IMM

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 0 1 1 IMM4

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

 0

+1

+2

+3

+4

+5

+6

+7

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

–8

–7

–6

–5

–4

–3

–2

–1

*1 The instruction code is the same regardless of whether you selected (.B) or (.W) for the size specifier (.size).

Bytes/Cycles

148

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

ADJNZ

1 1 1 1 1 0 0 SIZE IMM4 DEST

(1) ADJNZ.size #IMM, dest, label
dest code

dsp8)dsp16/abs16

dsp8

label code

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

.size

.B

.W

SIZE

0

1
1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

#IMM IMM4IMM4 #IMM

–8

–7

–6

–5

–4

–3

–2

–1

dsp8 (label code)= address indicated by label –(start address of instruction + 2)

dsp:16[SB]

5/5 5/5

abs16dsp:8[An]

4/5

dsp:16[An]dsp:8[SB/FB]

4/5 5/5

An

3/53/33/3

[An]Rndest

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

 0

+1

+2

+3

+4

+5

+6

+7

(

Bytes/Cycles

*1 If branched to label, the number of cycles above is increased by 4.

149

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

AND

0 1 1 1 0 1 1 SIZE 0 0 1 0 DEST

(1) AND.size:G #IMM, dest
dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

.size

.B

.W

SIZE

0

1

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest dsp:16[SB]

AND
(2) AND.B:S #IMM8, dest

1 0 0 1 0 DEST

dsp:8[SB/FB]

3/3

Rn

2/1

abs16

4/3

dest

[Number of Bytes/Number of Cycles]

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

)
dest code

dsp8

abs16

#IMM8

b7 b0 b7 b0

b7 b0

(

(

Bytes/Cycles

Bytes/Cycles

*1 If the size specifier (.size) is (.W), the number of bytes above is increased by 1.

150

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(

AND
(3) AND.size:G src, dest

1 0 0 1 0 0 0 SIZE SRC DEST dsp8

dsp16/abs16)dsp8)dsp16/abs16

dest codesrc code

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn dsp:16[SB] abs16

b7 b0 b7 b0

(

destsrc

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

151

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(4) AND.B:S src, R0L/R0H
src code

dsp8)abs16

dsp:8[SB/FB]

2/3

Rn

1/2

abs16

3/3

src

src SRC

R0L/R0H

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

0 0

0 1

1 0

1 1

DESTdest

R0L

R0H

0

1

AND

b7 b0

0 0 0 1 0 DEST SRC (

[Number of Bytes/Number of Cycles]

Bytes/Cycles

152

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

BAND

0 1 1 1 1 1 1 0 0 1 0 0 SRC

(1) BAND src
src code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

dest

3/3

bit,base:8

[SB/FB]

3/23/2

bit,Rn bit,An

2/6

[An]
bit,base:16

[SB]
4/3

bit,base:16

4/33/6 4/6

BCLR

0 1 1 1 1 1 1 0 1 0 0 0 DEST

dest code

dsp8

dsp16)
(1) BCLR:G dest

DESTdest

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

DEST

3/4

bit,base:8

[SB/FB]

3/73/33/3

bit,Rn bit,An

2/7

[An]
bit,base:16

[SB]
bit,base:16

4/7 4/4 4/4

[Number of Bytes/Number of Cycles]

src

SRCsrc
base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

SRC

b7 b0 b7 b0

b7 b0 b7 b0

base:8

[An]

base:16

[An]

base:16

[An]

base:8

[An]

(

(

Bytes/Cycles

Bytes/Cycles

153

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(2) BCLR:S bit, base:11[SB]
BCLR

dsp8

dest code

[Number of Bytes/Number of Cycles]

2/3

b7 b0

0 1 0 0 0 BIT

Bytes/Cycles

154

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

BMCnd

dest

4/7

bit,base:8

[SB/FB]

4/104/64/6

bit,Rn bit,An [An]
bit,base:16

[SB]
bit,base:16

5/10 5/7 5/7

DESTdest
base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

DEST

(1) BMCnd dest

0 1 1 1 1 1 1 0 0 0 1 0 DEST
b7 b0 b7 b0

base:16

[An]

base:8

[An]

dest code

dsp16)(dsp8 CND

CndCND CNDCnd

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 1

0 0 0 0 0 1 1 0

LTU/NC

LEU

NE/NZ

PZ

GT

NO

LT

1 1 1 1 1 0 0 0

1 1 1 1 1 0 0 1

1 1 1 1 1 0 1 0

1 1 1 1 1 0 1 1

1 1 1 1 1 1 0 0

1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 0

GEU/C

GTU

EQ/Z

N

LE

O

GE

[Number of Bytes/Number of Cycles]

3/10Bytes/Cycles

155

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

BMCnd

0 1 1 1 1 1 0 1 1 1 0 1 CND

2/1

BNAND
(1) BNAND src

src code

dsp8

dsp16

[Number of Bytes/Number of Cycles]

src
bit,base:8

[SB/FB]
bit,Rn bit,An [An] bit,base:16

4/4 4/43/42/73/33/3 3/7 4/7

)
SRCsrc

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

SRC

Cnd CND

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

GEU/C

GTU

EQ/Z

N

LTU/NC

LEU

NE/NZ

Cnd CND

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 0 1

1 1 1 0

PZ

LE

O

GE

GT

NO

LT

b7 b0 b7 b0

b7 b0 b7 b0

base:8

[An]

base:16

[An]

bit,base:16

[SB]

(0 1 1 1 1 1 1 0 0 1 0 1 SRC

Bytes/Cycles

Bytes/Cycles

(2) BMCnd C

[Number of Bytes/Number of Cycles]

*1 If the condition is true, the number of cycles above is increased by 1.

156

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

BNOR

0 1 1 1 1 1 1 0 0 1 1 1 SRC

(1) BNOR src
src code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

src

3/4

bit,base:8

[SB/FB]

3/73/33/3

bit,Rn bit,An

2/7

[An]
bit,base:16

[SB]
bit,base:16

4/7 4/4 4/4

BNOT
(1) BNOT:G dest

dest code

dsp8

dsp16)
DESTdest

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

DEST

[Number of Bytes/Number of Cycles]

dest

3/3

bit,base:8

[SB/FB]

3/2

bit,Rn bit,An

2/6

[An]
bit,base:16

[SB]
bit,base:16

3/2 3/6 4/6 4/3 4/3

SRCsrc
base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

SRC

b7 b0 b7 b0

b7 b0 b7 b0

base:8

[An]

base:16

[An]

base:8

[An]

base:16

[An]

(

(0 1 1 1 1 1 1 0 1 0 1 0 DEST

Bytes/Cycles

Bytes/Cycles

157

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

BNOT
(2) BNOT:S bit, base:11[SB]

dest code

dsp8

[Number of Bytes/Number of Cycles]

2/3

BNTST

0 1 1 1 1 1 1 0 0 0 1 1 SRC

(1) BNTST src
src code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

src

3/4

bit,base:8

[SB/FB]

3/73/33/3

bit,Rn bit,An

2/7

[An] bit,base:16

4/7 4/4 4/4

SRCsrc

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

SRC

b7 b0

0 1 0 1 0 BIT

b7 b0 b7 b0

bit,base:16

[SB]

base:8

[An]

base:16

[An]

(

Bytes/Cycles

Bytes/Cycles

158

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(1) BNXOR src
src code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

src

3/4

bit,base:8

[SB/FB]

3/33/3

bit,Rn bit,An

2/7

[An] bit,base:16

4/4 4/43/7 4/7

BOR

0 1 1 1 1 1 1 0 0 1 1 0 SRC

(1) BOR src

[Number of Bytes/Number of Cycles]

src

3/43/33/3

bit,Rn bit,An

2/7

[An] bit,base:16

4/73/7 4/4 4/4

SRCsrc
base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An base:16[An]

SRC

SRCsrc

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

SRC

BNXOR

src code

dsp8

dsp16)

b7 b0 b7 b0

b7 b0 b7 b0

0 1 1 1 1 1 1 0 1 1 0 1 SRC

bit,base:8

[SB/FB]

bit,base:16

[SB]

base:16

[An]

base:8

[An]

bit,base:16

[SB]

bit,base:8

[SB/FB]

base:8

[An]

base:16

[An]

(

(

Bytes/Cycles

Bytes/Cycles

159

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

BRK
(1) BRK

0 0 0 0 0 0 0 0

[Number of Bytes/Number of Cycles]

1/27

(1) BSET:G dest
dest code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

dest

3/3

bit,base:8

[SB/FB]

3/63/23/2

bit,Rn bit,An

2/6

[An]

4/6 4/3

bit,base:16

4/3

DESTdest

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

DEST

BSET

0 1 1 1 1 1 1 0 1 0 0 1 DEST
b7 b0 b7 b0

b7 b0

bit,base:16

[SB]

base:16

[An]

base:8

[An]

(

Bytes/Cycles

Bytes/Cycles

*1 If you specify the target address of the BRK interrupt by use of the interrupt table register (INTB), the

number of cycles shown in the table increases by two. At this time, set FF16 in addresses FFFE416

through FFFE716.

160

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(2) BSET:S bit, base:11[SB]

dsp8

dest code

0 1 0 0 1 BIT

[Number of Bytes/Number of Cycles]

2/3

BTST

0 1 1 1 1 1 1 0 1 0 1 1 SRC

(1) BTST:G src
src code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

src

3/3

bit,base:8

[SB/FB]

3/2

bit,Rn bit,An

2/6

[An] bit,base:16

4/6 4/3 4/33/63/2

SRCsrc

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

SRC

BSET

b7 b0

b7 b0 b7 b0

bit,base:16

[SB]

base:16

[An]

base:8

[An]

(

Bytes/Cycles

Bytes/Cycles

161

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

dest code

dsp8

dsp16)

BTST
(2) BTST:S bit, base:11[SB]

0 1 0 1 1 BIT dsp8

src code

[Number of Bytes/Number of Cycles]

2/3

0 1 1 1 1 1 1 0 0 0 0 0 DEST

(1) BTSTC dest

[Number of Bytes/Number of Cycles]

dest

3/4

bit,base:8

[SB/FB]

3/73/33/3

bit,Rn bit,An

2/7

[An]

4/4

bit,base:16

4/44/7

DESTdest

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

DEST

b7 b0

b7 b0 b7 b0

BTSTC

bit,base:16

[SB]

base:16

[An]

base:8

[An]

(

Bytes/Cycles

Bytes/Cycles

162

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

BTSTS

0 1 1 1 1 1 1 0 0 0 0 1 DEST

(1) BTSTS dest
dest code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

dest

3/4

bit,base:8

[SB/FB]

3/3

bit,Rn bit,An

2/7

[An]

4/7 4/4 4/43/73/3

BXOR

0 1 1 1 1 1 1 0 1 1 0 0 SRC

(1) BXOR src
src code

dsp8

dsp16)

[Number of Bytes/Number of Cycles]

src

3/4

bit,Rn bit,An [An] bit,base:16

4/44/73/73/3 3/3 2/7 4/4

DESTdest
base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

DEST

SRCsrc

base:8[A0]

base:8[A1]

bit,base:8[SB]

bit,base:8[FB]

base:16[A0]

base:16[A1]

bit,base:16[SB]

bit,base:16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

bit,Rn

[An]

base:8[An]

bit,base:16[SB]

bit,base:16

bit,R0

bit,R1

bit,R2

bit,R3

bit,A0

bit,A1

[A0]

[A1]

bit,An

bit,base:8

[SB/FB]

base:16[An]

SRC

b7 b0 b7 b0

b7 b0 b7 b0

base:8

[An]

base:16

[An]

bit,base:16

[SB]
bit,base:16

bit,base:8

[SB/FB]

base:16

[An]

bit,base:16

[SB]

base:8

[An]

(

(

Bytes/Cycles

Bytes/Cycles

163

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

CMP

0 1 1 1 0 1 1 SIZE 1 0 0 0 DEST

(1) CMP.size:G #IMM, dest
dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest

b7 b0 b7 b0

(

Bytes/Cycles
*1 If the size specifier (.size) is (.W), the number of bytes above is increased by 1.

164

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

CMP
(2) CMP.size:Q #IMM, dest

dest code

dsp8)dsp16/abs16

 0

+1

+2

+3

+4

+5

+6

+7

#IMM IMM4IMM4 #IMM

–8

–7

–6

–5

–4

–3

–2

–1

.size

.B

.W

SIZE

0

1

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/12/1

[An]Rndest

1 1 0 1 0 0 0 SIZE IMM4 DEST
b7 b0 b7 b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

(

Bytes/Cycles

165

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

CMP

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]

3/3

Rn

2/1

abs16

4/3

dest

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

dest code

dsp8)abs16

#IMM8

(3) CMP.B:S #IMM8, dest
b7 b0

1 1 1 0 0 DEST (

Bytes/Cycles

166

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

CMP

1 1 0 0 0 0 0 SIZE SRC DEST

(4) CMP.size:G src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

((

dest
src

167

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(5) CMP.B:S src, R0L/R0H
CMP

src code

dsp8)abs16

DADC

0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0

(1) DADC.B #IMM8, R0L

#IMM8

[Number of Bytes/Number of Cycles]

3/5

src SRC

R0L/R0H

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

0 0

0 1

1 0

1 1

DESTdest

R0L

R0H

0

1

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]Rn

1/2

abs16src

3/32/3

b7 b0

b7 b0 b7 b0

0 0 1 1 1 DEST SRC (

Bytes/Cycles

Bytes/Cycles

168

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

DADC
(2) DADC.W #IMM16, R0

[Number of Bytes/Number of Cycles]

4/5

0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0

(3) DADC.B R0H, R0L

[Number of Bytes/Number of Cycles]

2/5

#IMM16

DADC

0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0
b7 b0 b7 b0

b7 b0 b7 b0

Bytes/Cycles

Bytes/Cycles

169

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

DADC
(4) DADC.W R1, R0

[Number of Bytes/Number of Cycles]

2/5

DADD
(1) DADD.B #IMM8, R0L

#IMM8

[Number of Bytes/Number of Cycles]

3/5

0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0
b7 b0 b7 b0

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 0

Bytes/Cycles

Bytes/Cycles

170

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

DADD
(2) DADD.W #IMM16, R0

#IMM16

[Number of Bytes/Number of Cycles]

4/5

DADD
(3) DADD.B R0H, R0L

[Number of Bytes/Number of Cycles]

2/5

0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0
b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 0
b7 b0 b7 b0

Bytes/Cycles

Bytes/Cycles

171

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

DADD
(4) DADD.W R1, R0

[Number of Bytes/Number of Cycles]

2/5

DEC
(1) DEC.B dest

dest code

dsp8)abs16

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]

2/3

Rn

1/1

abs16

3/3

dest

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 0
b7 b0 b7 b0

1 0 1 0 1 DEST
b7 b0

(

Bytes/Cycles

Bytes/Cycles

172

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

DEC
(2) DEC.W dest

[Number of Bytes/Number of Cycles]

1/1

DIV
(1) DIV.size #IMM

.size

.B

.W

SIZE

0

1

3/22

[Number of Bytes/Number of Cycles]

DESTdest

A0

A1

0

1

b7 b0

1 1 1 1 DEST 0 1 0

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 1 1 1 0 0 0 0 1 #IMM8

#IMM16

Bytes/Cycles

Bytes/Cycles

*1 If the size specifier (.size) is (.W), the number of bytes and cycles above are increased by 1 and 6,

respectively.

*2 The number of cycles may decrease when an overflow occurs or depending on the value of the divisor or

 dividend.

173

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

DIV
(2) DIV.size src

dsp8

src code

dsp16/abs16)
src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/24 4/24

abs16dsp:8[An]

3/24

dsp:16[An]dsp:8[SB/FB]

 3/24 4/24

An

2/242/22 2/22

[An]Rnsrc

DIVU
(1) DIVU.size #IMM

#IMM8

#IMM16

.size

.B

.W

SIZE

0

1

3/18

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 1 1 0 1 SRC

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 1 1 1 0 0 0 0 0

(

Bytes/Cycles

Bytes/Cycles

*1 If the size specifier (.size) is (.W), the number of cycles above is increased by 6.

*2 The number of cycles may decrease when an overflow occurs or depending on the value of the divisor or

 dividend.

*2 The number of cycles may decrease when an overflow occurs or depending on the value of the divisor or

 dividend.

*3 If the size specifier (.size) is (.W), the number of bytes and cycles above are increased by 1 and 7,

respectively.

174

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

DIVU

0 1 1 1 0 1 1 SIZE 1 1 0 0 SRC

(2) DIVU.size src

dsp8

src code

dsp16/abs16)
src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/20 4/20

abs16dsp:8[An]

3/20

dsp:16[An]dsp:8[SB/FB]

3/20 4/20

An

2/20 2/18

[An]Rnsrc

DIVX
(1) DIVX.size #IMM

#IMM8

#IMM16

.size

.B

.W

SIZE

0

1

3/22

b7 b0 b7 b0

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 1 1 1 0 0 0 1 1

(

[Number of Bytes/Number of Cycles]

 2/18Bytes/Cycles

Bytes/Cycles

*1 If the size specifier (.size) is (.W), the number of cycles above is increased by 7.

*2 The number of cycles may decrease when an overflow occurs or depending on the value of the divisor or

 dividend.

*2 The number of cycles may decrease when an overflow occurs or depending on the value of the divisor or

 dividend.

*3 If the size specifier (.size) is (.W), the number of bytes and cycles above are increased by 1 and 6,

respectively.

175

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

DIVX
(2) DIVX.size src

dsp8

src code

dsp16/abs16)
src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB] abs16dsp:8[An]

3/24

dsp:16[An]dsp:8[SB/FB]

3/24 4/24

An

2/242/222/22

[An]Rnsrc

DSBB
(1) DSBB.B #IMM8, R0L

#IMM8

3/4

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 1 0 0 1 SRC

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1

(

4/24 4/24

Bytes/Cycles

Bytes/Cycles

*1 If the size specifier (.size) is (.W), the number of cycles above is increased by 6.

*2 The number of cycles may decrease when an overflow occurs or depending on the value of the divisor or

 dividend.

176

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

DSBB
(2) DSBB.W #IMM16, R0

#IMM16

[Number of Bytes/Number of Cycles]

4/4

DSBB
(3) DSBB.B R0H, R0L

[Number of Bytes/Number of Cycles]

2/4

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1

Bytes/Cycles

Bytes/Cycles

177

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

DSBB
(4) DSBB.W R1, R0

[Number of Bytes/Number of Cycles]

2/4

DSUB

[Number of Bytes/Number of Cycles]

3/4

(1) DSUB.B #IMM8, R0L

#IMM8

b7 b0 b7 b0

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 0 1 1 0 1

0 1 1 1 1 1 0 1 1 1 1 0 0 1 1 1

Bytes/Cycles

Bytes/Cycles

178

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

DSUB
(2) DSUB.W #IMM16, R0

#IMM16

[Number of Bytes/Number of Cycles]

4/4

DSUB
(3) DSUB.B R0H, R0L

[Number of Bytes/Number of Cycles]

2/4

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 0 0 1 0 1

Bytes/Cycles

Bytes/Cycles

179

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

DSUB
(4) DSUB.W R1, R0

[Number of Bytes/Number of Cycles]

2/4

(1) ENTER #IMM8

[Number of Bytes/Number of Cycles]

3/4

#IMM8

ENTER

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 0

Bytes/Cycles

Bytes/Cycles

180

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

EXITD
(1) EXITD

[Number of Bytes/Number of Cycles]

2/9

EXTS
(1) EXTS.B dest

dest code

dsp8)dsp16/abs16

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/5 4/5

abs16dsp:16[An]dsp:8[SB/FB]

3/5 4/5

Rn [An] dsp:8[An]

3/5

dest

DESTdest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L

R1L

[A0]

[A1]

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 0

b7 b0 b7 b0

0 1 1 1 1 1 0 0 0 1 1 0 DEST (

2/3 2/5

Bytes/Cycles

Bytes/Cycles

*1 Marked by --- cannot be selected.

181

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

EXTS
(2) EXTS.W R0

[Number of Bytes/Number of Cycles]

2/3

[Number of Bytes/Number of Cycles]

2/2

FCLR
(1) FCLR dest

DEST

C

D

Z

S

B

O

I

U

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 1 0 0 1 1

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 DEST 0 1 0 1

dest

Bytes/Cycles

Bytes/Cycles

182

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

FSET
(1) FSET dest

[Number of Bytes/Number of Cycles]

2/2

INC
(1) INC.B dest

dest code

dsp8)abs16

dest DEST

C

D

Z

S

B

O

I

U

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]

2/3

Rn

1/1

abs16

3/3

dest

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 DEST 0 1 0 0

b7 b0

1 0 1 0 0 DEST (

Bytes/Cycles

Bytes/Cycles

183

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

INC
(2) INC.W dest

INT
(1) INT #IMM

1 1

[Number of Bytes/Number of Cycles]

2/19

DESTdest

A0

A1

0

1

1 0 1 1 DEST 0 1 0
b7 b0

1/1

[Number of Bytes/Number of Cycles]

b7 b0
#IMM1 1 1 0 1 0 1 1

Bytes/Cycles

Bytes/Cycles

184

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

INTO
(1) INTO

[Number of Bytes/Number of Cycles]

1/1

JCnd
(1) JCnd label

label code

Cnd CND

0 0 0

0 0 1

0 1 0

0 1 1

GEU/C

GTU

EQ/Z

N

Cnd CND

1 0 0

1 0 1

1 1 0

1 1 1

LTU/NC

LEU

NE/NZ

PZ

[Number of Bytes/Number of Cycles]

2/2

b7 b0

1 1 1 1 0 1 1 0

b7 b0

dsp8 = address indicated by label – (start address of instruction + 1)

dsp80 1 1 0 1 CND

Bytes/Cycles

Bytes/Cycles

*1 If the O flag = 1, the number of cycles above is increased by 19.

*2 If branched to label, the number of cycles above is increased by 2.

185

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

JCnd
(2) JCnd label

dsp8

label code

3/2

[Number of Bytes/Number of Cycles]

JMP
(1) JMP.S label

1/5

[Number of Bytes/Number of Cycles]

Cnd CND

1 0 0 0

1 0 0 1

1 0 1 0

LE

O

GE

CND

1 1 0 0

1 1 0 1

1 1 1 0

b7 b0 b7 b0

dsp8 =address indicated by label – (start address of instruction + 2)

0 1 1 1 1 1 0 1 1 1 0 0 CND

GT

NO

LT

Cnd

b7 b0

dsp = address indicated by label – (start address of instruction + 2)

0 1 1 0 0 dsp

Bytes/Cycles

Bytes/Cycles

*1 If branched to label, the number of cycles above is increased by 2.

186

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

JMP
(2) JMP.B label

label code

[Number of Bytes/Number of Cycles]

2/4

JMP
(3) JMP.W label

label code

[Number of Bytes/Number of Cycles]

3/4

b7 b0

dsp8 = address indicated by label – (start address of instruction + 1)

dsp81 1 1 1 1 1 1 0

b7 b0
dsp161 1 1 1 0 1 0 0

dsp16 = address indicated by label – (start address of instruction + 1)

Bytes/Cycles

Bytes/Cycles

187

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

[Number of Bytes/Number of Cycles]

4/4

(1) JMPI.W src

src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:20[A0]

dsp:20[A1]

dsp:16[SB]

abs16

SRCsrc

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:20[An]

dsp:16[SB]

abs16

R0

R1

R2

R3

A0

A1

[A0]

[A1]

An

SRC

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/11

abs16dsp:8[An]

3/11

dsp:20[An]dsp:8[SB/FB]

3/11 5/11

An

2/112/7

[An]Rnsrc

b7 b0

1 1 1 1 1 1 0 0

b7 b0 b7 b0

0 1 1 1 1 1 0 1 0 0 1 0 SRC

(4) JMP.A label
JMP

label code

abs20

JMPI
src code

dsp8

dsp16/abs16

dsp20

4/112/7

Bytes/Cycles

Bytes/Cycles

188

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

JMPI
(2) JMPI.A src

JMPS
(1) JMPS #IMM8

#IMM8

[Number of Bytes/Number of Cycles]

2/9

src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:20[A0]

dsp:20[A1]

dsp:16[SB]

abs16

SRCsrc

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:20[An]

dsp:16[SB]

abs16

An

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/10 4/10

abs16dsp:8[An]

3/10

dsp:20[An]dsp:8[SB/FB]

3/10 5/10

An

2/102/62/6

[An]Rn

Bytes/Cycles

src

1 1 1 0 1 1 1 0

b7 b0 b7 b0

0 1 1 1 1 1 0 1 0 0 0 0 SRC

b7 b0

R2R0

R3R1

A1A0

[A0]

[A1]

src code

dsp8

dsp16/abs16

dsp20

SRC

Bytes/Cycles

*1 Marked by --- cannot be selected.

189

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

JSR
(1) JSR.W label

dsp16 = address indicated by label – (start address of instruction + 1)

label code

3/8

(2) JSR.A label

[Number of Bytes/Number of Cycles]

4/9

dsp16
b7 b0

1 1 1 1 0 1 0 1

[Number of Bytes/Number of Cycles]

b7 b0

1 1 1 1 1 1 0 1

Bytes/Cycles

Bytes/Cycles

JSR

abs20

label code

190

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(1) JSRI.W src

(2) JSRI.A src

src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:20[A0]

dsp:20[A1]

dsp:16[SB]

abs16

SRCsrc

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:20[An]

dsp:16[SB]

abs16

R0

R1

R2

R3

A0

A1

[A0]

[A1]

An

SRC

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/15 4/15

abs16dsp:8[An]

3/15

dsp:20[An]dsp:8[SB/FB]

3/15 5/15

An

2/152/112/11

[An]Rnsrc

src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:20[A0]

dsp:20[A1]

dsp:16[SB]

abs16

SRCsrc

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:20[An]

dsp:16[SB]

abs16

An

SRC
R2R0

R3R1

A1A0

[A0]

[A1]

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/15 4/15

abs16dsp:8[An]

3/15

dsp:20[An]dsp:8[SB/FB]

3/15 5/15

An

2/152/112/11

[An]Rnsrc

b7 b0 b7 b0

0 1 1 1 1 1 0 1 0 0 1 1 SRC

b7 b0 b7 b0

0 1 1 1 1 1 0 1 0 0 0 1 SRC

src code

dsp8

dsp16/abs16

dsp20

JSRI

JSRI

src code

dsp8

dsp16/abs16

dsp20

Bytes/Cycles

Bytes/Cycles

*1 Marked by --- cannot be selected.

191

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

JSRS
(1) JSRS #IMM8

#IMM8

[Number of Bytes/Number of Cycles]

2/13

LDC
(1) LDC #IMM16, dest

#IMM16

[Number of Bytes/Number of Cycles]

4/2

dest DEST

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

b7 b0

1 1 1 0 1 1 1 1

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 DEST 0 0 0 0

INTBL

INTBH

FLG

ISP

SP

SB

FB

Bytes/Cycles

Bytes/Cycles

*1 Marked by --- cannot be selected.

192

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

LDC
(2) LDC src, dest

dsp8

src code

dsp16/abs16)

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/12/1

[An]Rnsrc

LDCTX
(1) LDCTX abs16, abs20

abs16

7/11+2 m

Rn

[An]

An

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

R0

R1

R2

R3

A0

A1

[A0]

[A1]

src

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

SRC SRC

INTBL

INTBH

FLG

ISP

SP

SB

FB

dest

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

DEST

b7 b0 b7 b0

0 1 1 1 1 0 1 0 1 DEST SRC

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0

[Number of Bytes/Number of Cycles]

(

abs20

*1 Marked by --- cannot be

selected.

Bytes/Cycles

Bytes/Cycles

*2 m denotes the number of transfers performed.

193

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

LDE
(1) LDE.size abs20, dest

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

7/5 7/5

abs16dsp:8[An]

6/5

dsp:16[An]dsp:8[SB/FB]

6/5 7/5

An

5/55/45/4

[An]Rndest

LDE

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

7/5 7/5

abs16dsp:8[An]

6/5

dsp:16[An]dsp:8[SB/FB]

6/5 7/5

An

5/55/45/4

[An]Rndest

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 1 0 0 0 DEST

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 1 0 0 1 DEST

)dsp8

dest code

dsp16/abs16(

dsp8

dest code

dsp16/abs16)(
(2) LDE.size dsp:20[A0], dest

dsp20

src code

abs20

src code

Bytes/Cycles

Bytes/Cycles

194

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

LDE
(3) LDE.size [A1A0], dest

dest code

dsp8)dsp16/abs16

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/5 4/5

abs16dsp:8[An]

3/5

dsp:16[An]dsp:8[SB/FB]

3/5 4/5

An

2/52/42/4

[An]Rndest

8/4

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 1 0 1 0 DEST

(1) LDINTB #IMM

*1 #IMM1 indicates the 4 high-order bits of #IMM.

#IMM2 indicates the 16 low-order bits of #IMM.

(

b7 b0 b7 b0

LDINTB

1 1 1 0 1 0 1 1 0 0 1 0 0 0 0 0
0 0 0 0 #IMM1 0 0 0 0 0 0 0 0
1 1 1 0 1 0 1 1 0 0 0 1 0 0 0 0

#IMM2

Bytes/Cycles

Bytes/Cycles

195

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(1) LDIPL #IMM

[Number of Bytes/Number of Cycles]

2/2

(1) MOV.size:G #IMM, dest

.size

.B

.W

SIZE

0

1

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/3 5/3

abs16dsp:8[An]

4/3

dsp:16[An]dsp:8[SB/FB]

4/3 5/3

An

3/33/23/2

[An]Rndest

dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

LDIPL

MOV

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 0 1 0 0 #IMM

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 1 1 0 0 DEST (

Bytes/Cycles

Bytes/Cycles

*1 If the size specifier (.size) is (.W), the number of bytes above is increased by 1.

196

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

MOV

1 1 0 1 1 0 0 SIZE IMM4 DEST

(2) MOV.size:Q #IMM, dest
dest code

dsp8)dsp16/abs16

.size

.B

.W

SIZE

0

1
1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

 0

+1

+2

+3

+4

+5

+6

+7

#IMM IMM4IMM4 #IMM

–8

–7

–6

–5

–4

–3

–2

–1

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/2 4/2

abs16dsp:8[An]

3/2

dsp:16[An]dsp:8[SB/FB]

3/2 4/2

An

2/22/12/1

[An]Rndest

b7 b0 b7 b0

(

Bytes/Cycles

197

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

MOV

dsp:8[SB/FB]

3/2

Rn

2/1

abs16

4/2

dest

[Number of Bytes/Number of Cycles]

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

#IMM8

(3) MOV.B:S #IMM8, dest
dest code

dsp8

abs16)
b7 b0

(1 1 0 0 0 DEST

Bytes/Cycles

198

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

MOV
(4) MOV.size:S #IMM, dest

#IMM8

#IMM16

.size

.B

.W

SIZE

1

0

DESTdest

A0

A1

0

1

2/1

dest code

dsp8)abs16

(5) MOV.B:Z #0, dest

dsp:8[SB/FB]

2/2

Rn

1/1

abs16

3/2

dest

[Number of Bytes/Number of Cycles]

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

MOV

b7 b0

1 SIZE 1 0 DEST 0 1 0

[Number of Bytes/Number of Cycles]

b7 b0

1 0 1 1 0 DEST (

Bytes/Cycles

Bytes/Cycles

*1 If the size specifier (.size) is (.W), the number of bytes and cycles above are increased by 1 and 1,

respectively.

199

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(

MOV
(6) MOV.size:G src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/2

4/2

4/3

5/3

5/3

6/3

6/3

6/3

4/2

4/2

4/3

5/3

5/3

6/3

6/3

6/3

abs16dsp:8[An]

3/2

3/2

3/3

4/3

4/3

5/3

5/3

5/3

dsp:16[An]dsp:8[SB/FB]

3/2

3/2

3/3

4/3

4/3

5/3

5/3

5/3

4/2

4/2

4/3

5/3

5/3

6/3

6/3

6/3

An

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

0 1 1 1 0 0 1 SIZE SRC DEST (

dest
src

200

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

MOV
(7) MOV.B:S src, dest

src code

dsp8)abs16

DESTdest

A0

A1

0

1

MOV
(8) MOV.B:S R0L/R0H, dest

dest code

dsp8)abs16

src SRC

R0L/R0H

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

0 0

0 1

1 0

1 1

R0L

R0H

0

1

SRCsrc dest DEST

dsp:8[SB]

dsp:8[FB]

abs16

0 1

1 0

1 1

dsp:8[SB/FB]

2/3

Rn

1/2

abs16

3/3

src

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

dest

3/2

b7 b0

0 0 1 1 0 DEST SRC

b7 b0

0 0 0 0 0 SRC DEST

(

(
dsp:8[SB/FB]

abs16

dsp:8[SB/FB] abs16

2/2Bytes/Cycles

Bytes/Cycles

201

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

MOV
(9) MOV.B:S src, R0L/R0H

src code

dsp8)abs16

MOV
(10) MOV.size:G dsp:8[SP], dest

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/3 5/3

abs16dsp:8[An]

4/3

dsp:16[An]dsp:8[SB/FB]

4/3 5/3

An

3/33/23/2

[An]Rndest

src SRC

R0L/R0H

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

0 0

0 1

1 0

1 1

DESTdest

R0L

R0H

0

1

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]Rn

1/2

abs16

3/3

src

b7 b0

0 0 0 0 1 DEST SRC

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 1 0 1 1 DEST

(

()dsp8

dest code

dsp16/abs16

src code

dsp8

2/3Bytes/Cycles

Bytes/Cycles

202

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

MOV

MOVA

(11) MOV.size:G src, dsp:8[SP]
dest code

dsp8)dsp8

src code

dsp16/abs16

src
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/33/3

[An]Rndest

(1) MOVA src, dest

dsp8

src code

dsp16)

3/2

dsp:16[SB]

4/2

dsp:16[An]dsp:8[SB/FB]

3/2 4/2

dsp:8[An]

SRCsrc

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

R0

R1

R2

R3

A0

A1

dest DEST

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 0 1 1 SRC

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 DEST SRC

[Number of Bytes/Number of Cycles]

src abs16

(

(

4/2Bytes/Cycles

Bytes/Cycles

203

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

MOVDir
(1) MOVDir R0L, dest

dest code

dsp8)dsp16/abs16

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 0 DIR DEST

DESTdest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0H

R1L

R1H

[A0]

[A1]

An

dsp:16[SB] abs16dsp:16[An]dsp:8[SB/FB]Rn [An] dsp:8[An]dest

MOVHH,

MOVLL

[Number of Bytes/Number of Cycles]

MOVHL,

MOVLH

LL

LH

HL

HH

Dir DIR

0 0

1 0

0 1

1 1

4/8 4/83/8 4/8

3/53/5

3/8

2/52/4 4/5 4/5 4/5

2/82/7

(

*1 Marked by - - - cannot be selected.

204

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

MOVDir
(2) MOVDir src, R0L

dest code

dsp8)dsp16/abs16

b7 b0 b7 b0

0 1 1 1 1 1 0 0 0 0 DIR SRC

SRCsrc

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRCsrc

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L

R0H

R1L

R1H

[A0]

[A1]

An

dsp:16[SB] abs16dsp:16[An]dsp:8[SB/FB]Rn [An] dsp:8[An]

[Number of Bytes/Number of Cycles]

LL

LH

HL

HH

Dir DIR

0 0

1 0

0 1

1 1

src

MOVHH,

MOVLL

MOVHL,

MOVLH
4/8 4/83/8 4/8

3/53/5

3/8

2/52/3 4/5 4/5 4/5

2/82/6

(

*1 Marked by - - - cannot be selected.

205

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

MUL
(1) MUL.size #IMM, dest

dest code

dsp8

dsp16/abs16) #IMM8

#IMM16

DESTdest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

--- /R1

R1L/---

A0

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

dsp:16[SB]

5/5 5/5

abs16dsp:8[An]

4/5

dsp:16[An]dsp:8[SB/FB]

4/5 5/5

An

3/53/43/4

[An]Rndest

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 0 1 0 1 DEST (

Bytes/Cycles

*1 Marked by - - - cannot be selected.

*2 If dest is Rn or An while the size specifier (.size) is (.W), the number of bytes and cycles above are

increased by 1 each.

*3 If dest is neither Rn nor An while the size specifier (.size) is (.W), the number of bytes and cycles

above are increased by 1 and 2, respectively.

206

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(

MUL
(2) MUL.size src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

src
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

DESTdest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

--- /R1

R1L/---

A0

[A0]

[A1]

An

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/5

4/5

4/6

5/6

5/6

6/6

6/6

6/6

abs16dsp:8[An]

3/5

3/5

3/6

4/6

4/6

5/6

5/6

5/6

dsp:16[An]dsp:8[SB/FB]

3/5

3/5

3/6

4/6

4/6

5/6

5/6

5/6

4/5

4/5

4/6

5/6

5/6

6/6

6/6

6/6

An

2/5

2/5

2/6

3/6

3/6

4/6

4/6

4/6

2/4

2/5

2/6

3/6

3/6

4/6

4/6

4/6

2/4

2/4

2/6

3/6

3/6

4/6

4/6

4/6

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

0 1 1 1 1 0 0 SIZE SRC DEST (

dest
src

4/5

4/5

4/6

5/6

5/6

6/6

6/6

6/6

*1 Marked by - - - cannot be selected.

*2 If src is An and dest is Rn while the size specifier (.size) is (.W), the number of cycles above is increased by 1.

*3 If src is not An and dest is Rn or An while the size specifier (.size) is (.W), the number of cycles above is

increased by 1.

*4 If dest is neither Rn nor An while the size specifier (.size) is (.W), the number of cycles above is increased by 2.

207

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

MULU
(1) MULU.size #IMM, dest

.size

.B

.W

SIZE

0

1

DESTdest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

--- /R1

R1L/---

A0

[A0]

[A1]

An

)
dest code

dsp8

dsp16/abs16

#IMM8

#IMM16

dsp:16[SB]

5/5 5/5

abs16dsp:8[An]

4/5

dsp:16[An]

4/5 5/5

An

3/53/43/4

[An]Rndest

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 0 1 0 0 DEST

[Numbera of Bytes/Number of Cycles]

(

dsp:8[SB/FB]

Bytes/Cycles

*1 Marked by - - - cannot be selected.

*2 If dest is Rn or An while the size specifier (.size) is (.W), the number of bytes and cycles above are

increased by 1 each.

*3 If dest is neither Rn nor An while the size specifier (.size) is (.W), the number of bytes and cycles

above are increased by 1 and 2, respectively.

208

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(

MULU
(2) MULU.size src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

src
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

DESTdest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

--- /R1

R1L/---

A0

[A0]

[A1]

An

dsp:16[SB]

4/5

4/5

4/6

5/6

5/6

6/6

6/6

6/6

4/5

4/5

4/6

5/6

5/6

6/6

6/6

6/6

abs16dsp:8[An]

3/5

3/5

3/6

4/6

4/6

5/6

5/6

5/6

dsp:16[An]dsp:8[SB/FB]

3/5

3/5

3/6

4/6

4/6

5/6

5/6

5/6

4/5

4/5

4/6

5/6

5/6

6/6

6/6

6/6

An

2/5

2/5

2/6

3/6

3/6

4/6

4/6

4/6

2/4

2/5

2/6

3/6

3/6

4/6

4/6

4/6

2/4

2/4

2/6

3/6

3/6

4/6

4/6

4/6

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 0 0 0 SIZE SRC DEST (

dest
src

*1 Marked by - - - cannot be selected.

*2 If src is An and dest is Rn while the size specifier (.size) is (.W), the number of cycles above is increased by 1.

*3 If src is not An and dest is Rn or An while the size specifier (.size) is (.W), the number of cycles above is

increased by 1.

*4 If dest is neither Rn nor An while the size specifier (.size) is (.W), the number of cycles above is increased by 2.

209

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

NEG
(1) NEG.size dest

dest code

dsp8)dsp16/abs16

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/12/1

[An]Rndest

NOP
(1) NOP

[Number of Bytes/Number of Cycles]

1/1

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 1 0 1 DEST

[Number of Bytes/Number of Cycles]

b7 b0

0 0 0 0 0 1 0 0

(

Bytes/Cycles

Bytes/Cycles

210

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(2) NOT.B:S dest
NOT

dest code

dsp8)abs16

NOT
(1) NOT.size:G dest

dest code

dsp8)dsp16/abs16

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/12/1

[An]Rndest

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]

2/3

Rn

1/1

abs16

3/3

dest

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 1 1 1 DEST

b7 b0

1 0 1 1 1 DEST

(

(

Bytes/Cycles

Bytes/Cycles

211

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

OR
(1) OR.size:G #IMM, dest

dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest

OR
(2) OR.B:S #IMM8, dest

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]

3/3

Rn

2/1

abs16

4/3

dest

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

#IMM8

dest code

dsp8)abs16

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 0 0 1 1 DEST

b7 b0

1 0 0 1 1 DEST

(

(

Bytes/Cycles

Bytes/Cycles

*1 If the size specifier (.size) is (.W), the number of bytes above is increased by 1.

212

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(

OR
(3) OR.size:G src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

1 0 0 1 1 0 0 SIZE SRC DEST (

dest
src

213

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

OR
(4) OR.B:S src, R0L/R0H

dest code

dsp8)abs16

POP
(1) POP.size:G dest

dest code

dsp8)dsp16/abs16

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/4 4/4

abs16dsp:8[An]

3/4

dsp:16[An]dsp:8[SB/FB]

3/4 4/4

An

2/42/32/3

[An]Rndest

src SRC

R0L/R0H

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

0 0

0 1

1 0

1 1

DESTdest

R0L

R0H

0

1

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]

2/3

Rn

1/2

abs16

3/3

src

b7 b0

0 0 0 1 1 DEST SRC

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 1 1 0 1 DEST

(

(

Bytes/Cycles

Bytes/Cycles

214

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(2) POP.B:S dest

1/3

POP
(3) POP.W:S dest

1/3

[Number of Bytes/Number of Cycles]

DESTdest

R0L

R0H

0

1

DESTdest

A0

A1

0

1

POP

b7 b0

1 0 0 1 DEST 0 1 0

b7 b0

1 1 0 1 DEST 0 1 0

[Number of Bytes/Number of Cycles]

Bytes/Cycles

Bytes/Cycles

215

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

POPC
(1) POPC dest

POPM
(1) POPM dest

DEST

dest DEST

0 0 0

0 0 1

0 1 0

0 1 1

INTBL

INTBH

FLG

dest DEST

1 0 0

1 0 1

1 1 0

1 1 1

ISP

SP

SB

FB

dest

FB SB R3 R2 R1 R0A1 A0

DEST*2

[Number of Bytes/Number of Cycles]

2/3

[Number of Bytes/Number of Cycles]

*2 The bit for a selected register is 1.

The bit for a non-selected register is 0.

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 DEST 0 0 1 1

b7 b0

1 1 1 0 1 1 0 1

2/3Bytes/Cycles

Bytes/Cycles

*1 Marked by - - - cannot be selected.

*3 If two or more registers need to be restored, the number of required cycles is 2 x m (m: number of

registers to be restored).

216

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

PUSH
(1) PUSH.size:G #IMM

#IMM8

#IMM16

.size

.B

.W

SIZE

0

1

3/2

(2) PUSH.size:G src

.size

.B

.W

SIZE

0

1

src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/4 4/4

abs16dsp:8[An]

3/4

dsp:16[An]dsp:8[SB/FB]

3/4 4/4

An

2/42/22/2

[An]Rnsrc

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 1 1 1 0 0 0 1 0

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 1 0 0 SRC

PUSH

dsp8

src code

dsp16/abs16)(

[Number of Bytes/Number of Cycles]

Bytes/Cycles

Bytes/Cycles

*1 If the size specifier (.size) is (.W), the number of bytes above is increased by 1.

217

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

PUSH
(3) PUSH.B:S src

1/2

[Number of Bytes/Number of Cycles]

PUSH
(4) PUSH.W:S src

1/2

SRCsrc

R0L

R0H

0

1

SRCsrc

A0

A1

0

1

b7 b0

1 0 0 0 SRC 0 1 0

b7 b0

1 1 0 0 SRC 0 1 0

[Number of Bytes/Number of Cycles]

Bytes/Cycles

Bytes/Cycles

218

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

PUSHA
(1) PUSHA src

dsp8

src code

dsp16/abs16)

[Number of Bytes/Number of Cycles]

3/2

dsp:16[SB]

4/2

dsp:16[An]dsp:8[SB/FB]

3/2 4/2

dsp:8[An]src

PUSHC

2/2

[Number of Bytes/Number of Cycles]

SRCsrc
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

src SRC

0 0 0

0 0 1

0 1 0

0 1 1

INTBL

INTBH

FLG

src SRC

1 0 0

1 0 1

1 1 0

1 1 1

ISP

SP

SB

FB

*1 Marked by - - - cannot be selected.

(1) PUSHC src

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 0 0 1 SRC

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 SRC 0 0 1 0

abs:16

(

4/2Bytes/Cycles

Bytes/Cycles

219

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

PUSHM

[Number of Bytes/Number of Cycles]

(1) PUSHM src

SRC

2/2 m

REIT
(1) REIT

1/6

[Number of Bytes/Number of Cycles]

src

R0 R1 A0 A1 SB FBR2 R3

SRC*1

b7 b0

1 1 1 0 1 1 0 0

b7 b0

1 1 1 1 1 0 1 1

*2 m denotes the number of registers to be saved.

Bytes/Cycles

Bytes/Cycles

*1 The bit for a selected register is 1.

The bit for a non-selected register is 0.

220

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

*1 m denotes the number of operation performed.

*2 If the size specifier (.size) is (.W), the number of cycles is (6+9 m).

RMPA
(1) RMPA.size

.size

.B

.W

SIZE

0

1

ROLC
(1) ROLC.size dest

dest code

dsp8)dsp16/abs16

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/12/1

[An]Rndest

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 1 1 1 1 0 0 0 1

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 1 0 1 0 DEST (

2/4+7 m

Bytes/Cycles

Bytes/Cycles

221

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

RORC
(1) RORC.size dest

dest code

dsp8)dsp16/abs16

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/12/1

[An]Rndest

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 1 0 1 1 DEST (

Bytes/Cycles

222

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

ROT
(1) ROT.size #IMM, dest

dest code

dsp8)dsp16/abs16

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

+1

+2

+3

+4

+5

+6

+7

+8

IMM4IMM4 #IMM

–1

–2

–3

–4

–5

–6

–7

–8

.size

.B

.W

SIZE

0

1

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/2+m 4/2+m

abs16dsp:8[An]

3/2+m

dsp:16[An]dsp:8[SB/FB]

3/2+m 4/2+m

An

2/2+m2/1+m2/1+m

[An]Rndest

b7 b0 b7 b0

1 1 1 0 0 0 0 SIZE IMM4 DEST

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

#IMM

*1 m denotes the number of rotates performed.

(

Bytes/Cycles

223

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

ROT
(2) ROT.size R1H, dest

dest code

dsp8)dsp16/abs16

DESTdest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/---

R1L/R2

--- /R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3+m 4/3+m

abs16dsp:8[An] dsp:16[An]dsp:8[SB/FB]

3/3+m

An

2/3+m2/2+m2/2+m

[An]Rndest

RTS
(1) RTS

1/6

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 1 1 0 DEST

b7 b0

1 1 1 1 0 0 1 1

(

[Number of Bytes/Number of Cycles]

3/3+m 4/3+mBytes/Cycles

Bytes/Cycles

*1 Marked by - - - cannot be selected.

*2 m denotes the number of rotates performed.

224

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

SBB
(1) SBB.size #IMM, dest

dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 0 1 1 1 DEST (

Bytes/Cycles

*1 If the size specifier (.size) is (.W), the number of bytes above is increased by 1.

225

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(

SBB
(2) SBB.size src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

1 0 1 1 1 0 0 SIZE SRC DEST (

dest
src

226

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

SBJNZ
(1) SBJNZ.size #IMM, dest, label

1 1 1 1 1 0 0 SIZE IMM4 DEST

label codedest code

dsp8)dsp16/abs16

dsp8

dsp:16[SB]

5/5 5/5

abs16dsp:8[An]

4/5

dsp:16[An]dsp:8[SB/FB]

4/5 5/5

An

3/53/33/3

[An]Rndest

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

 0

–1

–2

–3

–4

–5

–6

–7

#IMM IMM4IMM4 #IMM

+8

+7

+6

+5

+4

+3

+2

+1

.size

.B

.W

SIZE

0

1

dsp8(label code) = address indicated by label – (start address of instruction + 2)

b7 b0 b7 b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

[Number of Bytes/Number of Cycles]

(

Bytes/Cycles

*1 If branched to label, the number of cycles above is increased by 4.

227

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

SHA
(1) SHA.size #IMM, dest

1 1 1 1 0 0 0 SIZE IMM4 DEST

dest code

dsp8)dsp16/abs16

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

+1

+2

+3

+4

+5

+6

+7

+8

#IMM IMM4IMM4 #IMM

–1

–2

–3

–4

–5

–6

–7

–8

.size

.B

.W

SIZE

0

1

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/2+m 4/2+m

abs16dsp:8[An]

3/2+m

dsp:16[An]dsp:8[SB/FB]

3/2+m 4/2+m

An

2/2+m2/1+m2/1+m

[An]Rndest

b7 b0 b7 b0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

(

Bytes/Cycles

*1 m denotes the number of shifts performed.

228

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

SHA

0 1 1 1 0 1 0 SIZE 1 1 1 1 DEST

(2) SHA.size R1H, dest
dest code

dsp8)dsp16/abs16

DESTdest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/---

R1L/R2

--- /R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3+m 4/3+m

abs16dsp:8[An]

3/3+m

dsp:16[An]dsp:8[SB/FB]

3/3+m 4/3+m

An

2/3+m2/2+m2/2+m

[An]Rndest

SHA
(3) SHA.L #IMM, dest

2/3+m

[Number of Bytes/Number of Cycles]

*2 m denotes the number of shifts performed.

*1 Marked by - - - cannot be selected.

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

+1

+2

+3

+4

+5

+6

+7

+8

#IMM IMM4IMM4 #IMM

–1

–2

–3

–4

–5

–6

–7

–8

DESTdest

0

1

b7 b0 b7 b0

b7 b0 b7 b0

1 1 1 0 1 0 1 1 1 0 1 DEST IMM4

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

R2R0

R3R1

*2 m denotes the number of shifts performed.

(

Bytes/Cycles

Bytes/Cycles

229

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

SHA
(4) SHA.L R1H, dest

2/4+m

[Number of Bytes/Number of Cycles]

DESTdest

0

1

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 0 1 DEST 0 0 0 1

R2R0

R3R1

*1 m denotes the number of shifts performed.

Bytes/Cycles

230

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

SHL
(1) SHL.size #IMM, dest

dest code

dsp8)dsp16/abs16

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

+1

+2

+3

+4

+5

+6

+7

+8

#IMM IMM4IMM4 #IMM

–1

–2

–3

–4

–5

–6

–7

–8

.size

.B

.W

SIZE

0

1

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/2+m 4/2+m

abs16dsp:8[An] dsp:16[An]dsp:8[SB/FB]

3/2+m 4/2+m

An

2/2+m2/1+m2/1+m

[An]Rndest

b7 b0 b7 b0

1 1 1 0 1 0 0 SIZE IMM4 DEST

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

(

3/2+mBytes/Cycles
*1 m denotes the number of shifts performed.

231

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

SHL
(2) SHL.size R1H, dest

dest code

dsp8)dsp16/abs16

DESTdest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/---

R1L/R2

--- /R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

dsp:16[SB]

4/3+m

abs16dsp:8[An]

3/3+m

dsp:16[An]dsp:8[SB/FB]

3/3+m 4/3+m

An

2/3+m2/2+m2/2+m

[An]Rndest

[Number of Bytes/Number of Cycles]

SHL
(3) SHL.L #IMM, dest

[Number of Bytes/Number of Cycles]

2/3+m

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

+1

+2

+3

+4

+5

+6

+7

+8

#IMM IMM4IMM4 #IMM

–1

–2

–3

–4

–5

–6

–7

–8

DESTdest

R2R0

R3R1

0

1

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 1 1 1 0 DEST

b7 b0 b7 b0

1 1 1 0 1 0 1 1 1 0 0 DEST IMM4

(

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

4/3+mBytes/Cycles

Bytes/Cycles

*1 Marked by - - - cannot be selected.

*2 m denotes the number of shifts performed.

*2 m denotes the number of shifts performed.

232

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

SHL
(4) SHL.L R1H, dest

2/4+m

[Number of Bytes/Number of Cycles]

SMOVB
(1) SMOVB.size

.size

.B

.W

SIZE

0

1

2/5+5 m

[Number of Bytes/Number of Cycles]

DESTdest

R2R0

R3R1

0

1

*1 m denotes the number of shifts performed.

b7 b0 b7 b0

1 1 1 0 1 0 1 1 0 0 0 DEST 0 0 0 1

b7 b0 b7 b0

0 1 1 1 1 1 0 SIZE 1 1 1 0 1 0 0 1

Bytes/Cycles

Bytes/Cycles

*2 m denotes the number of transfers performed.

233

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

0 1 1 1 1 1 0 SIZE 1 1 1 0 1 0 0 0

SMOVF

.size

.B

.W

SIZE

0

1

2/5+5 m

[Number of Bytes/Number of Cycles]

(1) SMOVF.size

SSTR

0 1 1 1 1 1 0 SIZE 1 1 1 0 1 0 1 0

(1) SSTR.size

.size

.B

.W

SIZE

0

1

2/3+2 m

[Number of Bytes/Number of Cycles]

*1 m denotes the number of transfers performed.

b7 b0 b7 b0

b7 b0 b7 b0

Bytes/Cycles

Bytes/Cycles

*1 m denotes the number of transfers performed.

234

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

STC

0 1 1 1 1 0 1 1 1 SRC DEST

(1) STC src, dest
dest Code

dsp8)dsp16/abs16

INTBL

INTBH

FLG

ISP

SP

SB

FB

src

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

SRC

Rn

[An]

An

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

R0

R1

R2

R3

A0

A1

[A0]

[A1]

dest

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

DEST DEST

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/2 4/2

abs16dsp:8[An]

3/2

dsp:16[An]dsp:8[SB/FB]

3/2 4/2

An

2/22/12/1

[An]Rndest

Bytes/Cycles

STC
(2) STC PC, dest

dest Code

dsp8)dsp16/abs16

DESTdest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

DESTdest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R2R0

R3R1

A1A0

[A0]

[A1]

An

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3 4/3

abs16dsp:8[An]

3/3

dsp:16[An]dsp:8[SB/FB]

3/3 4/3

An

2/32/22/2

[An]Rndest

Bytes/Cycles

b7 b0 b7 b0

0 1 1 1 1 1 0 0 1 1 0 0 DEST (

(
b7 b0 b7 b0

*1 Marked by - - - cannot be selected.

*1 Marked by - - - cannot be selected.

235

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

STCTX

abs16

[Number of Bytes/Number of Cycles]

7/11+2 m

STE
(1) STE.size src, abs20

src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

7/4 7/4

abs16dsp:8[An]

6/4

dsp:16[An]dsp:8[SB/FB]

6/4 7/4

An

5/45/35/3

[An]Rnsrc

Bytes/Cycles

*1 m denotes the number of transfers performed.

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 1 1 1 0 0 0 0

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 0 0 0 SRC

Bytes/Cycles

(1) STCTX abs16, abs20

abs20

abs20

dest code

)dsp8

src code

dsp16/abs16(

236

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(2) STE.size src, dsp:20[A0]
STE

dsp8

src code

dsp16/abs16)
src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

7/4 7/4

abs16dsp:8[An]

6/4

dsp:16[An]dsp:8[SB/FB]

6/4 7/4

An

5/45/35/3

[An]Rnsrc

dsp8

src code

dsp16/abs16)
src

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

src

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

SRC SRC.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/4 4/4

abs16dsp:8[An]

3/4

dsp:16[An]dsp:8[SB/FB]

3/4 4/4

An

2/42/32/3

[An]Rnsrc

STE
(3) STE.size src, [A1A0]

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 0 0 1 SRC

b7 b0 b7 b0

0 1 1 1 0 1 0 SIZE 0 0 1 0 SRC

(

(

Bytes/Cycles

Bytes/Cycles

dsp20

dest code

237

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

STNZ
(1) STNZ #IMM8, dest

dsp:8[SB/FB]

3/2

Rn

2/1

abs16

4/2

dest

Bytes/Cycles

STZ

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

dsp:8[SB/FB]

3/2

Rn

2/1

abs16

4/2

dest

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

[Number of Bytes/Number of Cycles]

[Number of Bytes/Number of Cycles]

(1) STZ #IMM8, dest
dest code

#IMM8

dest code

dsp8)abs16

b7 b0

1 1 0 1 0 DEST

#IMM8 dsp8)abs16

b7 b0

1 1 0 0 1 DEST

(

(

Bytes/Cycles

*1 If the Z flag = 0, the number of cycles above is increased by 1.

*2 If the Z flag = 1, the number of cycles above is increased by 1.

238

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

STZX
(1) STZX #IMM81, #IMM82, dest

1 1 0 1 1 DEST

[Number of Bytes/Number of Cycles]

dsp:8[SB/FB]

4/3

Rn

3/2

abs16

5/3

dest

Bytes/Cycles

SUB
(1) SUB.size:G #IMM, dest

dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

#IMM81

dest code

dsp8)abs16

#IMM82
b7 b0

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 0 1 0 1 DEST

(

(

Bytes/Cycles

*1 If the size specifier (.size) is (.W), the number of bytes above is increased by 1.

239

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

SUB
(2) SUB.B:S #IMM8, dest

dsp:8[SB/FB]

3/3

Rn

2/1

abs16

4/3

dest

Rn

dsp:8[SB/FB]

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

R0H

R0L

dsp:8[SB]

dsp:8[FB]

abs16abs16

dest DEST

b7 b0

1 0 0 0 1 DEST #IMM8)
dest code

dsp8

abs16(

[Number of Bytes/Number of Cycles]

Bytes/Cycles

240

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(

SUB
(3) SUB.size:G src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

1 0 1 0 1 0 0 SIZE SRC DEST (

src
dest

241

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

SUB
(4) SUB.B:S src, R0L/R0H

dest code

dsp8)abs16

dsp:8[SB/FB]

2/3

Rn

1/2

abs16

3/3

src

Bytes/Cycles

(1) TST.size #IMM, dest
dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

dest

dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest

DESTdest

R0L

R0H

0

1

src SRC

R0L/R0H

dsp:8[SB]

dsp:8[FB]

abs16

Rn

dsp:8[SB/FB]

abs16

0 0

0 1

1 0

1 1

TST

b7 b0

0 0 1 0 1 DEST SRC

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 0 0 0 0 DEST

(

(

[Number of Bytes/Number of Cycles]

Bytes/Cycles

*1 If the size specifier (.size) is (.W), the number of bytes above is increased by 1.

242

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

TST
(2) TST.size src, dest

dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

1 0 0 0 0 0 0 SIZE SRC DEST ((

dest
src

243

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

(1) UND

UND

[Number of Bytes/Number of Cycles]

1/20Bytes/Cycles

(1) WAIT

[Number of Bytes/Number of Cycles]

2/3Bytes/Cycles

WAIT

b7 b0

1 1 1 1 1 1 1 1

b7 b0 b7 b0

0 1 1 1 1 1 0 1 1 1 1 1 0 0 1 1

244

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

XCHG
(1) XCHG.size src, dest

dest code

dsp8)dsp16/abs16

.size

.B

.W

SIZE

0

1

SRCsrc

0 0

0 1

1 0

1 1

R0L/R0

R0H/R1

R1L/R2

R1H/R3

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST

dsp:16[SB]

4/5 4/5

abs16dsp:8[An]

3/5

dsp:16[An]dsp:8[SB/FB]

3/5 4/5

An

2/52/42/4

[An]Rndest

Bytes/Cycles

[Number of Bytes/Number of Cycles]

b7 b0 b7 b0

0 1 1 1 1 0 1 SIZE 0 0 SRC DEST (

245

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

XOR
(1) XOR.size #IMM, dest

dest code

dsp8)dsp16/abs16

#IMM8

#IMM16

dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

DESTDEST.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

5/4 5/4

abs16dsp:8[An]

4/4

dsp:16[An]dsp:8[SB/FB]

4/4 5/4

An

3/43/23/2

[An]Rndest

b7 b0 b7 b0

0 1 1 1 0 1 1 SIZE 0 0 0 1 DEST (

Bytes/Cycles

*1 If the size specifier (.size) is (.W), the number of bytes above is increased by 1.

246

Chapter 4 Instruction Code/Number of Cycles
4.2 Instruction Code/Number of Cycles

XOR
(2) XOR.size src, dest

1 0 0 0 1 0 0 SIZE SRC DEST dsp8

dest code

dsp16/abs16)
src code

dsp8)dsp16/abs16

SRC/DESTsrc/dest
dsp:8[A0]

dsp:8[A1]

dsp:8[SB]

dsp:8[FB]

dsp:16[A0]

dsp:16[A1]

dsp:16[SB]

abs16

SRC/DESTsrc/dest

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

Rn

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

R0L/R0

R0H/R1

R1L/R2

R1H/R3

A0

A1

[A0]

[A1]

An

.size

.B

.W

SIZE

0

1

[Number of Bytes/Number of Cycles]

dsp:16[SB]

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

abs16dsp:8[An]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

dsp:16[An]dsp:8[SB/FB]

3/3

3/3

3/4

4/4

4/4

5/4

5/4

5/4

4/3

4/3

4/4

5/4

5/4

6/4

6/4

6/4

An

2/3

2/3

2/4

3/4

3/4

4/4

4/4

4/4

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

2/2

2/2

2/3

3/3

3/3

4/3

4/3

4/3

Rn

An

[An]

dsp:8[An]

dsp:8[SB/FB]

dsp:16[An]

dsp:16[SB]

abs16

[An]Rn

b7 b0 b7 b0

((

src
dest

Chapter 5

Interrupt

5.1 Outline of Interrupt

5.2 Interrupt Control

5.3 Interrupt Sequence

5.4 Return from Interrupt Routine

5.5 Interrupt Priority

5.6 Multiple Interrupts

5.7 Precautions for Interrupts

248

Chapter 5 Interrupt

Undefined instruction (UND instruc-
tion)
Overflow (INTO instruction)
BRK instruction
INT instruction

Remarks

Interrupt generated by the UND instruction.
Interrupt generated by the INTO instruction.
Executed beginning from address indicated by vector in
variable vector table if all vector contents are FF16

Can be controlled by an interrupt enable bit.
Normally do not use this interrupt.

Normally do not use this interrupt.

External interrupt generated by driving NMI pin low.

















Software

Hardware

 Interrupt















Reset

NMI

DBC
Watchdog timer
Single step
Address matched

*1 Peripheral I/O interrupts are generated by the peripheral functions built into the microcomputer system.

Special

Peripheral I/O*1

5.1 Outline of Interrupt
When an interrupt request is acknowledged, control branches to the interrupt routine that is set to an inter-

rupt vector table. Each interrupt vector table must have had the start address of its corresponding interrupt

routine set. For details about the interrupt vector table, refer to Section 1.10, “Vector Table.”

5.1.1 Types of Interrupts
Figure 5.1.1 lists the types of interrupts. Table 5.1.1 lists the source of interrupts (nonmaskable) and the

fixed vector tables.

*1 This interrupt is used exclusively for debugger purposes.

 Maskable interrupt: This type of interrupt can be controlled by using the I flag to enable (or

disable) an interrupt or by changing the interrupt priority level.

 Nonmaskable interrupt: This type of interrupt cannot be controlled by using the I flag to enable (or disable)

an interrupt or by changing the interrupt priority level.

Vector table addresses
Address (L) to address (H)

5.1 Outline of Interrupt

Interrupt source

Reset

Single step*1

Address match

Undefined instruction
Overflow

BRK instruction

Watchdog timer

DBC *1

NMI

FFFDC16 to FFFDF16

FFFE016 to FFFE316

FFFE416 to FFFE716

FFFE816 to FFFEB16

FFFEC16 to FFFEF16

FFFF016 to FFFF316

FFFF416 to FFFF716

FFFF816 to FFFFB16

FFFFC16 to FFFFF16

Figure 5.1.1. Classification of interrupts

Table 5.1.1 Interrupt Source (Nonmaskable) and Fixed Vector Table

249

Chapter 5 Interrupt

5.1.2 Software Interrupts
Software interrupts are generated by some instruction that generates an interrupt request when ex-

ecuted. Software interrupts are nonmaskable interrupts.

(1) Undefined-instruction interrupt

This interrupt occurs when the UND instruction is executed.

(2) Overflow interrupt

This interrupt occurs if the INTO instruction is executed when the O flag is 1.

The following lists the instructions that cause the O flag to change:

ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

(3) BRK interrupt

This interrupt occurs when the BRK instruction is executed.

(4) INT instruction interrupt

This interrupt occurs when the INT instruction is executed after specifying a software interrupt number

from 0 to 63. Note that software interrupt numbers 0 to 31 are assigned to peripheral I/O interrupts. This

means that by executing the INT instruction, you can execute the same interrupt routine as used in

peripheral I/O interrupts.

The stack pointer used in INT instruction interrupt varies depending on the software interrupt number.

For software interrupt numbers 0 to 31, the U flag is saved when an interrupt occurs and the U flag is

cleared to 0 to choose the interrupt stack pointer (ISP) before executing the interrupt sequence. The

previous U flag before the interrupt occurred is restored when control returns from the interrupt routine.

For software interrupt numbers 32 to 63, such stack pointer switchover does not occur.

5.1 Outline of Interrupt

250

Chapter 5 Interrupt

5.1.3 Hardware Interrupts
There are Two types in hardware Interrupts; special interrupts and Peripherai I/O interrupts.

(1) Special interrupts

Special interrupts are nonmaskable interrupts.

• Reset

A reset occurs when the RESET pin is pulled low.

• NMI interrupt

This interrupt occurs when the NMI pin is pulled low.

• DBC interrupt

This interrupt is used exclusively for debugger purposes. You normally do not need to use this interrupt.

• Watchdog timer interrupt

This interrupt is caused by the watchdog timer.

• Single-step interrupt

This interrupt is used exclusively for debugger purposes. You normally do not need to use this inter-

rupt. A single-step interrupt occurs when the D flag is set (= 1); in this case, an interrupt is generated

each time an instruction is executed.

• Address-match interrupt

This interrupt occurs when the program's execution address matches the content of the address match

register while the address match interrupt enable bit is set (= 1).

This interrupt does not occur if any address other than the start address of an instruction is set in the

address match register.

(2) Peripheral I/O interrupts

These interrupts are generated by the peripheral functions built into the microcomputer system. The

types of built-in peripheral functions vary with each M16C model, so do the types of interrupt causes. The

interrupt vector table uses the same software interrupt numbers 0–31 that are used by the INT instruction.

Peripheral I/O interrupts are maskable interrupts. For details about peripheral I/O interrupts, refer to the

M16C User’s Manual.

5.1 Outline of Interrupt

251

Chapter 5 Interrupt

FSET I

Time

5.2 Interrupt Control
The following explains how to enable/disable maskable interrupts and set acknowledge priority. The expla-

nation here does not apply to non-maskable interrupts.

Maskable interrupts are enabled and disabled by using the interrupt enable flag (I flag), interrupt priority

level select bit, and processor interrupt priority level (IPL). Whether there is any interrupt requested is

indicated by the interrupt request bit. The interrupt request bit and interrupt priority level select bit are

arranged in the interrupt control register provided for each specific interrupt. The interrupt enable flag (I

flag) and processor interrupt priority level (IPL) are arranged in the flag register (FLG).

For details about the memory allocation and the configuration of interrupt control registers, refer to the

M16C User's Manual.

5.2.1 Interrupt Enable Flag (I Flag)
The interrupt enable flag (I flag) is used to disable/enable maskable interrupts. When this flag is set (=

1), all maskable interrupts are enabled; when the flag is cleared to 0, they are disabled. This flag is

automatically cleared to 0 after a reset is cleared.

When the I flag is changed, the altered flag status is reflected in determining whether or not to accept an

interrupt request at the following timing:

• If the flag is changed by an REIT instruction, the changed status takes effect beginning with that

 REIT instruction.

• If the flag is changed by an FCLR, FSET, POPC, or LDC instruction, the changed status takes

 effect beginning with the next instruction.

Previous
instruction

Interrupt sequenceREIT

Interrupt sequence Next instruction
Previous
instruction

Time

Figure 5.2.1 Timing at which changes of I flag are reflected in interrupt handling

Interrupt request generated

Interrupt request generated

5.2 Interrupt Control

When changed by REIT instruction

Determination whether or not to
accept interrupt request

Determination whether or not to
accept interrupt request

When changed by FCLR, FSET, POPC, or LDC instruction

(If I flag is changed from 0 to 1 by REIT instruction)

 (If I flag is changed from 0 to 1 by FSET instruction)

5.2.2 Interrupt Request Bit
This bit is set (= 1) when an interrupt request is generated. This bit remains set until the interrupt request

is acknowledged. The bit is cleared to 0 when the interrupt request is acknowledged.

This bit can be cleared to 0 (but cannot be set to 1) in software.

252

Chapter 5 Interrupt

When the processor interrupt priority level (IPL) or the interrupt priority level of some interrupt is

changed, the altered level is reflected in interrupt handling at the following timing:

• If the processor interrupt priority level (IPL) is changed by an REIT instruction, the changed level takes

 effect beginning with the instruction that is executed two clock periods after the last clock of the REIT

 instruction.

• If the processor interrupt priority level (IPL) is changed by a POPC, LDC, or LDIPL instruction, the

 changed level takes effect beginning with the instruction that is executed three clock periods after the

 last clock of the instruction used.

• If the interrupt priority level of a particular interrupt is changed by an instruction such as MOV, the

 changed level takes effect beginning with the instruction that is executed two clock or three clock

 periods after the last clock of the instruction used.

M16C/60, M16C/61 group, and M16C/20 series: two clock

M16C/60 series after M16C/62 group (it has M16C/62 group), M16C/Tiny series : three clock

5.2.3 Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)
Interrupt priority levels are set by the interrupt priority select bit in an interrupt control register. When an

interrupt request is generated, the interrupt priority level of this interrupt is compared with the processor

interrupt priority level (IPL). This interrupt is enabled only when its interrupt priority level is greater than

the processor interrupt priority level (IPL). This means that you can disable any particular interrupt by

setting its interrupt priority level to 0.

Table 5.2.1 shows how interrupt priority levels are set. Table 5.2.2 shows interrupt enable levels in

relation to the processor interrupt priority level (IPL).

The following lists the conditions under which an interrupt request is acknowledged:

• Interrupt enable flag (I flag) = 1

• Interrupt request bit = 1

• Interrupt priority level > Processor interrupt priority level (IPL)

The interrupt enable flag (I flag), interrupt request bit, interrupt priority level select bit, and the processor

interrupt priority level (IPL) all are independent of each other, so they do not affect any other bit.

0 1 0

0 1 1

1 1 0

1 1 1

0 0 1

0 0 0

Low

High

1 0 1

1 1 0

1 1 1

0 0 0

1 0 0

0 0 1

0 1 0

0 1 1

Table 5.2.2 IPL and Interrupt Enable LevelsTable 5.2.1 Interrupt Priority Levels

Interrupt priority

level select bit

Interrupt priority

level

Priority

order
b0b1b2

1 0 0

1 0 1

Processor interrupt

priority level (IPL)

 Enabled interrupt priority

levels
IPL1 IPL0 Interrupt levels 1 and above are enabled.

Interrupt levels 2 and above are enabled.

Interrupt levels 3 and above are enabled.

Interrupt levels 4 and above are enabled.

Interrupt levels 5 and above are enabled.

Interrupt levels 6 and above are enabled.

Interrupt levels 7 and above are enabled.

All maskable interrupts are disabled.

Level 0(interrupt disabled)

Level 1

Level 2

Level 3

Level 4

Level 5

Level 6

Level 7

IPL2

5.2 Interrupt Control

253

Chapter 5 Interrupt
5.2 Interrupt Control

Example 1:Using the NOP instruction to keep the program waiting until
the interrupt control register is modified

INT_SWITCH1:
FCLR I ; Disable interrupts.
AND.B #00h, 0055h ; Set the TA0IC register to “0016”.
NOP ; Four NOP instructions are required when using HOLD function.

 NOP ; Refer to hardware manual about the number of NOP
; instruction

FSET I ; Enable interrupts.

Example 2:Using the dummy read to keep the FSET instruction waiting
INT_SWITCH2:

FCLR I ; Disable interrupts.
AND.B #00h, 0055h ; Set the TA0IC register to “0016”.
MOV.W MEM, R0 ; Dummy read.
FSET I ; Enable interrupts.

Example 3:Using the POPC instruction to changing the I flag
INT_SWITCH3:

PUSHC FLG
FCLR I ; Disable interrupts.
AND.B #00h, 0055h ; Set the TA0IC register to “0016”.
POPC FLG ; Enable interrupts.

5.2.4 Rewrite the Interrupt Control Register
(1) The interrupt control register for any interrupt should be modified in places where no requests for that

interrupt may occur. Otherwise, disable the interrupt before rewriting the interrupt control register.

(2) To rewrite the interrupt control register for any interrupt after disabling that interrupt, be careful with the

instruction to be used.

Changing any bit other than the IR bit

If while executing an instruction, a request for an interrupt controlled by the register being modified

occurs, the IR bit in the register may not be set to “1” (interrupt requested), with the result that the

interrupt request is ignored. If such a situation presents a problem, use the instructions shown below

to modify the register.

Usable instructions: AND, OR, BCLR, BSET

Changing the IR bit

Depending on the instruction used, the IR bit may not always be cleared to “0” (interrupt not re-

quested). Therefore, be sure to use the MOV instruction to clear the IR bit.

(3) When using the I flag to disable an interrupt, refer to the sample program fragments shown below as

you set the I flag. (Refer to (2) for details about rewrite the interrupt control registers in the sample

program fragments.)

Examples 1 through 3 show how to prevent the I flag from being set to “1” (interrupts enabled) before the

interrupt control register is rewrited, owing to the effects of the internal bus and the instruction queue

buffer.

254

Chapter 5 Interrupt

5.3 Interrupt Sequence
An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the

instant the interrupt routine is executed — is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the

execution of the instruction is completed, and transfers control to the interrupt sequence from the next

cycle. If an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction,

the processor temporarily suspends the instruction being executed, and transfers control to the interrupt

sequence.

In the interrupt sequence, the processor carries out the following in sequence given:

(1) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading address

0000016.

(2) Saves the content of the flag register (FLG) as it was immediately before the start of interrupt sequence

in the temporary register (Note) within the CPU.

(3) Sets the interrupt enable flag (I flag), the debug flag (D flag), and the stack pointer select flag (U flag) to

“0” (the U flag, however does not change if the INT instruction, in software interrupt numbers 32

through 63, is executed)

(4) Saves the content of the temporary register (Note 1) within the CPU in the stack area.

(5) Saves the content of the program counter (PC) in the stack area.

(6) Sets the interrupt priority level of the accepted instruction in the IPL.

After the interrupt sequence is completed, the processor resumes executing instructions from the first ad-

dress of the interrupt routine.

Note: This register cannot be utilized by the user.

5.3 Interrupt Sequence

255

Chapter 5 Interrupt

5.3.1 Interrupt Response Time
The interrupt response time means a period of time from when an interrupt request is generated till when

the first instruction of the interrupt routine is executed. This period consists of time (a) from when an

interrupt request is generated to when the instruction then under way is completed and time (b) in which

an interrupt sequence is executed. Figure 5.3.1 shows the interrupt response time.

Table 5.3.1 Interrupt Sequence Execution Time

Time (a) varies with each instruction being executed. The DIVX instruction requires a maximum time

that consists of 30 cycles (without wait state) .

Time (b) is shown below.

Figure 5.3.1. Interrupt response time

(a) (b)

Time

Instruction

Interrupt response time

Instruction in interrupt
routineInterrupt sequence

Interrupt request acknowledgedInterrupt request generated

(a) Time from when interrupt request is generated to when the instruction then under execution is completed

(b) Time in which the interrupt sequence is executed

8 bits data bus

Without wait state

20 cycle*1

20 cycle*1

20 cycle*1

20 cycle*1

16 bits data bus

Without wait state

18 cycle*1

19 cycle*1

19 cycle*1

20 cycle*1

Stack pointer (SP) value

Even address

Odd address

Even address

Odd address

5.3 Interrupt Sequence

*1 Add two cycles for the DBC interrupt. Add one cycle for the address match and single-step interrupts.

*2 Allocate interrupt vector addresses in even addresses as must as possible.

Interrupt vector address

Even address

Even address

Odd address*2

Odd address*2

256

Chapter 5 Interrupt

Value that is set to IPL

7

0

Not changed

5.3.2 Changes of IPL When Interrupt Request Acknowledged
When an interrupt request is acknowledged, the interrupt priority level of the acknowledged interrupt is

set to the processor interrupt priority level (IPL).

If an interrupt request is acknowledged that does not have an interrupt priority level, the value shown in

Table 5.3.2 is set to the IPL.

Table 5.3.2 Relationship between Interrupts without Interrupt Priority Levels and IPL

Interrupt sources without interrupt priority levels

Watchdog timer, NMI

Reset

Other

5.3.3 Saving Registers
In an interrupt sequence, only the contents of the flag register (FLG) and program counter (PC) are

saved to the stack area.

The order in which these contents are saved is as follows: First, the 4 high-order bits of the program

counter and 4 high-order bits and 8 low-order bits of the FLG register for a total of 16 bits are saved to

the stack area. Next, the 16 low-order bits of the program counter are saved. Figure 5.3.2 shows the

stack status before an interrupt request is acknowledged and the stack status after an interrupt request

is acknowledged.

If there are any other registers you want to be saved, save them in software at the beginning of the

interrupt routine. The PUSHM instruction allows you to save all registers except the stack pointer (SP)

by a single instruction.

5.3 Interrupt Sequence

[SP]
Stack pointer
value before
interrupt occurs

Stack status before interrupt request is acknowledged

Address

Stack status after interrupt request is acknowledged

Figure 5.3.2 Stack status before and after an interrupt request is acknowledged

m–4

m–3

m–2

m–1

m

m+1

LSBMSBLSBMSB
Address Stack area Stack area

Flag register
(FLGL)

Program counter
(PCH)

Flag register
(FLGH)

Content of
previous stack

Content of
previous stack

Content of
previous stack
Content of
previous stack

Program counter
(PCL)

Program counter
(PCM)

[SP]
New stack
pointer value

m–4

m–3

m–2

m–1

m

m+1

257

Chapter 5 Interrupt

The register save operation performed in an interrupt sequence differs depending on whether the con-

tent of the stack pointer (SP)*1 is an even or an odd number when an interrupt request is acknowledged.

If the stack pointer (SP)*1 indicates an even number, the contents of the flag register (FLG) and program

counter (PC) each are saved simultaneously all 16 bits together. If the stack pointer indicates an odd

number, the register contents each are saved in two operations 8 bits at a time. Figure 5.3.3 shows how

registers are saved in each case.

*1 Stack pointer indicated by the U flag.

(1) When stack pointer (SP) contains an even number

Address

(2) When stack pointer (SP) contains an odd number

Stack area Stack areaSequence in which order

registers are saved

Sequence in which order

registers are saved
Address

Finished saving registers

in two operations.

Finished saving registers in

four operations.

(3)

(4)

(1)

(2)

Saved

separately, 8

bits at a time(1) Saved simul-

taneously, all 16

bits together

(2) Saved simul-

taneously, all 16

bits together

* [SP] denotes the initial value of the stack pointer (SP) when interrupt request is acknowledged.

After the microcomputer finishes saving registers, the SP content is [SP] minus 4.

[SP]–5
(Odd address)

[SP]–4
(Even address)

[SP]–3
(Odd address)

[SP]–2
(Even address)

[SP]–1
(Odd address)

[SP]
(Even address)

[SP]–5
(Even address)

[SP]–4
(Odd address)

[SP]–3
(Even address)

[SP]–2
(Odd address)

[SP]–1
(Even address)

[SP]
(Odd address)

Program counter (PCL)

Program counter (PCM)

Flag register (FLGL)

Flag register
(FLGH)

Program counter
(PCH)

Program counter (PCL)

Program counter (PCM)

Flag register (FLGL)

Program counter
(PCH)

Flag register
(FLGH)

 Figure 5.3.3 Operations to save registers

5.3 Interrupt Sequence

258

Chapter 5 Interrupt

5.4 Return from Interrupt Routine
As you execute the REIT instruction at the end of the interrupt routine, the contents of the flag register

(FLG) and program counter (PC) that have been saved to the stack area immediately preceding the inter-

rupt sequence are automatically restored. Then control returns to the routine that was under execution

before the interrupt request was acknowledged, and processing is resumed from where control left off. If

there are any registers you saved via software in the interrupt routine, be sure to restore them using an

instruction (e.g., POPM instruction) before executing the REIT instruction.

5.4 Return from Interrupt Routine

259

Chapter 5 Interrupt

5.5 Interrupt Priority
If two or more interrupt requests are sampled active at the same time, whichever interrupt request is ac-

knowledged that has the highest priority.

Maskable interrupts (Peripheral I/O interrupts) can be assigned any desired priority by setting the interrupt

priority level select bit accordingly. If some maskable interrupts are assigned the same priority level, the

priority between these interrupts is resolved by the priority that is set in hardware*1.

Certain nonmaskable interrupts such as a reset (reset is given the highest priority) and watchdog timer

interrupt have their priority levels set in hardware. Figure 5.5.1 lists the hardware priority levels of these

interrupts.

Software interrupts are not subjected to interrupt priority. They always cause control to branch to an inter-

rupt routine whenever the relevant instruction is executed.

*1 Hardware priority varies with each M16C model. Please refer to your M16C User’s Manual.

_______ ________

Reset > NMI > DBC > Watchdog timer > Peripheral I/O > Single step > Address match

Figure 5.5.1. Interrupt priority that is set in hardware

5.5 Interrupt Priority

260

Chapter 5 Interrupt

5.6 Multiple Interrupts
The following shows the internal bit states when control has branched to an interrupt routine:

• The interrupt enable flag (I flag) is cleared to 0 (interrupts disabled).

• The interrupt request bit for the acknowledged interrupt is cleared to 0.

• The processor interrupt priority level (IPL) equals the interrupt priority level of the acknowledged interrupt.

By setting the interrupt enable flag (I flag) (= 1) in the interrupt routine, you can reenable interrupts so that an

interrupt request can be acknowledged that has higher priority than the processor interrupt priority level

(IPL). Figure 5.6.1 shows how multiple interrupts are handled.

The interrupt requests that have not been acknowledged for their low interrupt priority level are kept pend-

ing. When the IPL is restored by an REIT instruction and interrupt priority is resolved against it, the pending

interrupt request is acknowledged if the following condition is met:

Interrupt priority level of

pending interrupt request

Restored processor interrupt

priority level (IPL)
>

5.6 Multiple interrupts

261

Chapter 5 Interrupt

I = 0

IPL = 0

I = 1

I = 0

IPL = 3

I = 1

I = 0

IPL = 5

REIT

I = 1

IPL = 3

REIT

I = 1

IPL = 0

I = 0

IPL = 2

REIT

I = 1

IPL = 0

Interrupt priority level = 3

Interrupt priority level = 5

Interrupt 3

Interrupt priority level = 2

Not acknowledged because

of low interrupt priority

Main routine instructions

are not executed.

Interrupt request
generated Nesting

 Main routineReset
Time

Interrupt 1

Interrupt 1

Interrupt 2

Figure 5.6.1. Multiple interrupts

: Automatically executed.
: Be sure to set in software.

 I : Interrupt enable flag
IPL : Processor interrupt priority level

REIT

Interrupt 3

Interrupt 3

REIT

Interrupt 2

Multiple interrupts

5.6 Multiple interrupts

REIT

262

Chapter 5 Interrupt

5.7 Precautions for Interrupts
5.7.1 Reading address 0000016

Do not read the address 0000016 in a program. When a maskable interrupt request is accepted, the CPU

reads interrupt information (interrupt number and interrupt request priority level) from the address

0000016 during the interrupt sequence. At this time, the IR bit for the accepted interrupt is cleared to “0”.

If the address 0000016 is read in a program, the IR bit for the interrupt which has the highest priority

among the enabled interrupts is cleared to “0”. This causes a problem that the interrupt is canceled, or an

unexpected interrupt request is generated.

5.7.2 Setting the SP

Set any value in the SP(USP, ISP) before accepting an interrupt. The SP(USP, ISP) is cleared to ‘000016’

after reset. Therefore, if an interrupt is accepted before setting any value in the SP(USP, ISP), the pro-

gram may go out of control.

Especially when using NMI interrupt, set a value in the ISP at the beginning of the program. For the first

and only the first instruction after reset, all interrupts including NMI interrupt are disabled.

5.7.3 Rewrite the Interrupt Control Register
(1) The interrupt control register for any interrupt should be modified in places where no requests for that

interrupt may occur. Otherwise, disable the interrupt before rewriting the interrupt control register.

(2) To rewrite the interrupt control register for any interrupt after disabling that interrupt, be careful with the

instruction to be used.

Changing any bit other than the IR bit

If while executing an instruction, a request for an interrupt controlled by the register being modified

occurs, the IR bit in the register may not be set to “1” (interrupt requested), with the result that the

interrupt request is ignored. If such a situation presents a problem, use the instructions shown below

to modify the register.

Usable instructions: AND, OR, BCLR, BSET

Changing the IR bit

Depending on the instruction used, the IR bit may not always be cleared to “0” (interrupt not re-

quested). Therefore, be sure to use the MOV instruction to clear the IR bit.

(3) When using the I flag to disable an interrupt, refer to the sample program fragments shown below as

you set the I flag. (Refer to (2) for details about rewrite the interrupt control registers in the sample

program fragments.)

Examples 1 through 3 show how to prevent the I flag from being set to “1” (interrupts enabled) before the

interrupt control register is rewrited, owing to the effects of the internal bus and the instruction queue

buffer.

263

Chapter 5 Interrupt

Example 1:Using the NOP instruction to keep the program waiting until
the interrupt control register is modified

INT_SWITCH1:
FCLR I ; Disable interrupts.
AND.B #00h, 0055h ; Set the TA0IC register to “0016”.
NOP ; Four NOP instructions are required when using HOLD function.

 NOP ; Refer to hardware manual about the number of NOP
; instruction

FSET I ; Enable interrupts.

Example 2:Using the dummy read to keep the FSET instruction waiting
INT_SWITCH2:

FCLR I ; Disable interrupts.
AND.B #00h, 0055h ; Set the TA0IC register to “0016”.
MOV.W MEM, R0 ; Dummy read.
FSET I ; Enable interrupts.

Example 3:Using the POPC instruction to changing the I flag
INT_SWITCH3:

PUSHC FLG
FCLR I ; Disable interrupts.
AND.B #00h, 0055h ; Set the TA0IC register to “0016”.
POPC FLG ; Enable interrupts.

264

Chapter 5 Interrupt

Chapter 6

Calculation Number of Cycles

6.1 Instruction queue buffer

6

266

6.1 Instruction queue buffer

Calculation number of cycles

6.1 Instruction queue buffer
The M16C/60, M16C/20, M16C/Tiny series have 4-stage (4-byte) instruction queue buffers. If the instruc-

tion queue buffer has a free space when the CPU can use the bus, instruction codes are taken into the

instruction queue buffer. This is referred to as “prefetch”. The CPU reads (fetches) these instruction codes

from the instruction queue buffer as it executes a program.

Explanation about the number of cycles in Chapter 4 assumes that all the necessary instruction codes are

placed in the instruction queue buffer, and that data is read or written to the memory connected via a 16-bit

bus (including the internal memory) beginning with even addresses without software wait or RDY or other

wait states. In the following cases, more cycles may be needed than the number of cycles shown in this

manual:

• When not all of the instruction codes needed by the CPU are placed in the instruction queue buffer...

Instruction codes are read in until all of the instruction codes required for program execution are avail-

able. Furthermore, the number of read cycles increases in the following cases:

(1) The number of read cycles increases as many as the number of wait cycles incurred when reading

instruction codes from an area in which software wait or RDY or other wait states exist.

(2) When reading instruction codes from memory chips connected to an 8-bit bus, more read cycles are

required than for 16-bit bus.

• When reading or writing data to an area in which software wait or RDY or other wait states exist...

The number of read or write cycles increases as many as the number of wait cycles incurred.

• When reading or writing 16-bit data to memory chips connected to an 8-bit bus...

The memory is accessed twice to read or write one 16-bit data. Therefore, the number of read or write

cycles increases by one for each 16-bit data read or written.

• When reading or writing 16-bit data to memory chips connected to a 16-bit bus beginning with an odd

address...

The memory is accessed twice to read or write one 16-bit data. Therefore, the number of read or write

cycles increases by one for each 16-bit data read or written.

Note that if prefetch and data access occur in the same timing, data access has priority. Also, if more than

three bytes of instruction codes exist in the instruction queue buffer, the CPU assumes there is no free

space in the instruction queue buffer and, therefore, does not prefetch instruction code.

Figures 6.1.1 to 6.1.8 show examples of instruction queue buffer operation and CPU execution cycles.

6

267

Calculation number of cycles
6.1 Instruction queue buffer

Sample program
Address Code Instruction
FC050 64 JMP TEST_11
FC051 04 NOP
FC052 04 NOP
FC053 04 NOP
FC054 04 NOP
FC055 04 NOP
FC056 TEST_11:
FC056 7301 MOV.W R0,R1
FC058 64 JMP TEST_12
FC059 04 NOP
FC05A 04 NOP
FC05B 04 NOP
FC05C 04 NOP
FC05D 04 NOP
FC05E TEST_12:

Fetch code 64 7301 64

JMP TEST_11 MOV.W JMP TEST_12Instructions
under execution

Instruction
queue buffer

04 04 73 73 64 0404 04

04 04 04

73

01 01 04 04 04 04

0404640404 04 0404

7373

F1 F1

40

00

WR

PP P P P

Address bus

Data bus(H)

Data bus(L)

RD

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

FC052 FC056 FC05A

73 64

04

73

0001 04 F1

FC058 FC060

BCLK

:Indicates the locations of the instruction queue buffer that are cleared.

Fetch Fetch

Content at jump address is
prefetched at the same time the
instruction queue buffer is
cleared.

Jump address

04 04

64

04

04

04

04

04 40

FC05E

Content at jump address is
prefetched at the same time the
instruction queue buffer is
cleared.

Not all codes are ready in
the instruction queue buffer,
so the next read is
performed

Sample program
Address Code Instruction
FC0C2 65 JMP TEST_11
FC0C3 04 NOP
FC0C4 04 NOP
FC0C5 04 NOP
FC0C6 04 NOP
FC0C7 04 NOP
FC0C8 04 NOP
FC0C9 TEST_11:
FC0C9 7301 MOV.W R0,R1
FC0CB 64 JMP TEST_12
FC0CC 04 NOP
FC0CD 04 NOP
FC0CE 04 NOP
FC0CF 04 NOP
FC0D0 04 NOP
FC0D1 TEST_12:

Fetch code 65 7301 64

JMP TEST_11 MOV.W JMP TEST_12Instructions
under execution

04 04 73 73 73 64 0404 64 04

04 04 04

73

01 01 04 04 04 04

04

04

0464640404 04 0404

04 7373 73

F1 F1

0000

04

04

0404

WR

P PP P P P

Address bus

Data bus (H)

Data bus (L)

RD

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

FC0C4 FC0C9 FC0CC FC0CE

73 64 04 04 73 00

01 04 04 F1

FC0CA FC0D1 FC0D2

BCLK

: Indicates the locations of the instruction queue buffer that are cleared.

Fetch Fetch

Content at jump address is
prefetched at the same time
the instruction queue buffer
is cleared.

Content at jump address is
prefetched at the same time
the instruction queue buffer is
cleared.

Not all codes are ready in the
instruction queue buffer, so the
next read is performed

Instruction
queue buffer

Jump address

Figure 6.1.1. When executing a register transfer instruction starting from an even address

(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

Figure 6.1.2. When executing a register transfer instruction starting from an odd address

(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

6

268

6.1 Instruction queue buffer

Calculation number of cycles

Sample program
Address Code Instruction
FC058 64 JMP TEST_11
FC059 04 NOP
FC05A 04 NOP
FC05B 04 NOP
FC05C 04 NOP
FC05D 04 NOP
FC05E TEST_11:
FC05E 73F10040 MOV.W 04000h, R1
FC062 64 JMP TEST_12
FC063 04 NOP
FC064 04 NOP
FC065 04 NOP
FC066 04 NOP
FC067 04 NOP
FC068 TEST_12:

Content at jump address is
prefetched at the same time
the instruction queue buffer is
cleared.

Fetch code 64 73F1 64

JMP TEST_11 MOV.W JMP TEST_12Instructions
under execution

Instruction
queue buffer

04 04 73 73 00 0404 04

04 04 04

73

F1 F1 40 04 04 04

0464000404 04 0404

7373

F1 F1

40

00

WR

PP P P P

Address bus

Data bus (H)

Data bus (L)

RD

DR : Indicates a data read.

FC05A FC05E 04000

73 00

04F1 40

FC060 FC06A

BCLK

: Indicates the locations of the instruction queue buffer that are cleared.

Fetch
Content at jump address is
prefetched at the same time
the instruction queue buffer
is cleared.

Jump address

40 04

64

04

64

64 73

00F1

40

FC068

0040

04

04

04

04

AA

AA

04

04

FC062 FC064

PDR

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

Address from which to read data

Fetch
Fetch

Content at address 400116

Content at address 400016

Sample program
Address Code Instruction
FC062 64 JMP TEST_11
FC063 04 NOP
FC064 04 NOP
FC065 04 NOP
FC066 04 NOP
FC067 04 NOP
FC068 TEST_11:
FC068 73F10140 MOV.W 04001h, R1
FC06C 64 JMP TEST_12
FC06D 04 NOP
FC06E 04 NOP
FC06F 04 NOP
FC070 04 NOP
FC071 04 NOP
FC072 TEST_12:

Fetch code 64 73F1 64

JMP TEST_11 MOV.W JMP TEST_12Instructions
under execution

Instruction
queue buffer

04 04 73 73 00 0404 04

04 04 04

73

F1 F1 40 04 04 04

0464010404 04 0404

7373

F1 F1

40

00

WR

PP P P P

Address bus

Data bus (H)

Data bus (L)

RD

DR : Indicates a data read.

FC064 FC068 04001

73 00

04F1 40

FC06A FC074

BCLK

: Indicates the locations of the instruction queue buffer that are cleared.

Jump address

40 04

64

04

64

64 73

00F1

40

FC072

0040

04

04

04

04

AA 04

04

FC06C FC06E

DRDR

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

Low-order address from
which to read data

64

04

04002

AA

Read from even
address

P

Content at address 400116

Content at address 400216

FetchFetch
Fetch

Content at jump address is
prefetched at the same time
the instruction queue buffer
is cleared.

Content at jump address is
prefetched at the same time
the instruction queue buffer
is cleared.

High-order address from
which to read data

Figure 6.1.3. When executing an instruction to read from even addresses starting from an even address

(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

Figure 6.1.4. When executing an instruction to read from odd addresses starting from an even address

(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

6

269

Calculation number of cycles
6.1 Instruction queue buffer

Sample program
Address Code Instruction
FC06C 64 JMP TEST_11
FC06D 04 NOP
FC06E 04 NOP
FC06F 04 NOP
FC070 04 NOP
FC071 04 NOP
FC072 TEST_11:
FC072 73FF00400240 MOV.W 04000h, 04002h
FC078 64 JMP TEST_12
FC079 04 NOP
FC07A 04 NOP
FC07B 04 NOP
FC07C 04 NOP
FC07D 04 NOP
FC07E TEST_12:

Content at jump address is
prefetched at the same time
the instruction queue buffer is
cleared.

Fetch code 64 73FF 64

JMP TEST_11 MOV.W JMP TEST_12Instructions
under execution

Instruction
queue buffer

04 04 73 73 00 0404 04

04 04 04

73

FF FF 40 04 04 04

0402000404 04 0404

7373

F1 F1

40

00

WR

PP P P P

Address bus

Data bus (H)

Data bus (L)

RD

DR : Indicates a data read.

FC06E FC072 04000

73 00

40FF 40

FC074 FC080

BCLK

: Indicates the locations of the instruction queue buffer that are cleared.

Content at jump address is
prefetched at the same time
the instruction queue buffer
is cleared.

Jump address

40 40

02

40

64

02 73

00F1

40

FC07E

0040

04

04

04

04

AA 04

04

FC076 FC07A

DW

DR

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

Address from which to read data

64

04

04002

AA

P

Address from which to write data

0240

0FC078

AA

AA

04

64

P

DW : Indicates a data write.

Content at address 400116

Content at address 400016

The instruction
queue buffer is
emptied, so one
more cycle is waited.

Fetch
FetchFetchFetch

Sample program
Address Code Instruction
FC150 64 JMP TEST_11
FC151 04 NOP
FC152 04 NOP
FC153 04 NOP
FC154 04 NOP
FC155 04 NOP
FC156 TEST_11:
FC156 73F10040 MOV.W 04000h, R1
FC15A 64 JMP TEST_12
FC15B 04 NOP
FC15C 04 NOP
FC15D 04 NOP
FC15E 04 NOP
FC15F 04 NOP
FC160 TEST_12:

Content at jump address is prefetched at
the same time the instruction queue buffer
is cleared.

Fetch code 64 73F1 64

JMP TEST_11 MOV.W JMP TEST_12Instructions
under execution

Instruction
queue buffer

04 04 73 73 64 0404 04

04 04 04

73

F1 F1 04 04 04

04000404 04 0404

7373

FF FF

40

00

WR

P P P

Address bus

Data bus (H)

Data bus (L)

RD

DR : Indicates a data read.

FC152 FC156 04000

73 00

04F1 40

FC158

BCLK

: Indicates the locations of the instruction queue buffer that are cleared.

Content at jump address is
prefetched at the same time
the instruction queue buffer
is cleared.

Jump address

40

64

FC162FC160

0040

04

04

04

04

FC15A

DR

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

Address from which
to read data

64

04

PP

73

00FF

40

P

FC15C

AA

04

04

DW : Indicates a data write.

00

40

64

04

64

04

1 wait

AA

Content at address 400116

Content at address 400016

Fetch Fetch Fetch

Figure 6.1.5. When executing an instruction to transfer data between even addresses starting from an even address

(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

Figure 6.1.6. When executing an instruction to read from even addresses starting from an even address

(Program area: 16-bit bus without wait state; Data area: 16-bit bus with wait state)

6

270

6.1 Instruction queue buffer

Calculation number of cycles

Sample program
Address Code Instruction
FC058 64 JMP TEST_11
FC059 04 NOP
FC05A 04 NOP
FC05B 04 NOP
FC05C 04 NOP
FC05D 04 NOP
FC05E TEST_11:
FC05E 73F10040 MOV.W 04000h, R1
FC062 64 JMP TEST_12
FC063 04 NOP
FC064 04 NOP
FC065 04 NOP
FC066 04 NOP
FC067 04 NOP
FC068 TEST_12:

Content at jump address is prefetched
at the same time the instruction queue
buffer is cleared.

Fetch code 64 73F1 64

JMP TEST_11 MOV.W JMP TEST_12Instructions
under execution

Instruction
queue buffer

04 04 73 73 64 0404 04

04 04 04

73

F1 F1 04 04 04

04000404 04 0404

7373

FF FF

40

00

WR

P P P

Address bus

Data bus (H)

Data bus (L)

RD

DR : Indicates a data read.

FC05A FC05E 04000

73 00

04F1 40

FC060

BCLK

: Indicates the locations of the instruction queue buffer that are cleared.

Content at jump address is
prefetched at the same time
the instruction queue buffer
is cleared.

Jump address

40

64

FC06AFC068

0040

04

04

04

04

FC062

DR

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

Low-order address from
which to read data

64

04

PP

73

00FF

40

P

FC064

04

04

DW : Indicates a data write.

00

40

64

04

64

04

DR

AA AA

04001

High-order address from
which to read data

Content at address 400116Content at address 400016

Fetch

FetchFetch

AA
AA
AA
AA

AAA
AAA
AAA
AAA

Sample programs
Address Code Instruction
FC062 64 JMP TEST_11
FC063 04 NOP
FC064 04 NOP
FC065 04 NOP
FC066 04 NOP
FC067 04 NOP
FC068 TEST_11:
FC068 73F10040 MOV.W 04000h, R1
FC06C 64 JMP TEST_12
FC06D 04 NOP
FC06E 04 NOP
FC06F 04 NOP
FC070 04 NOP
FC071 04 NOP
FC072 TEST_12:

Content at jump address is prefetched
at the same time the instruction queue
buffer is cleared.

Fetch code 64 73F1 64

JMP TEST_11 MOV.W JMP TEST_12Instructions
under execution

Instruction
queue buffer

04 04 73 73 64 0404 04

04 04 04 F1 04 04 04

04000404 04 0404

7373

FF

WR

P P P

Address bus

Data bus (H)

Data bus (L)

RD

FC065 FC068 FC06B

73 F1

FC069

BCLK

Content at jump address is
prefetched at the same time
the instruction queue buffer
is cleared.

Jump address

00

0040

04

04

04

FC06A

DR

Low-order address from
which to read data

64

04

PP

40 04

00

40

64

64

04

DR

FC06C

64

73

F1

00

40

64

00

40

04

73

FF

00

FC06D 0400104000 FC06FFC06E FC073FC072 FC074

AA AA 04

P P P P P P

04 73 FF 00

High-order address from
which to read data

Content at address 400116Content at address 400016

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

: Indicates the locations of the instruction queue buffer that are cleared.

DR : Indicates a data read.

DW : Indicates a data write.

Fetch Fetch Fetch

Figure 6.1.7. When executing a read instruction for memory connected to 8-bit bus

(Program area: 16-bit bus without wait state; Data area: 8-bit bus without wait state)

Figure 6.1.8. When executing a read instruction for memory connected to 8-bit bus

(Program area: 8-bit bus without wait state; Data area: 8-bit bus without wait state)

Q&A-1

 Q & A
Information in a Q&A form to be used to make the most of the M16C family is given below.

Usually, one question and the answer to it are given on one page; the upper section is for the question, and

the lower section is for the answer (if a pair of question and answer extends over two or more pages, a page

number is given at the lower-right corner).

Functions closely connected with the contents of a page are shown at its upper-right corner.

Q&A-2

CPU

Q

A

SB and FB function in the same manner, so you can use them as intended in programming in the

assembly language. If you write a program in C, use FB as a stack frame base register.

How do I distinguish between the static base register (SB) and the frame base register (FB)?

Q&A-3

Interrupt

Q

A

Yes. But there can be a chance that the microcomputer runs away out of control if an interrupt

request occurs in changing the value of INTB. So it is not recommended to frequently change the

value of INTB while a program is being executed.

Is it possible to change the value of the interrupt table register (INTB) while a program is being

executed?

Q&A-4

CPU

Q

A

What is the difference between the user stack pointer (USP) and the interrupt stack pointer (ISP)?,

What are their roles?

You use USP when using the OS. When several tasks run, the OS secures stack areas to save

registers of individual tasks. Also, stack areas have to be secured, task by task, to be used for

handling interrupts that occur while tasks are being executed. If you use USP and ISP in such an

instance, the stack for interrupts can be shared by these tasks; this allows you to efficiently use

stack areas.

Q&A-5

CPU

Q

A

How does the instruction code become if I use a bit instruction in absolute addressing ?

An explanation is given here by taking BSET bit,base:16 as an example.

This instruction is a 4-byte instruction. The 2 higher-order bytes of the instruction code indicate

operation code, and the 2 lower-order bytes make up addressing mode to expresse bit,base:16.

The relation between the 2 lower-order bytes and bit,base:16 is as follows.

2 lower-order bytes = base:16 8 + bit

For example, in the case of BSET 2,0AH (setting bit 2 of address 000A16 to 1), the 2 lower-order

bytes turn to A 8 + 2 = 52H.

In the case of BSET 18,8H (setting the 18th bit from bit 0 of address 000816 to 1), the 2 lower-order

bytes turn to 8 8 + 18 = 52H, which is equivalent to BSET 2,AH.

The maximum value of base:16 8 + bit, FFFFH, indicates bit 7 of address 1FFF16. This is the

maximum bit you can specify when using the bit instruction in absolute addressing.

Q&A-6

CPU

Q

A

What is the difference between the DIV instruction and the DIVX instruction?

Either of the DIV instruction and the DIVX instruction is an instruction for signed division, the sign of

the remainder is different.

The sign of the remainder left after the DIV instruction is the same as that of the dividend, on the

contrary, the sign of the remainder of the DIVX instruction is the same as that of the divisor.

In general, the following relation among quotient, divisor, dividend, and remainder holds.

dividend = divisor quotient + remainder

Since the sign of the remainder is different between these instructions, the quotient obtained either

by dividing a positive integer by a negative integer or by dividing a negative integer by a positive

integer using the DIV instruction is different from that obtained using the DIVX instruction.

For example, dividing 10 by –3 using the DIV instruction yields –3 and leaves +1, while doing the

same using the DIVX instruction yields –4 and leaves –2.

Dividing –10 by +3 using the DIV instruction yields –3 and leaves –1, while doing the same using the

DIVX instruction yields –4 and leaves +2.

Glossary-1

Glossary
Technical terms used in this software manual are explained below. They are good in this manual only.

Glossary-2

borrow Tomove a digit to the next lower position. carry

carry Tomove a digit to the next higher position. borrow

context Registers that a program uses.

decimal addition An addition in terms of decimal system.

displacement The difference between the initial position and later

position.

effective address An after-modification address to be actually used.

extention area For the M16C/60, M16C/20, M16C/Tiny series, the area

from 1000016 through FFFFF16.

LSB Abbreviation for Least Significant Biit MSB

The bit occupying the lowest-order position of a data item.

Term Meaning Related word

Glossary-3

Term Meaning Related word

macro instruction

MSB

operand

operation

operation code

overflow

pack

SFR area

An instruction, written in a source language, to be

expressed in a number of machine instructions when

compiled into a machine code program.

Abbreviation for Most Significant Bit

The bit occupying the highest-order position of a

data item.

A part of instruction code that indicates the object on

which an operation is performed.

A generic term for move, comparison, bit processing,

shift, rotation, arithmetic, logic, and branch.

A part of instruction code that indicates what sort of

operation the instruction performs.

To exceed the maximum expressible value as a result

of an operation.

To join data items.

Used to mean to form two 4-bit data items into one 8-

bit data item, to form two 8-bit data items into one 16-

bit data item, etc.

Abbreviation for Special Function Area. An area in

which control bits of peripheral circuits embodied in a

microcomputer and control registers are located.

LSB

operation code

operand

unpack

Glossary-4

Term Meaning Related word

shift out

sign bit

sign extension

stack frame

string

unpack

zero extension

To move the content of a register either to the right or

left until fully overflowed.

A bit that indicates either a positive or a negative (the

highest-order bit).

To extend a data length in which the higher-order to be

extended are made to have the same sign of the sign

bit. For example, sign-extending FF16 results in

FFFF16, and sign-extending 0F16 results in 000F16.

An area for automatic variables the functions of the C

language use.

A sequence of characters.

To restore combined items or packed information to

the original form. Used to mean to separate 8-bit

information into two parts — 4 lower-order bits and

four higher-order bits, to separate 16-bit information

into two parts — 8 lower-order bits and 8 higher-order

bits, or the like.

To extend a data length by turning higher-order bits to

0's. For example, zero-extending FF16 to 16 bits

results in 00FF16.

pack

Symbol-1

Table of symbols
Symbols used in this software manual are explained below. They are good in this manual only.

Symbol-2

Symbol Meaning

Transposition from the right side to the left side

Interchange between the right side and the left side

Addition

Subtraction

Multiplication

Division

Logical conjunction

Logical disjunction

Exclusive disjunction

Logical negation

dsp16 16-bit displacement

dsp20 20-bit displacement

dsp8 8-bit displacement

EVA() An effective address indicated by what is enclosed in (Å@)

EXT() Sign extension

(H) Higher-order byte of a register or memory

H4: Four higher-order bits of an 8-bit register or 8-bit memory

Absolute value

(L) Lower-order byte of a register or memory

L4: Four lower-order bits of an 8-bit register or 8-bit memory

LSB Least Significant Bit

M() Content of memory indicated by what is enclosed in (Å@)

(M) Middle-order byte of a register or memory

MSB Most Significant Bit

PCH Higher-order byte of the program counter

PCML Middle-order byte and lower-order byte of the program counter

FLGH Four higher-order bits of the flag register

FLGL Eight lower-order bits of the flag register

<

<

 A

Index-1

Index
A

A0 and A1 ••• 5

A1A0 ••• 5

Address register ••• 5

Address space ••• 3

Addressing mode ••• 22

B

B flag ••• 6

Byte (8-bit) data ••• 16

C

C flag ••• 6

Carry flag ••• 6

Cycles ••• 139

D

D flag ••• 6

Data arrangement in memory ••• 17

Data arrangement in Register ••• 16

Data register ••• 4

Data type ••• 10

Debug flag ••• 6

Description example ••• 37

dest ••• 18

F

FB ••• 5

Fixed vector table ••• 19

Flag change ••• 37

Flag register ••• 5

FLG ••• 5

Frame base register ••• 5

Function ••• 37

I

Interrupt table register ••• 5

I flag ••• 6

Instruction code ••• 139

Instruction Format ••• 18

Instruction format specifier ••• 35

INTB ••• 5

Integer ••• 10

Interrupt enable flag ••• 6

Interrupt stack pointer ••• 5

Interrupt vector table ••• 19

IPL ••• 7

ISP ••• 5

L

Long word (32-bit) data ••• 16

M

Maskable interrupt ••• 248

Memory bit ••• 12

Mnemonic ••• 35, 38

N

Nibble (4-bit) data ••• 16

Nonmaskable interrupt ••• 248

O

O flag ••• 6

Operand ••• 35, 38

Index-2

Operation ••• 37

Overflow flag ••• 6

P

PC ••• 5

Processor interrupt priority level ••• 7

Program counter ••• 5

R

R0, R1, R2, and R3 ••• 4

R0H, R1H ••• 4

R0L, R1L ••• 4

R2R0 ••• 4

R3R1 ••• 4

Register bank ••• 8

Register bank select flag ••• 6

Register bit ••• 12

Related instruction ••• 37

Reset ••• 9

S

S flag ••• 6

SB ••• 5

Selectable src / dest (label) ••• 37

Sign flag ••• 6

Size specifier ••• 35

Software interrupt number ••• 20

Special page number ••• 19

Special page vector table ••• 19

src ••• 18

Stack pointer ••• 5

Stack pointer select flag ••• 6

Static base register ••• 5

String ••• 15

Syntax ••• 35, 38

U

U flag ••• 6

User stack pointer ••• 5

USP ••• 5

V

Variable vector table ••• 20

W

Word (16-bit) data ••• 16

Z

Z flag ••• 6

Zero flag ••• 6

REVISION HISTORY

Rev. Date Description

Page Summary

M16C/60, M16C/20, M16C/Tiny Series Software Manual

B Sep 09, 1999 Page 104 [Operation] Line 3

Add to “ *1 When dest is SP or when the U flag = “0” and dest is ISP, the value 2 is

not added to SP.”

Page 108 [Operation] Line 3

Add to “ *1 When src is SP or when the U flag = “0” and src is ISP, the SP before

being subtracted by 2 is saved. ”

*Page 111 [Function] Line 5

Add to “ A0, A1 and R3 are indeterminate. ”

*Page 125 [Function] Line 3

Add to “ However, the flag changes depending on the A0 or A1 status (16 bits)

before the operation is performed. ”

*Page 265 to 270

Add to “Chapter 6”

–

B1 Sep 21, 2000 – Page 194 (1) LDINTB #IMM

*1 #IMM1 indicates the 4 high-order bits of #IMM.

 #IMM2 indicates the 4 low-order bits of #IMM.

 --->

 *1 #IMM1 indicates the 4 high-order bits of #IMM.

 #IMM2 indicates the 16 low-order bits of #IMM.

Page 255

The DIVX instruction requires a maximum time that consists of 30 cycles

 (without wait state) or 31 cycles (with one wait cycle).

B2 Mar 07, 2001 –

B3 Jul 09, 2002 – Page 74

• If you selected (.B) for the size specifier (.size), R0 is sign extended to

32 bits. In this case, R2 is used for the upper bytes.

 --->

• If you selected (.W) for the size specifier (.size), R0 is sign extended to

32 bits. In this case, R2 is used for the upper bytes.

Page 126

[Function]

 --->

[Function]

• This instruction transfers src to dest when the Z flag is 0.

B-1

REVISION HISTORY

Rev. Date Description

Page Summary

M16C/60, M16C/20, M16C/Tiny Series Software Manual

B3 Jul 09, 2002 – Page 127 [Function]

• This instruction transfers src to dest when the Z flag is 0.

 --->

• This instruction transfers src to dest when the Z flag is 1.

Page 128 [Function]

• This instruction transfers src to dest when the Z flag is 1.

 --->

• This instruction transfers src1 to dest when the Z flag is 1. When the Z

flag is 0, it transfers src2 to dest.

Page 129 [Function]

• This instruction transfers src1 to dest when the Z flag is 1. When the Z

flag is 0, it transfers src2 to dest.

• This instruction subtracts src from dest and stores the result in dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B),

src is zero-expanded to

 --->

• This instruction subtracts src from dest and stores the result in dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B),

src is zero-expanded to perform operation in 16 bits. If src is an A0 or

A1, operation is performed on the 8 low-order bits of A0 or A1.

Page 131 [Function]

 perform operation in 16 bits. If src is an A0 or A1, operation is per-

formed on the 8 low-order bits of A0 or A1.

• Each flag in the flag register changes state depending on the result of

logical AND of src and dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B),

src is zero-expanded to
 --->

• Each flag in the flag register changes state depending on the result of

logical AND of src and dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B),

src is zero-expanded to perform operation in 16 bits. If src is an A0 or

A1, operation is performed on the 8 low-order bits of A0 or A1.

B-2

REVISION HISTORY

Rev. Date Description

Page Summary

M16C/60, M16C/20, M16C/Tiny Series Software Manual

B3 Jul 09, 2002 – Page 132 [Function]

 perform operation in 16 bits. If src is an A0 or A1, operation is per-

formed on the 8 low-order bits of A0 or A1.

 --->

• This instruction generates an undefined instruction interrupt.

• The undefined instruction interrupt is a nonmaskable interrupt.

Page 133 [Function]

• This instruction generates an undefined instruction interrupt.

 --->

• This instruction halts program execution. Program execution is re-

started when an interrupt of a higher priority level than IPL is acknowl-

edged or a reset is generated.

Page 134 [Function]

• The undefined instruction interrupt is a nonmaskable interrupt.

• This instruction halts program execution. Program execution is re-

started when an interrupt of a higher priority level than IPL is acknowl-

edged or a reset is generated.

 --->

• This instruction exchanges contents between src and dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B),

16 bits of zero- expanded src data are placed in the A0 or A1 and the 8

low-order bits of the A0 or A1 are placed in src.

Page 135 [Function]

• This instruction exchanges contents between src and dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B),

16 bits of zero- expanded src data are placed in the A0 or A1 and the 8

low-order bits of the A0 or A1 are placed in src.

 --->

• This instruction exchanges contents between src and dest.

• If dest is an A0 or A1 when the size specifier (.size) you selected is (.B),

16 bits of zero- expanded src data are placed in the A0 or A1 and the 8

low-order bits of the A0 or A1 are placed in src.

B-3

REVISION HISTORY

Rev. Date Description

Page Summary

M16C/60, M16C/20, M16C/Tiny Series Software Manual

4.00 Jan 21, 2004 253, 262 Add TECHNICAL NEWS NO M16C-85-0204 “M16C Family Usage Precautions when

Clearing Interrupt Request Bit “

B-4

RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER
SOFTWARE MANUAL
M16C/60, M16C/20, M16C/Tiny Series

Publication Data : Rev.B3 Jul 15, 2002
Rev.4.00 Jan 21, 2004

Published by : Sales Strategic Planning Div.
Renesas Technology Corp.

© 2003, 2004. Renesas Technology Corp., All rights reserved. Printed in Japan.

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

M16C/60, M16C/20, M16C/Tiny Series

REJ09B0137-0400Z

Software Manual

