To our customers,

Old Company Name in Catalogs and Other Documents

On April 1%, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1%, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

LENESANS

10.

11.

12.

Notice

All information included in this document is current as of the date this document is issued. Such information, however, is
subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sal es office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

Y ou should not ater, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of
semiconductor products and application examples. Y ou are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. 'Y ou should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific’. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “ Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as“ Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is“ Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home el ectronic appliances, machine tools; persona electronic equipment; and industria robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific™: Aircraft; agrospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or heathcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

Y ou should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especialy with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics’ as used in this document means Renesas Electronics Corporation and also includes its majority-

owned subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

LENESAS

-
»
)
ﬁ\
»
<
)
>
-
=

M16C/60, M16C/20, M16C/Tiny
Series
Software Manual

RENESAS 16-BIT SINGLE-CHIP
MICROCOMPUTER

—
@)

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

Renesas Electronics
WWW.renesas.com Rev. 4.00 2004.01

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor prod-
ucts better and more reliable, but there is always the possibility that trouble may occur with
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with ap-
propriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-
flammable material or (i) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the
Renesas Technology Corporation product best suited to the customer's application; they do
not convey any license under any intellectual property rights, or any other rights, belonging
to Renesas Technology Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringe-
ment of any third-party's rights, originating in the use of any product data, diagrams, charts,
programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, pro-
grams and algorithms represents information on products at the time of publication of these
materials, and are subject to change by Renesas Technology Corporation without notice
due to product improvements or other reasons. It is therefore recommended that custom-
ers contact Renesas Technology Corporation or an authorized Renesas Technology Cor-
poration product distributor for the latest product information before purchasing a product
listed herein.

The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or
other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corporation by
various means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product
data, diagrams, charts, programs, and algorithms, please be sure to evaluate all informa-
tion as a total system before making a final decision on the applicability of the information
and products. Renesas Technology Corporation assumes no responsibility for any dam-
age, liability or other loss resulting from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for
use in a device or system that is used under circumstances in which human life is poten-
tially at stake. Please contact Renesas Technology Corporation or an authorized Renesas
Technology Corporation product distributor when considering the use of a product con-
tained herein for any specific purposes, such as apparatus or systems for transportation,
vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or
reproduce in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions,
they must be exported under a license from the Japanese government and cannot be im-
ported into a country other than the approved destination.

Any diversion or reexport contrary to the export control laws and regulations of Japan and/
or the country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or
the products contained therein.

Using This Manual

This manual is written for the M16C/60, M16C/20, M16C/Tiny series software. This manual
can be used for all types of microcomputers having the M16C/60 series CPU core.

The reader of this manual is expected to have the basic knowledge of electric and logic
circuits and microcomputers.

This manual consists of five chapters. The following lists the chapters and sections to be
referred to when you want to know details on some specific subject.

» To understand the outline of the M16C/60, M16C/20, M16C/Tiny series and its features
.. Chapter 1, “Overview”
 To understand the operation of each addressing mode Chapter 2, “Addressing Modes”

» To understand instruction functions

(Syntax, operation, function, selectable src/dest (label), flag changes, description example,
related INSITUCTIONS)uviiiiiiiiiiiii it Chapter 3, “Functions”
 To understand instruction code and cycles......... Chapter 4, “Instruction Code/Number of Cycles”

This manual also contains quick references immediately after the Table of Contents. These
quick references will help you quickly find the pages for the functions or instruction code/
number of cycles you want to know.

» To find pages from mnemonic..........cccccoeeeeeerveennnnnn. Quick Reference in Alphabetic Order
 To find pages from function and mnemoniccccc...... Quick Reference by Function
 To find pages from mnemonic and addressing................ Quick Reference by Addressing

A table of symbols, a glossary, and an index are appended at the end of this manual.

M16C Family Documents

The following documents were prepared for the M16C family. ®

Document Contents
Short Sheet Hardware overview
Data Sheet Hardware overview and electrical characteristics
Hardware Manual Hardware specifications (pin assignments, memory maps, peripheral specifi-
cations, electrical characteristics, timing charts)
Software Manual Detailed description of assembly instructions and microcomputer perfor-
mance of each instruction
Application Note * Application examples of peripheral functions
» Sample programs
« Introduction to the basic functions in the M16C family
* Programming method with Assembly and C languages
Technical Update Preliminary report about the specification of a product, a document, etc.
NOTES :

1. Before using this material, please visit the our website to confirm that this is the most current document
available.

Table of Contents

Chapter1 Overview

1.1 Features of M16C/60, M16C/20, M1BC/TINY SEIESevueeiiiiieeeiiiiiiiiiiiieee e e e e e e e 2
1.1.1 Features of M16C/60, M16C/20, MIBC/TINY SEIHES ...evvvrieeeeeeiiiiiiiiiiereeieeeeeesesnneenneeeeeeas 2
1.1.2 SPEEd PEITOMMANCEueiiiiiiieeiee ittt ettt e e e e e e e et e e e e e e e e e e e e s b abeeeeees 2

1.2 AQAIESS SPACE ...oiiiiiiitiet ettt e ettt e e e e oo e bbbttt e e e e e e e e b b — b e et e e et e e e e e e e e ab b b baeeeeaaaans 3

1.3 Register CONfIQUIALIONeeiiiiiieeiiiii it e e e e e e s s s e r e e e e e e e e e s s e nnsnarnreneeeees 4
1.3.1 Data registers (RO, ROH, ROL, R1, R1H, R1L, R2,and R3) ..ot 4
1.3.2 Address registers (AD @N0 AL)ooueiiiiiiiiiie et 5
1.3.3 Frame base register (FB) ... 5
1.3.4 Program COUNTEE (PC)uiiiiiiiiiei ittt sttt e e e e e s nnbb e e e e aanneeee s 5
1.3.5 Interrupt table register (INTB)ueiiiiiiiieiee et e e e e e e 5
1.3.6 User stack pointer (USP) and interrupt stack pointer (ISP)ooccoeiiiiiiiiieiniiecee e, 5
1.3.7 StatiC DASE rEQISLEr (SB) ..cciiiiiiiiii ittt e e e e e e e e e e ereeeee s 5
1.3.8 FIag regiSter (FLG) ...oueeiiiiiiiiiie ittt ettt ettt e e s e e e sttt e e s snanneeee s 5

1.4 FIag REGISIENFLG) .ociiiieiiieiiiiiiee ettt e ettt e e e s sttt e e e e abb e e e e s abbeeeeeee 6
1.4.1 Bit O: Carry flag (C flag) «..eeeeeeeeeiiiii e 6
1.4.2 Bit 1: Debug flag (D flag)eeeeeeiiiiiiiei e 6
1.4.3 Bit 2: Zero flag (Z flag) «...eeeeeeeeeeiie e 6
1.4.4 Bit 3: Sign flag (S FlIag) «.veeeeiieeiiiei it 6
1.4.5 Bit 4: Register bank select flag (B flag)cooeeriiiiiiiiiii e 6
1.4.6 Bit5: Overflow flag (O flag) ... eeeeiiueiiiieiiie e 6
1.4.7 Bit 6: Interrupt enable flag (I flag)eveeeeiiiiiii 6
1.4.8 Bit 7: Stack pointer select flag (U flag)coooiiiiiiiiii e 6
1.4.9 BitS 8-11: RESEIVEU BIEAvveiieiiiiiiie ettt ettt e e s e e annneeee s 6
1.4.10 Bits 12-14: Processor interrupt priority leVel (IPL)cooiiiiiiiiiiiiiee e 7
1.4.17 Bit 15: RESEIVEA @Aceeiuiiiiie i it ettt e et e ettt et e e e e s as et e e s e e e s nnnneeee s 7

1.5 REQISIEr BANK ...t e e e e e e e e as 8

1.6 Internal State after RESELIS ClEAIEdcuvviiiiiiiiiee e 9

1.7 DA TYPES oeeeiiiiiiiiiiie ittt a e 10
A 1 (o T PP PPPRPRPRTN 10
L.7.2 DECIMA ...ttt ettt e st e e st s 11
0 T = 1 OSSR 12
A A 1 ¢ [o [P TP PR 15

1.8 Data AIMANGEMENT ...ttt ea e e e e e e e e e e e eaaateteeeeeeesesesnbrbbnbnnnn e e s 16
1.8.1 Data Arrangement iN REGISIETocuuiiiiiiiiiiiie ettt 16
1.8.2 Data Arrangement iN MEMIOTYuuuuiiiiiieeaaee ittt e e e e e e e e e e e e e e s s eeaabeerreeaaaaeeas 17

1.9 INSIIUCHION FOMMALciiiiiiiieiittiiee et e e e e s st e e e e s s e e e e s annneeeeenas 18
1.9.1 GENENIC FOMMAL (15) 1.uveeieee ittt ettt e ettt e e s st b e e e s sbbb e e e e s nnnbeeeas 18
1.9.2 QUICK FOIMAL (1Q)) ---uuttrteeeeieeee et e ettt e e ettt e e e e e e e e e e bbbt et e e e e e e e e e s e nnnbberreeaaaaeeas 18
1.9.3 SHOI FOIMAL (1S) .eveeieiiiiiiii ettt e e et e e e e e bt ae e e e e ennaees 18
I IR T o I (o] 0 F- LA (74 BT U TP URPRP PP 18

1.0 VECION TADIE ..t e e s e e e s e e e e s e e e e 19
O R 0= To Y LYo o g = o PP 19
1.10.2 Variable VECIOr TADIEcoiiiiiiie it 20

Chapter 2 Addressing Modes

2.1 AdAresSing MOGESccooiiiiiiiiiiieee ettt e e e e e e e e e e e e bbb e e e e e e e e e e e e e aaaeae 22
2.1.1 General iNStruCtion adArESSINGcuveiiiiiiiiiie et e 22
2.1.2 Special INSruCtion AdArESSINGcceeeiiiiititieee et e ettt e e e e e e e e e e e e e e e e e e aaaanes 22
2.1.3 Bit iNStrUCHON AAIESSINGcciiutiiieeiiitiie ettt ettt e et e e e s sabe e e e e e aeee 22

2.2 GUIdE tO THIS CRAPLET ...ttt e et e e e e bt e e e s ebnas 23

2.3 General INSruCtion AArESSINGceeiiiiiiiieiiiiiite et e e e eeee 24

2.4 Specific INStrUCHION AQArESSINGceiiiiiiiiieiiitiii ettt e e e s eeeas 27

2.5 Bit INSrUCtION AArESSING ..eeeiiiiiiiiieiiiiie et e e e e e eees 30

Chapter 3 Functions

T N €1 1o (= o I o [S @ g = T (= SO TP PP PP PPPTTTTN 34

3.2 (0] (o1 0] 1T 39

Chapter 4 Instruction Code/Number of Cycles

4.1 GUIdE 10 THIS CRAPLET ...ttt et e e st e e e s sbbeeeeeanes 138

4.2 Instruction Code/NUmMbBEr of CYCIEScoiiiiiiiiiiiii e 140

Chapter 5 Interrupt

N N O U111 o L= o) i 11 (=T ¢ (U] | S PO PRT PP PRP O 248
5.1.1 TYPES OF INTEITUPLS ...ttt ettt e et e e e e e e e s e bbb e e e e e e e e e e e e e aannnans 248
5.1.2 SOfWAIE INTEITUPLS .oiiiiiiiii ettt ettt ettt ettt e et e e e s sbb e e e e s aabbeeeeeanes 249
5.1.3 HArdware INTEITUPLS ...ttt e e e e e e e e e e s et e s e e e e e e aaeeeaaaans 250

5.2 INEEITUPL CONLIOL ..ceiiiiiie ettt ettt e e e e e e e s e s e bbb et e e e e eaaeeeeaaaaae 251
5.2.1 Interrupt Enable Flag (I FIAQ)ccoeiiiiiiiiiiiiiee et 251
5.2.2 INtEIrUPt REGUESE Bteeiiiiiiiiiiieiiiee ettt e e e e e e e e e e e e e anaees 251
5.2.3 Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL) 252
5.2.4 Rewrite the Interrupt Control REGISTENeiiiiiiiiiiiiieee e 253

5.3 INEITUPE SEOUEBINCE ..ottt ettt e e e e et e e e e s e s s e e e e e e e e e e naaaaae 254
5.3.1 INtErrupt RESPONSE TIME ...uveiiiiiiieaiiiiiiite ettt e e et e e e e e e e e s e s s bbb e e e e e e e aaaeeeaaaaanns 255
5.3.2 Changes of IPL When Interrupt Request Acknowledgedcccooovveeeiiniiieii i 256
5.3.3 SAVING REGISIEIS ...ttt e e e ettt e e e e e e e e e e s s bbbt e e e e e eaaaaeeeaaaaanes 256

5.4 Return from INTErrupt ROULINGcooiiiiiiiiiiiiiiie ittt e e e e e e e e eanees 258

5.5 INEEITUPL PIIOKILY eeeeiiiiiieiii ittt ettt et e e e e e e s e s s bbb e e e e e e e aaaeeeaaaane 259

5.6 MUIIPIE INTEITUPLS ...ttt e et e e e e e e e s e s bbb be e e e e e e e e e e e e s annnae 260

5.7 Precautions fOr INTEITUPLSeiiiiiiiiiiiiiiiii ettt e et e e e e e e e s st e e e e e e e e e e e e e annnae 262
5.7.1 Reading addreSs 0000016coeeiiuriiieiiiiiiieeeeiiieee e ettt ee e s bt ee e e s sbbeeeessnbbreeeessbreeeeeae 262
5.7.2 SEUING The SP ..t e e e e e e e e e e 262
5.7.3 Rewrite the Interrupt Control REJISTENvviiiiiiiiiiie e 262

Chapter 6 Calculation Number of Cycles

6.1 INStrUCtion QUEUE DUFFEI ... a e 266

Quick Reference in Alphabetic Order

Mnemonic See page for | See page for | Mnemonic See page for | See page for
function instruction code function instruction code
/number of cycles /number of cycles
ABS 39 140 DIVU 68 173
ADC 40 140 DIVX 69 174
ADCF 41 142 DSBB 70 175
ADD 42 142 DSUB 71 177
ADJINZ 44 148 ENTER 72 179
AND 45 149 EXITD 73 180
BAND 47 152 EXTS 74 180
BCLR 48 152 FCLR 75 181
BMCnd 49 154 FSET 76 182
BMEQ/Z 49 154 INC 77 182
BMGE 49 154 INT 78 183
BMGEU/C 49 154 INTO 79 184
BMGT 49 154 | JCnd 80 184
BMGTU 49 154 JEQ/Z 80 184
BMLE 49 154 JGE 80 184
BMLEU 49 154 JGEU/C 80 184
BMLT 49 154 JGT 80 184
BMLTU/NC 49 154 JGTU 80 184
BMN 49 154 JLE 80 184
BMNE/NZ 49 154 JLEU 80 184
BMNO 49 154 JLT 80 184
BMO 49 154 JLTUINC 80 184
BMPZ 49 154 JN 80 184
BNAND 50 155 INE/NZ 80 184
BNOR 51 156 JNO 80 184
BNOT 52 156 JO 80 184
BNTST 53 157 JPZ 80 184
BNXOR 54 158 JMP 81 185
BOR 55 158 JMPI 82 187
BRK 56 159 JMPS 83 188
BSET 57 159 JSR 84 189
BTST 58 160 JSRI 85 190
BTSTC 59 161 JSRS 86 191
BTSTS 60 162 LDC 87 191
BXOR 61 162 LDCTX 88 192
CMP 62 163 LDE 89 193
DADC 64 167 LDINTB 90 194
DADD 65 169 LDIPL 91 195
DEC 66 171 MOV 92 195
DIV 67 172 MOVA 94 202

Quick Reference-1

Quick Reference in Alphabetic Order

Mnemonic See page for See page for Mnemonic See page for See page for
function instruction code function instruction code
/number of cycles /number of cycles
MOV Dir 95 203| ROT 114 222
MOVHH 95 203| RTS 115 223
MOVHL 95 203| SBB 116 224
MOVLH 95 203 | SBJINZ 117 226
MOVLL 95 203| SHA 118 227
MUL 96 205| SHL 119 230
MULU 97 207 | SMOVB 120 232
NEG 98 209 | SMOVF 121 233
NOP 99 209 | SSTR 122 233
NOT 100 210| STC 123 234
OR 101 211| STCTX 124 235
POP 103 213| STE 125 235
POPC 104 215| STNZ 126 237
POPM 105 215| STZ 127 237
PUSH 106 216| STZX 128 238
PUSHA 107 218 | SUB 129 238
PUSHC 108 218 | TST 131 241
PUSHM 109 219| UND 132 243
REIT 110 219 | WAIT 133 243
RMPA 111 220 | XCHG 134 244
ROLC 112 220 | XOR 135 245
RORC 113 221 s E—

Quick Reference-2

Quick Reference by Function

Function Mnemonic Content See page for | See page for
function instruction code
Inumber of cycles|
Transfer MOV Transfer 92 195
MOVA Transfer effective address 94 202
MOVDir Transfer 4-bit data 95 203
POP Restore register/memory 103 213
POPM Restore multiple registers 105 215
PUSH Save register/memory/immediate data 106 216
PUSHA Save effective address 107 218
PUSHM Save multiple registers 109 219
LDE Transfer from extended data area 89 193
STE Transfer to extended data area 125 235
STNZ Conditional transfer 126 237
STZ Conditional transfer 127 237
STZX Conditional transfer 128 238
XCHG Exchange 134 244
Bit BAND Logically AND bits 47 152
manipulation | BCLR Clear bit 48 152
BMCnd Conditional bit transfer 49 154
BNAND Logically AND inverted bits 50 155
BNOR Logically OR inverted bits 51 156
BNOT Invert bit 52 156
BNTST Test inverted bit 53 157
BNXOR Exclusive OR inverted bits 54 158
BOR Logically OR bits 55 158
BSET Set bit 57 159
BTST Test bit 58 160
BTSTC Test bit & clear 59 161
BTSTS Test bit & set 60 162
BXOR Exclusive OR bits 61 162
Shift ROLC Rotate left with carry 112 220
RORC Rotate right with carry 113 221
ROT Rotate 114 222
SHA Shift arithmetic 118 227
SHL Shift logical 119 230
Arithmetic ABS Absolute value 39 140
ADC Add with carry 40 140
ADCF Add carry flag 41 142
ADD Add without carry 42 142
CMP Compare 62 163
DADC Decimal add with carry 64 167

Quick Reference-3

Quick Reference by Function

Function Mnemonic Content See page for | See page for
function | instruction code
Inumber of cycles
Arithmetic DADD Decimal add without carry 65 169
DEC Decrement 66 171
DIV Signed divide 67 172
DIVU Unsigned divide 68 173
DIVX Singed divide 69 174
DSBB Decimal subtract with borrow 70 175
DSUB Decimal subtract without borrow 71 177
EXTS Extend sign 74 180
INC Increment 77 182
MUL Signed multiply 96 205
MULU Unsigned multiply 97 207
NEG Two’s complement 98 209
RMPA Calculate sum-of-products 111 220
SBB Subtract with borrow 116 224
SUB Subtract without borrow 129 238
Logical AND Logical AND 45 149
NOT Invert all bits 100 210
OR Logical OR 101 211
TST Test 131 241
XOR Exclusive OR 135 245
Jump ADJINZ Add & conditional jump 44 148
SBJINZ Subtract & conditional jump 117 226
JCnd Jump on condition 80 184
JMP Unconditional jump 81 185
JMPI Jump indirect 82 187
JMPS Jump to special page 83 188
JSR Subroutine call 84 189
JSRI Indirect subroutine call 85 190
JSRS Special page subroutine call 86 191
RTS Return from subroutine 115 223
String SMOVB Transfer string backward 120 232
SMOVF Transfer string forward 121 233
SSTR Store string 122 233
Other BRK Debug interrupt 56 159
ENTER Build stack frame 72 179
EXITD Deallocate stack frame 73 180
FCLR Clear flag register bit 75 181
FSET Set flag register bit 76 182
INT Interrupt by INT instruction 78 183
INTO Interrupt on overflow 79 184
LDC Transfer to control register 87 191

Quick Reference-4

Quick Reference by Function

Function Mnemonic Content See page for | See page for
function | instruction code
Inumber of cycles

Other LDCTX Restore context 88 192

LDINTB Transfer to INTB register 90 194

LDIPL Set interrupt enable level 91 195

NOP No operation 99 209

POPC Restore control register 104 215

PUSHC Save control register 108 218

REIT Return from interrupt 110 219

STC Transfer from control register 123 234

STCTX Save context 124 235

UND Interrupt for undefined instruction 132 243

WAIT Wait 133 243

. __|]
Quick Reference-5

Quick Reference by Addressing (general instruction addressing)

Mnemonic Addressing See page | See page for
for function | instruction
_ code
_ ,i:,i =z Inumber of
c |
AREFRBEEREEEIEHHEE

ABS O|0O|O|lO|0|O0O|O0|O0|O0|O|O 39 140
ADC O|O|OlO|0|O|O|O|O|O[O]O|O 40 140
ADCF O|O|O|O|O[O|O]|O]|O|O|O 41 142
ADD" OOl O0|O0|O0|O|O|O|O|O[O]O|O 42 142
ADJNZ O|O|O]O|O0|O]|O|O|0O]|O]|O0O @) 44 148
AND O|O0]O|O|O|O|O|O|O|O|0O|0O]|0O 45 149
CMP O|lO|O|O|OI0|O|O0|0]|O|0O|0O|0O 62 163
DADC 0|0 O|0 64 167
DADD O|0O OO0 65 169
DEC 0|0 O @) O 66 171
DIV OANCANCINCANCE ICRECANOAROREC NORRONRG) 67 172
DIVU OO0l OlO|0|O0|O0|O0|O0|O[0O]0O|0O 68 173
DIVX O|O|O|O|O|O|O|O|O|O[0O|O|O 69 174
DSBB 0|0 OO0 70 175
DSUB 0|0 0|0 71 177
ENTER O 72 179
EXTS O ok O|O|O|0O|O|O 74 180
INC o% o™ @) @) @) 77 182
INT @) 78 183
JMPI? O|lO0|OlO0|O[O0]0O|0O o]0 82 187
JMPS O 83 188
JSRI? OXNCINCINCINC) ICRNCRNC O|0 85 190
JSRS O 86 191
LDC" o|o|o|o|o|o|o|o|0o]|0O]|0 O 87 191
LDE" O|O0lO0]O|O0|O|O0|O|O0|0]|0 89 193

*1 Has special instruction addressing.
*2 Only R1L can be selected.
*3 Only ROL can be selected.
*4 Only ROH can be selected.

Quick Reference-6

Quick Reference by Addressing (general instruction addressing)

instruction

code

/number of
cycles

194
195
195
202
203

205
207
209
210
211

213
215

216
218

219
220
221
222

224
226

227

230
234
235
235

See page | See page for

for function

90
91

92
94
95
96
97

98

100
101
103

105
106
107
109
112
113
114

116
117
118
119
123

124
125

Addressing

NINI#

OCNINI#

9TNINI#

8NN I#

9Tsqe

[gs]oT:dsp

[uy]oT:dsp

[g4/gs]g:dsp

[uy]g:dsp

O |0 |O]O |0

O |0 |O]O |O

[uv]

ORICHICONICRION [C)

uvy

€d/HTY

c¢d/1Ty

Td/HOYH

0d/10d

O |0 0|0 |00 |00 |0 |0 |0 |0 |0

O |0 0|0 |0
O [0 |0]|0

O|0|0|0 |00 |00 |O0|O0|0 |0 |0
O |0|0|O0 |00 |00 |O0|O0|0 |0 |0
O|l0|0|0 |00 |0|0]|0|0]|O0
O |00 0|0 [0 |0 |0 |0 |0 |0

ORICHICHICHICN ON ICR CRICNION IORIONIO)
ORICRICRICNION (O ICRICNIONION O

O |0|0|0 |0

O |0|0|0 |00 |00 |0 |0|O0

ONICRICHIONI®

O |0 |O|O |0 [0 |0 |0 |O |0 |0

o |0|0|0|0|O0 |0 |0 |0 |0|0
O |0 |00 |00 |0 |0 |0 |0 |0

Ol|O|O|O|O|O|O|O OO0 |00
O |0|0|O0|0|O0 |00 |O0|0 |0

ONICRICAICRION ORICH (ON ICRION KC;

ONICRICAICRICH ORICH G ICRICH [C;
ONICHICRICNICN CHICHICNIONION IO

OO0 |0|0|0 |00 |O0|0 |0

Mnemonic

LDINTB
LDIPL

MOV

MOVA

MOV Dir
MUL

MULU
NEG
NOT
OR

POP

POPM?
PUSH

PUSHA

PUSHM™!
ROLC

RORC
ROT
SBB

SBJINZ?
SHA?

SHL?

sTC!

STCTX?
STE!

*1 Has special instruction addressing.

Quick Reference-7

Quick Reference by Addressing (general instruction addressing)

Mnemonic Addressing See page | See page for
for function | instruction
code
Q@ =| = Inumber of
- o c|aig| o oo cycles
Blx || S12199|ol2|2 S8
21525 c|l=lglalalalg|S|S|5|E
rl|le|le|<|Z 3|3 |3 |3|R|E|E|F| =
STNZ 0|0 @) O|O 126 237
STZ OO O Olo 127 237
STZX OO O O|O 128 238
SuUB O|lO|O|O|O|O|O|O|O|O|l0O|O]|O 129 238
TST OlO|O|O|O[O]O|O|O|OlO]O]0O 131 241
XCHG OlO0|O0O|0O|O|lO|O|O|0O|0O]|0O 134 244
XOR OlO|O0|O|O0O|O]O|0|O0|O0|0O]0O|0O 135 245

Quick Reference-8

Quick Reference by Addressing (special instruction addressing)

Mnemonic Addressing See page | See page for
for function | instruction
code
| o = /number of
g. % é _ E o g cycles
N EHEHHECEHEE
g8 8B d|=|8|2|h|a|Z|z|
ADD* O 42 142
ADJINZ* O 44 148
JCnd @) 30 184
IMP O O 81 185
JMPI? ONN@) 010 82 187
JSR O O 84 189
JSRI? 0|0 010 85 190
LDC™ O]0|0 |0 87 191
LDCTX O 88 192
LDE™ O @) @) 89 193
MoV O 92 195
POPC O| Ol 0|0 104 215
POPM? O 105 215
PUSHC O|0O| 0|0 108 218
PUSHM? O 109 219
SBINZ™ @) 117 226
SHA™ O 118 227
SHL? @) 119 230
sTCt O|0 0|0l O]0|0O 123 234
STCTX! @) 124 235
STE™ O @) O 125 235

*1 Has general instruction addressing.
*2 INTBL and INTBH cannot be set simultaneously when using the LDINTB instruction.

Quick Reference-9

Quick Reference by Addressing (bit instruction addressing)

Mnemonic Addressing See page | See page for
for function| instruction
_ code

ﬁ:ﬁ = (©) Inumber of
_ @ = % o | o % cycles

R R =R

— | O © (] (] (] E

slc|_|2/8|5/8/8/8|38

l<|=|%8|8lala|a|Q

S| 5|<|8|5|8|5|5|5|5
BAND O|lO0|O|O0O|O0(0 0|0 47 152
BCLR O]|O|O0O|O0O|O(0O]O]O|0O 48 152
BMCnd OO0 |O0O|OI0O]0O]0O O 49 154
BNAND OO0 |O0O|OI0O]0O]0O 50 155
BNOR O|O|O|O|O|O OO 51 156
BNOT OlO|O|O|Ol0]O|O|0O 52 156
BNTST O|l|O|O|O|O0|O0O |00 53 157
BNXOR O|O0|O|O|O0|O|0O|0O 54 158
BOR O|O0|O0|O0O|O|0O |00 55 158
BSET Ol|O|O|O|O[0O|]O0|0O |0 57 159
BTST Ol|O|O|O|O|O|]O0|O|O 58 160
BTSTC Ol|O|O|O|O0|0O |00 59 161
BTSTS ON NGO IOR IO IONNORRG) 60 162
BXOR O|l|O|O|O|O0|O0O 0|0 61 162
FCLR O 75 181
FSET O 76 182

Quick Reference-10

Chapter 1

Overview

1.1 Features of M16C/60, M16C/20, M16C/Tiny series
1.2 Address Space

1.3 Register Configuration

1.4 Flag Register (FLG)

1.5 Register Bank

1.6 Internal State after Reset is Cleared

1.7 Data Types

1.8 Data Arrangement

1.9 Instruction Format

1.10 Vector Table

Chapter 1 Overview 1.1 Features of M16C/60, M16C/20, M16C/Tiny series

1.1 Features of M16C/60, M16C/20, M16C/Tiny series

The M16C/60, M16C/20, M16C/Tiny series are single-chip microcomputer developed for built-in applica-
tions where the microcomputer is built into applications equipment.

The M16C/60, M16C/20, M16C/Tiny series support instructions suitable for the C language with frequently
used instructions arranged in one- byte op-code. Therefore, it allows you for efficient program development
with few memory capacity regardless of whether you are using the assembly language or C language.
Furthermore, some instructions can be executed in clock cycle, making fast arithmetic processing possible.
Its instruction set consists of 91 discrete instructions matched to the M16C’s abundant addressing modes.
This powerful instruction set allows to perform register-register, register-memory, and memory-memory
operations, as well as arithmetic/logic operations on bits and 4-bit data.

Some models incorporate a multiplier, allowing for high-speed computation.

1.1.1 Features of M16C/60, M16C/20, M16C/Tiny series
* Register configuration

Data registers Four 16-bit registers (of which two registers can be used as 8-bit registers)
Address registers Two 16-bit registers

Base registers Two 16-bit registers

* Versatile instruction set

C language-suited instructions (stack frame manipulation): ENTER, EXITD, etc.
Register and memory-indiscriminated instructions: MOV, ADD, SUB, etc.
Powerful bit manipulate instructions: BNOT, BTST, BSET, etc.

4-bit transfer instructions: MOVLL, MOVHL, etc.

Frequently used 1-byte instructions: MOV, ADD, SUB, JMP, etc.

High-speed 1-cycle instructions: MOV, ADD, SUB, etc.

» 1M-byte linear address space

Relative jump instructions matched to distance of jump

* Fast instruction execution time

Shortest 1-cycle instructions: 91 instructions include 20 1-cycle instructions.
(Approximately 75% of instructions execute in five cycles or under.)

1.1.2 Speed performance
Register-register transfer 0.125 ps
Register-memory transfer ~ 0.125 ps
Register-register addition/subtraction 0.125 ps
8 bits x 8 bits register-register operation 0.25 ps
16 bits x 16 bits register-register operation 0.313 ps
16 bits / 8 bits register-register operation 1.13 us
32 bits / 16 bits register-register operation 1.56 ps

*Conditions
-Products with built-in Multiplier
-Clock frequency 16 MHz

Chapter 1 Overview 1.2 Address Space

1.2 Address Space

Fig. 1.2.1 shows an address space.

Addresses 0000016 through 003FF16 make up an SFR (special function register) area. In individual models
of the M16C/60, M16C/20, M16C/Tiny series, the SFR area extends from 003FF16 toward lower addresses.
Addresses from 0040016 on make up a memory area. In individual models of the M16C/60, M16C/20,
M16C/Tiny series, a RAM area extends from address 0040016 toward higher addresses, and a ROM area
extends from FFFFF16 toward lower addresses. Addresses FFEOO16 through FFFFF16 make up a fixed
vector area.

0000016
The SFR area in each
SER area model extends toward
lower-address locations
A as much as available.
0040016 | |0 DAV area | The RAM area in each
model extends toward
higher-address loca-
tions as much as
External memory area available.
OFFFF16
1000016 |]
External memory area™
Internal ROM area The ROM area in each
model extends toward
FEEO0O16 _ lower-address locations
FEEEEL | Feed vector area y as much as available.
*1 Locations above address 1000016 have restrictions on the types of instructions that
can be used.

Figure 1.2.1 Address space

Chapter 1 Overview 1.3 Register Configuration

1.3 Register Configuration

The central processing unit (CPU) contains the 13 registers shown in Figure 1.3.1. Of these registers, RO,
R1, R2, R3, A0, Al, and FB each consist of two sets of registers configuring two register banks.

b15 b8h7 b0 u
*1
RO II [II_II [L1 II_ L1] E
b15 b8b7 b0 E b19 b0
R1%1 H L] 0 PC Program
II I I I D 1 o Counter
b15 b0 %Data b19 b0
R21] reoisters INTB[H L Interrupt table
II I T I Y I D 111 I T I I r‘egister
b15 b0 E b15 b0
R3" N USP User stack
1 A I |] 1 I .
I [] pointer
b15 b0 u b15 b0
AO0™ 0 ISP Interrupt stack
1 A I |] 1 I .
' % Address pointer
b15 b0 T registers b15 b0
Al 0 SB Static base
1 A I | 1 I 3
' O register
b15 b0 b15 b0
FB™ Frame FLG Flag register
II 1 I |] base _ 1 I
register __— - |
- |
IPL uj1|{o|B|S|z|D|C
*1 These registers have two register banks.

Figure 1.3.1 CPU register configuration

1.3.1 Data registers (RO, ROH, ROL, R1, R1H, R1L, R2, and R3)
The data registers (RO, R1, R2, and R3) consist of 16 bits, and are used primarily for transfers and
arithmetic/logic operations.
Registers RO and R1 can be halved into separate high-order (ROH, R1H) and low-order (ROL, R1L) parts
for use as 8-bit data registers. For some instructions, moreover, you can combine R2 and RO or R3 and
R1 to configure a 32-bit data register (R2R0 or R3R1).

Chapter 1 Overview 1.3 Register Configuration

1.3.2 Address registers (A0 and Al)

The address registers (A0 and Al) consist of 16 bits, and have the similar functions as the data regis-
ters. These registers are used for address register-based indirect addressing and address register-
based relative addressing.

For some instructions, registers A1 and A0 can be combined to configure a 32-bit address register
(A1A0).

1.3.3 Frame base register (FB)
The frame base register (FB) consists of 16 bits, and is used for FB-based relative addressing.

1.3.4 Program counter (PC)

The program counter (PC) consists of 20 bits, indicating the address of an instruction to be executed
next.

1.3.5 Interrupt table register (INTB)

The interrupt table register (INTB) consists of 20 bits, indicating the initial address of an interrupt vector
table.

1.3.6 User stack pointer (USP) and interrupt stack pointer (ISP)
There are two types of stack pointers: user stack pointer (USP) and interrupt stack pointer (ISP), each
consisting of 16 bits.
The stack pointer (USP/ISP) you want can be switched by a stack pointer select flag (U flag).
The stack pointer select flag (U flag) is bit 7 of the flag register (FLG).

1.3.7 Static base register (SB)
The static base register (SB) consists of 16 bits, and is used for SB-based relative addressing.

1.3.8 Flag register (FLG)

The flag register (FLG) consists of 11 bits, and is used as a flag, one bit for one flag. For details about
the function of each flag, see Section 1.4, “Flag Register (FLG).”

Chapter 1 Overview 1.4 Flag Register (FLG)

1.4 Flag Register (FLG)

Figure 1.4.1 shows a configuration of the flag register (FLG). The function of each flag is detailed below.

1.4.1 Bit O: Carry flag (C flag)
This flag holds a carry, borrow, or shifted-out bit that has occurred in the arithmetic/logic unit.

1.4.2 Bit 1: Debug flag (D flag)

This flag enables a single-step interrupt.
When this flag is set (= 1), a single-step interrupt is generated after an instruction is executed. When an
interrupt is acknowledged, this flag is cleared to 0.

1.4.3 Bit 2: Zero flag (Z flag)
This flag is set when an arithmetic operation resulted in 0; otherwise, this flag is 0.

1.4.4 Bit 3: Sign flag (S flag)
This flag is set when an arithmetic operation resulted in a negative value; otherwise, this flag is 0.

1.4.5 Bit 4: Register bank select flag (B flag)

This flag selects a register bank. If this flag is 0, register bank 0 is selected; if the flag is 1, register bank
1is selected.

1.4.6 Bit 5: Overflow flag (O flag)

This flag is set when an arithmetic operation resulted in overflow.

1.4.7 Bit 6: Interrupt enable flag (I flag)
This flag enables a maskable interrupt.
When this flag is 0, the interrupt is disabled; when the flag is 1, the interrupt is enabled. When the
interrupt is acknowledged, this flag is cleared to 0.

1.4.8 Bit 7: Stack pointer select flag (U flag)
When this flag is 0, the interrupt stack pointer (ISP) is selected; when the flag is 1, the user stack pointer
(USP) is selected.
This flag is cleared to 0 when a hardware interrupt is acknowledged or an INT instruction of software
interrupt numbers 0 to 31 is executed.

1.4.9 Bits 8-11: Reserved area

Chapter 1 Overview 1.4 Flag Register (FLG)

1.4.10 Bits 12-14: Processor interrupt priority level (IPL)
The processor interrupt priority level (IPL) consists of three bits, allowing you to specify eight processor
interrupt priority levels from level O to level 7. If a requested interrupt’s priority level is higher than the
processor interrupt priority level (IPL), this interrupt is enabled.

1.4.11 Bit 15: Reserved area

b15 (o]0]
IPL Ull|lo|B|s|z|D|c| Flag register (FLG)

Carry flag

—— Debug flag

Zero flag

Sign flag

Register bank select flag

Overflow flag

Interrupt enable flag

Stack pointer select flag

Reserved area

Processor interrupt priority level

Reserved area

Figure 1.4.1 Configuration of flag register (FLG)

Chapter 1 Overview 1.5 Register Bank

1.5 Register Bank

The M16C has two register banks, each configured with data registers (R0, R1, R2, and R3), address
registers (A0 and Al), and frame base register (FB). These two register banks are switched over by the
register bank select flag (B flag) of the flag register (FLG).

Figure 1.5.1 shows a configuration of register banks.

Register bank 0 (B flag = 0) Register bank 1 (B flag = 1)

| | | |
| | | |
| b15 b8b7 b | b15 b8b7 b
| | | |
: RO T I I I I : : RO T I I I I :
 R1 ! R1 |
| N I I | | N I I |
I R2 | I R2 |
! LUl ! ! LUl !
' R3 | ' R3 |
| AR | | AR |
IAO ! |AO |
| AR | | AR |
IAl | IAl |
! AR EEEEEEE NN ! ! AR EEEEEEE NN !
. FB ' . FB '
: RN : : RN :
| | | |

Figure 1.5.1 Configuration of register banks

Chapter 1 Overview 1.6 Internal State after Reset is Cleared

1.6 Internal State after Reset is Cleared

The following lists the content of each register after a reset is cleared.
« Data registers (RO, R1, R2, and R3): 000016

 Address registers (A0 and Al): 000016

» Frame base register (FB): 000016

« Interrupt table register (INTB): 0000016

« User stack pointer (USP): 000016

« Interrupt stack pointer (ISP): 000016

« Static base register (SB): 000016

* Flag register (FLG): 000016

Chapter 1 Overview

1.7 Data Types

There are four data types: integer, decimal, bit, and string.

1.7.1 Integer

1.7 Data Types

An integer can be a signed or an unsigned integer. A negative value of a signed integer is represented

by two’s complement.

Signed byte (8 bit) integer

Unsigned byte (8 bit) integer

Signed word (16 bit) integer

Unsigned word (16 bit) integer

Signed long word (32 bit) integer

Unsigned long word (32 bit) integer

S: Sign bit

b7 bo

b7 bo

b15 bo
|S||||||||||||||||

h15 b0
|||||||||||||||||

b31 b0
|||||||||IIIIIII|IIIIIII|IIIIIII|
h31 b0

Figure 1.7.1 Integer data

10

Chapter 1 Overview 1.7 Data Types

1.7.2 Decimal
This type of data can be used in DADC, DADD, DSBB, and DSUB.

Pack format b7 b0
(2 digits) m
Pack format b15 bo
(4 digits) Lol

Figure 1.7.2 Decimal data

11

Chapter 1 Overview

1.7 Data Types

1.7.3 Bits

e Register bits

Figure 1.7.3 shows register bit specification.
Register bits can be specified by register direct (bit, Rn or bit, An). Use bit, Rn to specify a bit in data
register (Rn); use bit, An to specify a bit in address register (An).

Bits in each register are assigned bit numbers 0-15, from LSB to MSB. For bit in bit, Rn and bit, An, you
can specify a bit number in the range of 0 to 15.

b15

Rn b0

bit,Rn |

(bit: 0 to 15, n: 0 to 3)

bit,An |
(bit: 0to 15, n: 0 to 1)

An

b15 b0

Figure 1.7.3 Register bit specification

e Memory bits

Figure 1.7.4 shows addressing modes used for memory bit specification. Table 1.7.1 lists the address
range in which you can specify bits in each addressing mode. Be sure to observe the address range in
Table 1.7.1 when specifying memory bits.

Addressing modes —— Absolute addressing

SB-based relative

bit,base:16

| addressing

| FB-based relative

bit,base:11[SB]

t bit,base:8[SB]
bit,base:16[SB]

addressing

addressing

addressing

| Address register-based indirect

|__Address register-based relative

bit,base:8[FB]
— [An]

—[base:8[An]
base:16[An]

Figure 1.7.4 Addressing modes used for memory bit specification

Table 1.7.1 Bit-Specifying Address Range

Addressing Specification range
Lower limit (address) | Upper limit (address) Remarks

bit,base:16 0000016 01FFF16

bit,base:8[SB] [SB] [SB]+0001F16 The access range is 0000016 to OFFFF1s6.
bit,base:11[SB] [SB] [SB]+000FF16 The access range is 0000016 to OFFFF1s6.
bit,base:16[SB] [SB] [SB]+01FFF16 The access range is 0000016 to OFFFF1s6.
bit,base:8[FB] [FBJA|0001016 [FB]+0000F16 The access range is 0000016 to OFFFF1s6.
[An] 0000016 01FFF16

base:8[An] base:8 base:8+01FFF16 The access range is 0000016 to 020FE1s.
base:16[An] base:16 base:16+01FFF16 | The access range is 0000016 to OFFFF1s.

12

Chapter 1 Overview

(1) Bit specification by bit, base

Figure 1.7.5 shows the relationship between memory map and bit map.
Memory bits can be handled as an array of consecutive bits. Bits can be specified by a given combina-
tion of bit and base. Using bit 0 of the address that is set to base as the reference (= 0), set the desired
bit position to bit. Figure 1.7.6 shows examples of how to specify bit 2 of address 0000A16.

1.7 Data Types

Address
b7

0

),
[(§

n-1

n+1

!

n+1 n n-1
““““““““““““ b7 b0b7 bob7 bo b7 bo
_______________________ b/ IR ST N I ST S
~ Memory map =~ Bit map
Figure 1.7.5 Relationship between memory map and bit map
Address 0000A16 N

BSET

BSET

BSET

BSET

2,AH

10,9H

18,8H

82,0H

b7 b2 b0

Address 0000916

b15 b10 b8b7 b0
I L | |] I P T N R N I
Address 0000816
b23 b18 b16b15 b8b7 b0
| | | |] II T R | [I B ||
Address 0000016
bh87 b82 h80b79 b72 b7 b0
I | | |] I L1 L1 I____SS____I TR T N N N I

. specify bit 2 of

J

These specifica-
tion examples all

address 0000A1s.

Figure 1.7.6 Examples of how to specify bit 2 of address 0000A16

13

Chapter 1 Overview 1.7 Data Types

(2) SB/FB relative bit specification

For SB/FB-based relative addressing, use bit 0 of the address that is the sum of the address set to
static base register (SB) or frame base register (FB) plus the address set to base as the reference (=
0), and set your desired bit position to bit.

(3) Address register indirect/relative bit specification

For address register-based indirect addressing, use bit 0 of address 0000016 as the reference (= 0)
and set your desired bit position to address register (An).

For address register-based relative addressing, use bit 0 of the address set to base as the reference
(= 0) and set your desired bit position to address register (An).

14

Chapter 1 Overview 1.7 Data Types

1.7.4 String
String is a type of data that consists of a given length of consecutive byte (8-bit) or word (16-bit) data.
This data type can be used in three types of string instructions: character string backward transfer
(SMOVB instruction), character string forward transfer (SMOVF instruction), and specified area initialize
(SSTR instruction).

Byte (8-bit) data Word (16-bit) data

b7 bo b15 b0
| 1 1 1 1 1 1 1 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
b7 bo b15 b0
| 1 1 1 1 1 1 1 | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
b7 bo b15 b0

Figure 1.7.7 String data

15

Chapter 1 Overview 1.8 Data Arrangement

1.8 Data Arrangement

1.8.1 Data Arrangement in Register
Figure 1.8.1 shows the relationship between a register’'s data size and bit numbers.

b3 b0

Nibble (4-bit) data [
b7 b0

Byte (8-bit) data]
b15 b0

Word (16'b|t) data | Ll | Ll |
b31 b0

Long word (32_b|t) data I o | I | 1 |
MSB LSB

Figure 1.8.1 Data arrangement in register

16

Chapter 1 Overview

1.8.2 Data Arrangement in Memory

Figure 1.8.2 shows data arrangement in memory. Figure 1.8.3 shows some examples of operation.

1.8 Data Arrangement

b7 b0
N DATA
N+1
N+2
N+3

Byte (8-bit) data

b7 b0
N DATA(L)
N+1 DATA(M)
N+2 DATA(H)
N+3

20-bit (Address) data

b7 b0
N DATA(L)
N+1 DATA(H)
N+2
N+3

Word (16-bit) data

b7 b0
N DATA(LL)
N+1 DATA(LH)
N+2 DATA(HL)
N+3 DATA(HH)

Long Word (32-bit) data

Figure 1.8.2 Data arrangement in memory

Does not change.

MOV.B N,ROH

b7 bo
N DATA
N+1
N+2
N+3

Byte (8-bit) data

L,

MOV.W N,RO

b7 b0
N DATA(L)
N+1 DATA(H)
N+2
N+3

Word (16-bit) data

—1 .

| . DATA(H), , | ., ,DATAQ), . |
H L

RO

Figure 1.8.3 Examples of operation

17

Chapter 1 Overview 1.9 Instruction Format

1.9 Instruction Format

The instruction format can be classified into four types: generic, quick, short, and zero. The number of
instruction bytes that can be chosen by a given format is least for the zero format, and increases succes-
sively for the short, quick, and generic formats in that order.

The following describes the features of each format.

1.9.1 Generic format (:G)
Op-code in this format consists of two bytes. This op-code contains information on operation and src™
and dest”? addressing modes.
Instruction code here is comprised of op-code (2 bytes), src code (0-3 bytes), and dest code (0-3 bytes).

1.9.2 Quick format (:Q)
Op-code in this format consists of two bytes. This op-code contains information on operation and imme-
diate data and dest addressing modes. Note however that the immediate data in this op-code is a
numeric value that can be expressed by -7 to +8 or -8 to +7 (varying with instruction).
Instruction code here is comprised of op-code (2 bytes) containing immediate data and dest code (0-2
bytes).

1.9.3 Short format (:S)
Op-code in this format consists of one byte. This op-code contains information on operation and src and
dest addressing modes.Note however that the usable addressing modes are limited.
Instruction code here is comprised of op-code (1 byte), src code (0-2 bytes), and dest code (0-2 bytes).

1.9.4 Zero format (:2)
Op-code in this format consists of one byte. This op-code contains information on operation (plus
immediate data) and dest addressing modes. Note however that the immediate data is fixed to 0, and
that the usable addressing modes are limited.
Instruction code here is comprised of op-code (1 byte) and dest code (0-2 bytes).

*1 src is the abbreviation of “source.”
*2 dest is the abbreviation of “destination.”

18

Chapter 1 Overview 1.10 Vector Table

1.10 Vector Table

The vector table comes in two types: a special page vector table and an interrupt vector table. The special
page vector table is a fixed vector table. The interrupt vector table can be a fixed or a variable vector table.

1.10.1 Fixed Vector Table

The fixed vector table is an address-fixed vector table. The special page vector table is allocated to
addresses FFE0016 through FFFDB16, and part of the interrupt vector table is allocated to addresses
FFFDC16 through FFFFF16. Figure 1.10.1 shows a fixed vector table.

The special page vector table is comprised of two bytes per table. Each vector table must contain the 16
low-order bits of the subroutine’s entry address. Each vector table has special page numbers (18 to
255) which are used in JSRS and JMPS instructions.

The interrupt vector table is comprised of four bytes per table. Each vector table must contain the
interrupt handler routine’s entry address.

FFEOO16 255 B
———————— [] Special page number
FFEO216 254 []
Special page E
vector table M
]
FFFDB16 18 _ _ _ [
FFEDC16 nterruot FFFDC16 £ jnqefined instruction 3
. Ft) o FFFEO16 = Overflow =
vector table — =
FFFE416 £ BRK instruction =
FFFFF16 FFFE816 £ Address match =
\ FFFEC16 £ single step =
\ FFFFO16 E \watchdog timer =
\ FFFF416 = pgC =
\ — =
\ FFFF816 — NMI —
\ FFFFC16 E Reset E

Figure 1.10.1 Fixed vector table

19

Chapter 1 Overview 1.10 Vector Table

1.10.2 Variable Vector Table
The variable vector table is an address-variable vector table. Specifically, this vector table is a 256-byte
interrupt vector table that uses the value indicated by the interrupt table register (INTB) as the entry
address (IntBase). Figure 1.10.2 shows a variable vector table.
The variable vector table is comprised of four bytes per table. Each vector table must contain the
interrupt handler routine’s entry address.
Each vector table has software interrupt numbers (0 to 63). The INT instruction uses these software
interrupt numbers.
Interrupts from the peripheral functions built in each M16C model are allocated to software interrupt
numbers 0 through 31.

b19 b0
INTB IntBase
I I O O B |
! >F - []
IntBase+4 | E 30 E]
IntBase+8 . E 10O 0O
T E 3 [1 [Vectors accommodat-
- E E E ing peripheral I/O
— = interrupts
- 1 0o g™
- 4 0 0O
= 931 E N
= 32 B Software interrupt
= d33 [numbers
= 4 O
= 4 U
— - []
= 4 U
= 4 O
IntBase+252, E = M
T E 463

Figure 1.10.2 Variable vector table

20

2.1
2.2
2.3
2.4
2.5

Chapter 2

Addressing Modes

Addressing Modes

Guide to This Chapter

General Instruction Addressing
Special Instruction Addressing
Bit Instruction Addressing

Chapter 2 Addressing Modes 2.1 Addressing Modes

2.1 Addressing Modes

This section describes addressing mode-representing symbols and operations for each addressing mode.
The M16C/60, M16C/20, M16C/Tiny series have three addressing modes outlined below.

2.1.1 General instruction addressing
This addressing accesses an area from address 0000016 through address OFFFF16.
The following lists the name of each general instruction addressing:
» Immediate
* Register direct
» Absolute
 Address register indirect
» Address register relative
* SB relative
* FB relative
» Stack pointer relative

2.1.2 Special instruction addressing
This addressing accesses an area from address 0000016 through address FFFFF16 and control regis-
ters.
The following lists the name of each specific instruction addressing:
* 20-bit absolute
» Address register relative with 20-bit displacement
* 32-bit address register indirect
* 32-bit register direct
» Control register direct
» Program counter relative

2.1.3 Bit instruction addressing
This addressing accesses an area from address 0000016 through address OFFFF16.
The following lists the name of each bit instruction addressing:
* Register direct
* Absolute
» Address register indirect
 Address register relative
* SB relative
* FB relative
* FLG direct

22

Chapter 2 Addressing Modes 2.2 Guide to This Chapter

2.2 Guide to This Chapter

The following shows how to read this chapter using an actual example.

(1)
Addr%ss rerter relative
"The value indicated by displacement
(2) ~ (dsp) plus the content of address

register (AO/Al)—added not includ- Register Memory
ing the sign bits—constitutes the
effective addyéss to e operated on. dsp

(3 However, if the additjon resulted in !
exceeding OF the bits above | AO/AL - @
bit 17 are ignored, and the address N
returns to 0000016.

)
(4)

(1) Name
Indicates the name of addressing.

(2) Symbol
Represents the addressing mode.

(3) Explanation

Describes the addressing operation and the effective address range.

(4) Operation diagram
Diagrammatically explains the addressing operation.

23

Chapter 2 Addressing Modes 2.3 General Instruction Addressing

2.3 General Instruction Addressing

Immediate
#IMM The immediate data indicated by #IMM #IMM8 |L—_H_H_|bo
#IMMS is the object to be operated on.
h15 b8 b7 b0
#lMM20 Ll 1 1 1 LA L 1 1 1 1
b19 b15 b8 b7 b0
vz | L [. |
Register direct
ROL The specified register is the object to Register
ROH be operated on. ROL / R1L P mmm - -]_,_,_,_._,—_,_j)
RIL | T
R1H bi5 b8 _ _ _ _ _ .
rom/RaH [y T oL .
RO
R1 RO/R1/R2/ b5 b8 b7 b0
R2 R3/A0/Al el
R3
A0
Al
Absolute
Memory
abs16 The value indicated by abs16 constitutes the
effective address to be operated on.
. . abs16
The effective address range is 0000016 to
OFFFF16.
Address register indirect
[AO] The value indicated by the content of
address register (A0/Al) constitutes .
[A1] the effective address to be operated Register Memory
A0 A1
The effective address range is 0000016
to OFFFF1s.

24

Chapter 2 Addressing Modes

2.3 General Instruction Addressing

Address register relative

The value indicated by displacement

of frame base register (FB) plus the
value indicated by displacement
(dsp)—added including the sign bits—
constitutes the effective address to be
operated on.

However, if the addition resulted in
exceeding 0000016- OFFFF16, the bits
above bit 17 are ignored, and the
address returns to 0000016 or
OFFFF1s.

If the dsp value is negative

N

dsp — @
Register t

FB[address |- adaress
|

dsp»@

IR

If the dsp value is positive

dsp:8[A0] Memory
dsp:8IAL (dsp) plus the content of address
sp:8[A1] register (AO/Al)—added not including dsp
dsp:16[A0]|the sign bits—constitutes the effective Register |
dsp:16[A1] address to be operated on. A0/ AL _) @
However, if the addition resulted in
exceeding OFFFF16, the bits above bit
17 are ignored, and the address
returns to 0000016.
SB relative
) The address indicated by the content
dsp:8[SB] of static base register (SB) plus the
dsp:16[SB]| value indicated by displacement Register Memory
(dsp)—added not including the sign SB| address |- address
bits—constitutes the effective address |
to be operated on. dsp — @
However, if the addition resulted in |
exceeding OFFFF16, the bits above bit
17 are ignored, and the address
returns to 0000016.
FB relative
dsp:8[FB] The address indicated by the content Memory

25

Chapter 2 Addressing Modes 2.3 General Instruction Addressing

Stack pointer relative

dsp:8[SP] | The address indicated by the content of stack Memory

pointer (SP) plus the value indicated by If the dsp value is negative
displacement (dsp)—added including the sign
bits—constitutes the effective address to be |9
operated on. The stack pointer (SP) here is dsp — @
the one indicated by the U flag. P

Register t
However, if the addition resulted in exceeding| SP [address |-
0000016- OFFFF16, the bits above bit 17 are |
ignored, and the address returns to 0000016 dsp — &)
or OFFFF1s.
This addressing can be used in MOV L
instruction. If the dsp value is positive

26

Chapter 2 Addressing Modes 2.4 Special Instruction Addressing

2.4 Special Instruction Addressing

20-bit absolute

abs20 The value indicated by abs20 constitutes
the effective address to be operated on. Memory

The effective address range is 0000016 to
FFFFF16. abs20

This addressing can be used in LDE, STE,
JSR, and JMP instructions.

Address register relative with OLDE, STE instructions Memory
20-bit displacement

P — ; Register dsp
dsp:20[A0] | The address indicated by displacement |

(dsp) plus the content of address register A0 -> @

dsp:20[A1] | ao/A1)—added not including the sign
bits—constitutes the effective address to |ﬁ
be operated on.

However, if the addition resulted in exceed- O JMPI, JSRI instructions Memory

ing FFFFF1s, the bits above bit 21 are d

ignored, and the address returns to . P

0000016, Register i
a0/ AL _address |~ @

This addressing can be used in LDE, STE, |9

JMPI, and JSRI instructions.

The following lists the addressing mode and PC

instruction combinations that can be used. \ \

dsp:20[AQ]
— LDE, STE, JMPI, and JSRI in-
structions
dsp:20[A1]
— JMPI and JSRI instructions

32-bit address register indirect

Al Register AO

h31 b16 b15 b0
| address-H | address-L |

[A1AQ] The address indicated by 32 concat-
enated bits of address registers (AO
and A1) constitutes the effective
address to be operated on.

I
_ | |
However, if the concatenated register |
value exceeds FFFFF16, the bits |

above bit 21 are ignored. Memory

%

This addressing can be used in LDE address
and STE instructions.

27

Chapter 2. Addressing Modes 2.4 Special Instruction Addressing

32-bit register direct

O SHL, SHA instructions

R2R0O The 32-bit concatenated register content of two
specified registers is the object to be operated R2R0O b3l b16 b15 bo
R3R1 | |
on R3R1
A1AO

This addressing can be used in SHL, SHA,
JMPI, and JSRI instructions.

The following lists the register and instruction O JMPI, JSRI instructions
combinations that can be used.

R2R0O b16
R2R0, R3RL R3RL [|b15 4
— SHL, SHA, JMPI, and JSRI in-
structions A1AO I
ALAO I
— JMPI and JSRI instructions \
PC |
Control register direct Register
INTBL The specified control register is the b15 b0
object to be operated on. INTBL i it it |
INTBH
ISP This addressing can be used in LDC, INTBH b|15 ————— b4b3 b
Sp STC, PUSHC, and POPC instructions. L—_— ———
b15 b0
SB If you specify SP, the stack pointer ISP]
FB indicated by the U flag is the object to
be operated on. b15 b0
FLG USP Ll 1 1 Ll Ll 1 1 1 Ll 1 |
b15 b0
SB Ll 1 1 Ll L1 a1 1.1 Ll 1 |
b15 b0
FB Ll 1 1 Ll a1 1 1 1 1 Ll |
b15 b0
FLG Ll 1 1 Ll a1 1 1 1 1 Ll |

28

Chapter 2 Addressing Modes

2.4 Special Instruction Addressing

Program counter relative

label

« If the jump length specifier (.length)
is (.S)...

the base address plus the value
indicated by displacement (dsp)—
added not including the sign bits—
constitutes the effective address.

This addressing can be used in IMP

Base address
!
dS p —_ @

b label

Memory

instruction.

+0=dsp=+7

*1 The base address is the (start address of instruction + 2).

« If the jump length specifier (.length) is
(.B) or (W)...

the base address plus the value indicated
by displacement (dsp)—added including
the sign bits—constitutes the effective

If the dsp value is negative

|% label

address. dsp - @
t
However, if the addition resulted in B dd
exceeding 0000016- FFFFF16, the bits asea r‘iss
above bit 21 are ignored, and the address ®
returns to 0000016 or FFFFF1s. dsp -

L label

If the dsp value is positive

This addressing can be used in JMP and
JSR instructions.

If the specifier is (.B), -128 < dsp < +127
If the specifier is (W), -32768 < dsp < +32767
*2 The base address varies with each instruction.

29

Chapter 2 Addressing Modes 2.5 Bit Instruction Addressing

2.5 Bit Instruction Addressing

This addressing can be used in the following instructions:
BCLR, BSET, BNOT, BTST, BNTST, BAND, BNAND, BOR, BNOR, BXOR, BNXOR, BMCnd, BTSTS,
BTSTC

Register direct
bit,RO The specified register bit is the object
. to be operated on. i
bit,R1 P bit, RO
bit,R2 For the bit position (bit) you can
; specify 0 to 15.
b!t’R?’ bi5 RO b0
bit, AD Lol s— 1]
bit,Al t
Bit position
Absolute
bit,base:16 | The bit that is as much away from bit
0 at the address indicated by base as
the number of bits indicated by bit is
the object to be operated on.
b7 b0
Bits at addresses 0000016 through base S—— |
01FFF16 can be the object to be N
operated on. & . A
L
Bit position
Address register indirect
[AO] The bit that is as much away from bit 0 at b7 b0
™ address 0000016 as the number of bits 0000016 | €—
[Al] indicated by address register (A0/Al) is \
the object to be operated on. A A
Bits at addresses 0000016 through N
01FFF16 can be the object to be operated . |_| <
on. T
Bit position

30

Chapter 2 Addressing Modes 2.5 Bit Instruction Addressing

Address register relative

base:8[A0Q] The bit that is as much away
. from bit O at the address indi-
base:8[Al
[AL] cated by base as the number of
base:16[A0] bits indicated by address register b7 b
base:16[A1] (AO/Al) is the object to be T
operated on.

b))
[(¢
)

[<¢

However, if the address of the bit
to be operated on exceeds base | .~ 1
OFFFF16, the bits above bit 17 S
are ignored and the address T
returns to 0000016.

Bit position
The address range that can be
specified by address register

(AO/Al) is 8,192 bytes from
base.

SB relative

bit,base:8[SB] |The bit that is as much away from

. . bit 0 at the address indicated by
bit,base:11[SB]| qatic pase register (SB) plus the Memory
bit,pase:16[SB]|value indicated by base (added not b7 b0
including the sign bits) as the iy
number of bits indicated by bit is the
object to be operated on.

D))
118
D))
1Y

Register
However, if the address of the bitto | S° — address
be operated on exceeds OFFFF16, |

the bits above bit 17 are ignored and base — @
the address returns to 0000016. |

<

The address ranges that can be t
specified by bit,base: 8, bit,base:
11, and bit,base:16 respectively are
32 bytes, 256 bytes, and 8,192
bytes from the static base register
(SB) value.

Bit position

31

Chapter 2 Addressing Modes

2.5 Bit Instruction Addressing

FB relative

bit,base:8[FB]

The bit that is as much away from bit 0 at
the address indicated by frame base
register (FB) plus the value indicated by
base (added including the sign bit) as the
number of bits indicated by bit is the
object to be operated on.

However, if the address of the bit to be

operated on exceeds 0000016-0FFFF1s,
the bits above hit 17 are ignored and the
address returns to 0000016 or OFFFF16.

The address range that can be specified
by bit,base: 8 is 16 bytes toward lower
addresses or 15 bytes toward higher
addresses from the frame base register
(FB) value.

Memory
If the base value is negative PZ— |
t
(Bit position)
base - @ A
Register i
FB — address »
‘ Ll ! 1
base - @ A ¥
N P
If the base value is positive <«
11 11

Bit position
FLG direct
U The specified flag is the object to
be operated on.
I Regist
_ _ _ b7 gister bo
O This addressing can be used in
B FCLR and FSET instructions. FG|U,1,0,B,5,2,D,C|
S
z
D
C

32

Chapter 3

Functions

3.1 Guide to This Chapter
3.2 Functions

Chapter 3 Functions

3.1 Guide to This Chapter

3.1 Guide to This Chapter

This chapter describes the functionality of each instruction by showing syntax, operation, function, select-
able src/dest, flag changes, description examples, and related instructions.
The following shows how to read this chapter by using an actual page as an example.

Chapter 3 Functions

3.2 Functions

@1

V Transfer M OV

)

)

(")

C)ly

(9

|
@ — [ation]

dest <« src

(5) +— [@

MOve [Inst on Code/Number of Cycles]
[®a)(]

Page=195
.size (:format) src,dest

L G,Q,Z,S (Can be specified)
B,W

tion]

» This instruction transfers srcto dest.

» If destis an address register when the size specifier (.size) you selected is (.B), srcis zero-expanded to transfer data in
16 bits. If srcis an address register, data is transferred from the address register’s 8 low-order bits.

®) +— [@table src/dest | (See the next page for src/dest classified by format.)
src dest

ROL/RO ROH/R1 R1L/R2 R1H/R3 ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/AQ Al/Al [AQ] [A1] AO/AO Al/A1 [A0] [A1]
dsp:8[A0] dsp:8[A1l] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[A1l] dsp:8[SB] dsp:8[FB]
dsp:16[AQ] dsp:16[A1] dsp:16[SB] abs16 dsp:16[AQ] dsp:16[A1] dsp:16[SB] abs16

#IMM

dsp:8[SP] dsp:8[SP]

— [hange]
U

z

Flag | O|B|S|z|D]|C
Change — | —| —| —| O] O| —| —
Conditions
S The flag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.

— [ription Example]
['@o Instruction] LDE,STE,XCHG

The flag is set when the transfer resulted in 0; otherwise cleared.

VIOV.B:S #0ABH,ROL
MOV.W #1,R2

92

34

Chapter 3 Functions 3.1 Guide to This Chapter

(1) Mnemonic
Indicates the mnemonic explained in this page.

(2) Instruction code/Number of Cycles

Indicates the page in which instruction code/number of cycles is listed.

Refer to this page for instruction code and number of cycles.

(3) Syntax

Indicates the syntax of the instruction using symbols. If (:format) is omitted, the assembler chooses the
optimum specifier.

MOV.size (: format) src, dest

| G,Q.5.Z - (0

B,W - (e)

Vo | |
(@) (o) © (@

(@) Mnemonic MOV
Describes the mnemonic.

(b) Size specifier size
Describes the data size in which data is handled. The following lists the data sizes that can be speci
fied:

.B Byte (8 bits)

W Word (16 bits)

L Long word (32 bits)

Some instructions do not have a size specifier.

(c) Instruction format specifier (: format)
Describes the instruction format. If (.format) is omitted, the assembler chooses the optimum speci

fier. If (.format) is entered, its content is given priority. The following lists the instruction formats that

can be specified:
:G Generic format
:Q Quick format
:S Short format

:Z Zero format
Some instructions do not have an instruction format specifier.

(d) Operand src, dest
Describes the operand.

(e) Indicates the data size you can specify in (b).

(f) Indicates the instruction format you can specify in (c).

35

Chapter 3 Functions 3.1 Guide to This Chapter

Chapter 3 Functions _
3.2 Functions

Q) +— V Transfer M OV

(2) MOVe [Instructie/Number of Cycles]
[aX] Page=195

)

@) — [ation]

dest <« src

B)+— [@tion]
D his instruction transfers src to dest.

« If destis an address register when the size specifier (.size) you selected is (.B), srcis zero-expanded to transfer data in
16 bits. If srcis an address register, data is transferred from the address register's 8 low-order bits.

MOV .size (:format) src,dest

L G,Q,Z,S (Can be specified)
B,W

6 +— [@table src/dest] (See the next page for src/dest classified by format.)
src dest

ROL/RO ROH/R1 R1L/R2 R1H/R3 ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/AQ Al/A1 [A0] [A1] AO/AO Al/A1 [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[AQ] dsp:16[A1] dsp:16[SB] abs16 dsp:16[AQ] dsp:16[A1] dsp:16[SB] abs16

#IMM

dsp:8[SP] dsp:8[SP]

(7) +— [hange]

Flag | U | I O|B|S|Z|D]|C
Changef — | —| —| —| O| O| —| —
Conditions
S : Theflag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.
Z : The flag is set when the transfer resulted in O; otherwise cleared.
8) 1T [ription Example]
VIOV.B:S #0ABH,ROL
MOV.W #-1,R2

9)+— [d Instruction] LDE,STE,XCHG

92

36

Chapter 3 Functions 3.1 Guide to This Chapter

(4) Operation
Explains the operation of the instruction using symbols.

(5) Function
Explains the function of the instruction and precautions to be taken when using the instruction.

(6) Selectable src/ dest (label)
If the instruction has an operand, this indicates the format you can choose for the operand.

(a)
£ =
ROL/RO W1 R1L/R2 RIH/R3 |ROL/RO ROH/RL ~RIL/R2 RIH/R3—| (b)
AO0/A0 AT/AL A0] — 0 A1/A1 [A0] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8 dsp:8[FB] |dsp:8[A0] dsp:8[Al] Sp: : - ()
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16
#IMM @
dsp:8[SP] m‘ (d)
(a) Items that can be selected as src(source). (e)

(b) Items that can be selected as dest(destination).
(c) Addressing that can be selected.
(d) Addressing that cannot be selected.

(e) Shown on the left side of the slash (ROH) is the addressing when data is handled in bytes (8 bits).
Shown on the right side of the slash (R1) is the addressing when data is handled in words (16 bits).

(7) Flag change
Indicates a flag change that occurs after the instruction is executed. The symbols in the table mean the
following:

“ " The flag does not change.

“O" The flag changes depending on condition.

(8) Description example
Shows a description example for the instruction.

(9) Related instructions
Shows related instructions that cause an operation similar or opposite that of this instruction.

37

Chapter 3 Functions 3.1 Guide to This Chapter

The following explains the syntax of each jump instruction—JMP, JPMI, JSR, and JSRI by using an actual
example.

Chapter 3 Functions 3.2 Functions

(1) —+— @ Unconditional jump JMP

(2) JuMP @uction Code/Number of Cycles]
[tax]

Page=195

) length) label
' S, B, W, A (Can be specified)

(3) Syntax
Indicates the instruction syntax using a symbol.

JMP (.length) label

' S,B,W,A — (d)
| | !

@ (b (o)

(&) Mnemonic JMP
Describes the mnemonic.

(b) Jump distance specifier .length
Describes the distance of jump. If (.length) is omitted in JMP or JSR instruction, the assembler
chooses the optimum specifier. If (.length) is entered, its content is given priority.
The following lists the jump distances that can be specified:
.S 3-bit PC forward relative (+2 to +9)
.B 8-bit PC relative
W 16-bit PC relative
A 20-bit absolute

(c) Operand label
Describes the operand.

(d) Shows the jump distance that can be specified in (b).

38

Chapter 3 Functions 3.2 Functions

Absolute value
ABS ABSolute ABS
[Syntax] [Instruction Code/Number of Cycles]

ABS.size dest Page=140
' B,W

[Operation]
dest < | dest |

[Function]
 This instruction takes on an absolute value of dest and stores it in dest.

[Selectable dest]

dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
A0 Al [A0] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[Flag Change]

Fag (lU| 1 |O|B|S|Z|D|C
Changel — | — | O|—|O|O|—1|O
Conditions

O : Theflag is set (= 1) when dest before the operation is —128 (.B) or —32768 (.W); otherwise cleared (= 0).
S The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C The flag is indeterminate.

[Description Example]
ABS.B ROL
ABS.W A0

39

Chapter 3 Functions 3.2 Functions

Add with carry
ADC ADdition with Carry ADC
[Syntax] [Instruction Code/Number of Cycles]

ADC.size src,dest Page=140
' B,W

[Operation]
dest <« src + dest + C

[Function]
 This instruction adds dest, src, and C flag together and stores the result in dest.

* If destis an AO or Al when the size specifier (.size) you selected is (.B), src is zero-expanded to
perform calculation in 16 bits. If srcis an A0 or Al, operation is performed on the eight low-order bits
of the AO or Al.

[Selectable src/dest]

src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ Al/A1" [AQ] [A1] AO0/A0™ Al/A1? [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16
#IMM

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or Al for src and dest simulta-
neously.

[Flag Change]

Fag |lU| I |O|B|S|Z|D|C
Changel — | — | O|—|O|O|—10
Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.W) or —32768 (.W) or
+127 (.B) or —128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in exceeding +65535 (\W) or +255 (.B);
otherwise cleared.

N

[Description Example]
ADC.B #2,ROL
ADC.W AO0,RO
ADC.B AO,ROL ; AO’s 8 low-order bits and ROL are added.

ADC.B ROL,AQ ; ROL is zero-expanded and added with AQ.

[Related Instructions] ADCF,ADD,SBB,SUB
|

40

Chapter 3 Functions 3.2 Functions

Add carry flag
ADCF ADdition Carry Flag ADCF
[Syntax] [Instruction Code/Number of Cycles]

ADCF.size dest Page=142
' B,W

[Operation]
dest « dest + C

[Function]

This instruction adds dest and C flag together and stores the result in dest.

[Selectable dest]

dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
A0 Al [A0] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[Flag Change]

Feg flU| I |O|B|S|zZz|D]|C
Changel — [— | O| =10 |10O|—=10
Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.W) or —32768 (.W) or
+127 (.B) or —128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in exceeding +65535 (.W) or +255 (.B);
otherwise cleared.

[Description Example]
ADCF.B ROL
ADCF.W Ram:16[AQ]

[Related Instructions] ADC,ADD,SBB,SUB
|

41

Chapter 3 Functions 3.2 Functions

Add without carry
ADD ADDition ADD
[Syntax] [Instruction Code/Number of Cycles]

ADD.size (:format) src,dest Page=142
‘ ' G, Q,S (Can be specified)
B,W
[Operation]
dest <« dest + src

[Function]

 This instruction adds dest and src together and stores the result in dest.

* If destis an AO or Al when the size specifier (.size) you selected is (.B), src is zero-expanded to
perform calculation in 16 bits. If srcis an A0 or Al, operation is performed on the eight low-order bits
of the AO or Al.

« If dest is a stack pointer when the size specifier (.size) you selected is (.B), src is sign extended to
perform calculation in 16 bits.

[Selectable src/dest] (See the next page for src/dest classified by format.)
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ Al/A1" [A0] [A1] AO0/A0™ Al/A1" [A0] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16
#IMM SP/SP™

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or Al for src and dest simultaneously.

*2 Operation is performed on the stack pointer indicated by the U flag. You can choose only #IMM for src.

[Flag Change]

Fag (U | I |O|B|S|Z|D|C
Changel — [— | O | —|O|O|—-10
Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.W) or —32768 (.W) or
+127 (.B) or —128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in exceeding +65535 (.W) or +255 (.B);
otherwise cleared.

N

[Description Example]
ADD.B AO,ROL : AO’s 8 low-order bits and ROL are added.
ADD.B ROL,AQ
ADD.B Ram:8[SB],ROL
ADDW #2,[A0]

; ROL is zero-expanded and added with AQ.

[Related Instructions] ADC,ADCF,SBB,SUB
|

42

Chapter 3 Functions

[src/dest Classified by Format]

3.2 Functions

G format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/AQ™ Al/A1" [AQ] [A1] AO/AQ™ A1/A1" [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16
#IMM SP/SP™?

*1 If you specify (.B) for the size specifier (.size), you cannot choose AO or Al for src and dest simultaneously.

*2 Operation is performed on the stack pointer indicated by the U flag. You can choose only #IMM for src.

Q format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/AQ Al/Al [AQ] [Al]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

#IMM'S

dsp:16[A0] dsp:16[A1]

dsp:16[SB] absl16

SP/SP™

*2 Operation is performed on the stack pointer indicated by the U flag. You can choose only #IMM for src.

*3 The range of values that can be taken on is -8 < #IMM < +7.

S format™
src dest
ROL ROH dsp:8[SB] dsp:8[FB]
#IMM abs16
ROL® ROH"™ dsp:8[SB] dsp:8[FB] | ROL™ ROH™
abs16

*4 You can only specify (.B) for the size specifier (.size).

*5 You cannot choose the same register for src and dest.

43

Chapter 3 Functions 3.2 Functions

Add & conditional jump
AD\] NZ ADdition then Jump on Not Zero AD\J NZ
[Syntax] [Instruction Code/Number of Cycles]

ADJNZ.size src,dest,label Page=148
' B,W

[Operation]
dest < dest + src
if dest+ 0 then jump label

[Function]
 This instruction adds dest and src together and stores the result in dest.

« If the addition resulted in any value other than 0, control jumps to label. If the addition resulted in 0O,
the next instruction is executed.
» The op-code of this instruction is the same as that of SBINZ.

[Selectable src/dest/label]

src dest label
ROL/RO ROH/R1 R1L/R2
R1H/R3 /AO /Al
#IMM™ [AO] [A1] dsp:8[A0] PC2-126= label= PC2+129

dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB]
abs16

*1 The range of values that can be taken on is -8 < #IMM < +7.

*2 PC indicates the start address of the instruction.

[Flag Change]
Flag flU| I |O|B|S|Z|D|C

Change| — | —| — | —| = | —=| —| —

[Description Example]
ADINZW #-1,R0,label

[Related Instructions] SBJINZ

44

Chapter 3 Functions 3.2 Functions

A N D Logi'cAaliﬁlD AND A N D

[Syntax] [Instruction Code/Number of Cycles]
AND.size (:format) src,dest Page=149
' G, S (Can be specified)
B,W
[Operation]

dest <« src /A dest

[Function]
* This instruction logically ANDs dest and src together and stores the result in dest.
« If destis an AO or Al when the size specifier (.size) you selected is (.B), srcis zero-expanded to
perform calculation in 16 bits. If srcis an AO or Al, operation is performed on the eight low-order bits
of the A0 or Al.

[Selectable src/dest] (See the next page for src/dest classified by format.)
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ A1/AL1" [AQ] [A1] AO0/A0™ A1/A1? [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16
#IMM

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or Al for src and dest simulta-
neously.

[Flag Change]

Fag |U| I |O|B|S|Z|D|C
Changel — | — | — | — | O | O | —| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.

[Description Example]
AND.B Ram:8[SB],ROL
AND.B:G AO,ROL : AO’s 8 low-order bits and ROL are ANDed.

AND.B:G ROL,A0 : ROL is zero-expanded and ANDed with AQ.
AND.B:S #3,ROL

[Related Instructions] OR,XOR,TST
|

45

Chapter 3 Functions 3.2 Functions
. __|

[src/dest Classified by Format]

G format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ A1/AL? [AQ] [A1] AO0/A0™ A1/AL? [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16
#IMM

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or Al for src and dest simulta-

neously.
S format™
src dest
ROL ROH dsp:8[SB] dsp:8[FB]
#IMM abs16
ROL™ ROH™ dsp:8[SB] dsp:8[FB] [ROL™ ROH™
abs16

*2 You can only specify (.B) for the size specifier (.size).

*3 You cannot choose the same register for src and dest.

46

Chapter 3 Functions 3.2 Functions

Logically AND bits
BAND Bit AND carry flag BAND

[Syntax] [Instruction Code/Number of Cycles]
BAND src Page=152
[Operation]

C <« src AN C

[Function]

* This instruction logically ANDs the C flag and src together and stores the result in the C flag.

[Selectable src]

Src
bit, RO bit,R1 bit,R2 bit,R3
bit,AO bit,AL [AO] [A1]

base:8[A0] base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1l] bit,base:16[SB] bit,base:16

[Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | —|—|—|—|—1]O

Conditions
C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]

BAND flag

BAND 4,Ram

BAND 16,Ram:16[SB]
BAND [AQ]

[Related Instructions] BOR,BXOR,BNAND,BNOR,BNXOR
|

47

Chapter 3 Functions 3.2 Functions

Clear bit
BCLR Bit CLeaR BCI—R
[Syntax] [Instruction Code/Number of Cycles]

BCLR (:format) dest Page=152
' G, S (Can be specified)

[Operation]
dest <« O

[Function]
* This instruction stores 0 in dest.

[Selectable dest]

dest
bit,RO bit,R1 bit,R2 bit,R3
bit,A0 bit,A1 [AQ] [Al]

base:8[A0] base:8[Al] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16
bit,base:11[SB]™*

*1 This dest can only be selected when in S format.

[Flag Change]

Flag U/ I |O|B|S|Z|D|C
Change| — | — | — | — | —|— | —| —

[Description Example]

BCLR flag

BCLR 4,Ram:8[SB]
BCLR 16,Ram:16[SB]
BCLR [AO]

[Related Instructions] BSET,BNOT,BNTST,BTST,BTSTC,BTSTS
I —

48

Chapter 3 Functions 3.2 Functions

Conditional bit transfer
Bit Move Condition

BMCnd BMCnd

[Syntax] [Instruction Code/Number of Cycles]
BMCnd dest Page=154
[Operation]
if truethen dest < 1
else dest < O
[Function]

» This instruction transfers the true or false value of the condition indicated by Cnd to dest. If the
condition is true, 1 is transferred; if false, O is transferred.
» There are following kinds of Cnd.

Cnd Condition Expression|| Cnd Condition Expression
GEUIC| C=1 Equal to or greater than = LTUINC|C=0 Smaller than >
Cflagis 1. Cflagis 0.
EQZ |Z=1 Equal to = NE/NZ |Z=0 Not equal z
Zflagis 1. Zflagis 0.
GTU |CAZ=1 Greater than < LEU |CAZ=0 Equal to or smaller than =
PZ [S=0 Positive or zero 0= N S=1 Negative 0>
GE SV0=0 Equal to or greater than = LE (SVO)V Z=1| Equal to or smaller than =
(signed value) (signed value)
GT (SYO)V Z=0 | Greater than (signed valug) < LT SV0=1 Smaller than (signed value) >
0 0=1 Oflagis 1. NO 0=0 Oflagis 0.
[Selectable dest |
dest
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit, A1 [AQ] [A1]
base:8[A0] base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1] bit,base:16[SB] bit,pase:16
cC
[Flag Change]
Fag ([U| 1 |O|B|S|Z|D|C
Change| — | — | — | — | —|—|— | " *1 The flag changes if you specified the C flag for dest.
[Description Example]
BMN 3,Ram:8[SB]
BMZ C
[Related Instructions] JCnd

49

Chapter 3 Functions 3.2 Functions

Logically AND inverted bits
BNAND Bit Not AND carry flag BNAND
[Syntax] [Instruction Code/Number of Cycles]
BNAND src Page=155

[Operation]
C <« src V C

[Function]
 This instruction logically ANDs the C flag and inverted src together and stores the result in the C flag.

[Selectable src]

SIc
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit, AL [AO] [A1]

base:8[A0] base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1l] bit,base:16[SB] bit,base:16

[Flag Change]

Fag |lU| 1 |O|B|S|Z|D|C
Change| — | — | — | —|—|—|—| O
Condition

C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]
BNAND flag
BNAND 4,Ram
BNAND 16,Ram:16[SB]
BNAND [AQ]

[Related Instructions] BAND,BOR,BXOR,BNOR,BNXOR

50

Chapter 3 Functions
3.2 Functions

Logically OR inverted bits
BNOR Bit Not OR carry flag BNOR

[Syntax] [Instruction Code/Number of Cycles]
BNOR src Page=156
[Operation]

C < sic V C

[Function]
 This instruction logically ORs the C flag and inverted src together and stores the result in the C flag.

[Selectable src]

Src
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit, AL [AO] [A1]

base:8[A0] base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1l] bit,base:16[SB] bit,base:16

[Flag Change]

Fag |lU| I |O|B|S|Z|D]|C
Change| — | — | — | —|—|—|—10O
Condition

C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]

BNOR flag

BNOR 4,Ram

BNOR 16,Ram:16[SB]
BNOR [AO]

[Related Instructions] BAND,BOR,BXOR,BNAND,BNXOR
|

51

Chapter 3 Functions
3.2 Functions

Invert bit
BNOT Bit NOT BNOT
[Syntax] [Instruction Code/Number of Cycles]

BNOT(:format) dest Page=156
' G ,S (Can be specified)

[Operation]
dest <« dest

[Function]
» This instruction inverts dest and stores the result in dest.

[Selectable dest]

dest
bit,RO bit,R1 bit,R2 bit,R3
bit,A0 bit,A1 [AQ] [Al]

base:8[A0] base:8[Al] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1] bit,base:16[SB] bit,base:16
bit,base:11[SB]™*

*1 This dest can only be selected when in S format.

[Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | —|—|— | —

[Description Example]

BNOT flag

BNOT 4,Ram:8[SB]
BNOT 16,Ram:16[SB]
BNOT [AQ]

[Related Instructions] BCLR,BSET,BNTST,BTST,BTSTC,BTSTS
I —

52

Chapter 3 Functions
3.2 Functions

Test inverted bit
BNTST Bit Not TeST BNTST
[Syntax] [Instruction Code/Number of Cycles]
BNTST src Page=157

[Operation]
Z <« sIc
C <« src

[Function]

* This instruction transfers inverted src to the Z flag and inverted src to the C flag.

[Selectable src]

Src
bit, RO bit,R1 bit,R2 bit,R3
bit,AO bit,AL [AO] [A1]

base:8[A0] base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1l] bit,base:16[SB] bit,base:16

[Flag Change]

Fag |lU| | |O|B|S|Z|D|C
Changel — | — | — | — | — | O|—|O
Conditions

Z : The flag is set when srcis 0; otherwise cleared.
C : The flag is set when srcis 0; otherwise cleared.

[Description Example]
BNTST flag
BNTST 4,Ram:8[SB]
BNTST 16,Ram:16[SB]
BNTST [AQ]

[Related Instructions] BCLR,BSET,BNOT,BTST,BTSTC,BTSTS

53

Chapter 3 Functions
3.2 Functions

Exclusive OR inverted bits
B NXOR Bit Not eXclusive OR carry flag B NXOR
[Syntax] [Instruction Code/Number of Cycles]
BNXOR src Page=158

[Operation]
C < sic V C

[Function]
 This instruction exclusive ORs the C flag and inverted src and stores the result in the C flag.

[Selectable src]

SIc
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit, AL [AO] [A1]

base:8[A0] base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1l] bit,base:16[SB] bit,base:16

[Flag Change]

Fag (U | I |O|B|S|Z|D|C
Change| — | — | — | —|—|—|—|O
Conditions

C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]
BNXOR flag
BNXOR 4,Ram
BNXOR 16,Ram:16[SB]
BNXOR [AQ]

[Related Instructions] BAND,BOR,BXOR,BNAND,BNOR

54

Chapter 3 Functions
3.2 Functions

Logically OR bits
BOR Bit OR carry flag BOR

[Syntax] [Instruction Code/Number of Cycles]
BOR src Page=158
[Operation]

C <« src VvV C

[Function]

 This instruction logically ORs the C flag and src together and stores the result in the C flag.

[Selectable src]

Src
bit, RO bit,R1 bit,R2 bit,R3
bit,AO bit,AL [AO] [A1]

base:8[A0] base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1l] bit,base:16[SB] bit,base:16

[Flag Change]

Fag ([U| I |O|B|S|Z|D|C
Change| — | — | — | — | —|—|—|O
Conditions

C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]

BOR flag

BOR 4, Ram

BOR 16,Ram:16[SB]
BOR [AO]

[Related Instructions] BAND,BXOR,BNAND,BNOR,BNXOR
|

55

Chapter 3 Functions

3.2 Functions

BRK

[Syntax]
BRK

[Operation]
SP - SP - 2

M(SP) —« (PC + 1)H, FLG

SP <« SP - 2
M(SP) —« (PC + 1ML
PC <« M(FFFE416)

[Function]

* This instruction generates a BRK interrupt.

Debug interrupt

BReaK

BRK

[Instruction Code/Number of Cycles]

» The BRK interrupt is a nonmaskable interrupt.

[Flag Change]*

Fag lU| 1 | O|B|S D
Changel O | O | — | — | — O
Conditions

U : Theflag is cleared.

| : Theflagis cleared.

D : Theflag is cleared.
[Description Example]

BRK
[Related Instructions] INT,INTO

Page=159

*1 The flags are saved to the stack area before the BRK in-

struction is executed. After the interrupt, the flags

change state as shown on the left.

56

Chapter 3 Functions
3.2 Functions

Set bit
BSET Bit SET BSET
[Syntax] [Instruction Code/Number of Cycles]

BSET (:format) dest Page=159
' G, S (Can be specified)

[Operation]
dest <« 1

[Function]

» This instruction stores 1 in dest.

[Selectable dest]

dest
bit,RO bit,R1 bit,R2 bit,R3
bit,A0Q bit,A1 [AQ] [A1]

base:8[A0] base:8[Al] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1l] bit,base:16[SB] bit,base:16
bit,base:11[SB]*

*1 This dest can only be selected when in S format.

[Flag Change]
Fag |[lU| I |O|B|S|Z|D|C

Change| — | — | — | — | —|—|— | —

[Description Example]

BSET flag

BSET 4,Ram:8[SB]
BSET 16,Ram:16[SB]
BSET [AQ]

[Related Instructions] BCLR,BNOT,BNTST,BTST,BTSTC,BTSTS
I —

57

Chapter 3 Functions
3.2 Functions

Test bit
BTST Bit TeST BTST
[Syntax] [Instruction Code/Number of Cycles]

BTST (:format) src Page=160
' G, S (Can be specified)

[Operation]
Z <« src
C <« src

[Function]
* This instruction transfers inverted src to the Z flag and non-inverted src to the C flag.

[Selectable src]

SIc
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit, AL [AO] [A1]

base:8[A0] base:8[Al] bit,base:8[SB] bit,base:8[FB]

base:16[A0] base:16[A1l] bit,base:16[SB] bit,base:16
bit,base:11[SB]*

*1 This src can only be selected when in S format.

[Flag Change]

Fag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | —|—]1O|—1]0O
Conditions

Z : The flag is set when srcis 0; otherwise cleared.
C : The flag is set when srcis 1; otherwise cleared.

[Description Example]

BTST flag

BTST 4,Ram:8[SB]
BTST 16,Ram:16[SB]
BTST [AQ]

[Related Instructions] BCLR,BSET,BNOT,BNTST,BTSTC,BTSTS

58

Chapter 3 Functions
3.2 Functions

Test bit & clear
BTSTC Bit TeST & Clear BTSTC
[Syntax] [Instruction Code/Number of Cycles]
BTSTC dest Page= 161

[Operation]

Z <~ dest
C <« dest
dest <« O

[Function]

 This instruction transfers inverted dest to the Z flag and non-inverted dest to the C flag. Then it
stores 0 in dest.

[Selectable dest]

dest
bit,RO bit,R1 bit,R2 bit,R3
bit,A0Q bit,A1 [AQ] [A1]

base:8[A0] base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1l] bit,base:16[SB] bit,base:16

[Flag Change]

Fag ([U| 1 |O|B|S|Z|D|C
Change| — | — | — | —|—|O|—10
Conditions

Z : The flag is set when destis 0; otherwise cleared.
C : The flag is set when dest is 1; otherwise cleared.

[Description Example]
BTSTC flag
BTSTC 4,Ram
BTSTC 16,Ram:16[SB]
BTSTC [AQ]

[Related Instructions] BCLR,BSET,BNOT,BNTST,BTST,BTSTS

59

Chapter 3 Functions
3.2 Functions

Test bit & set
BTSTS Bit TeST & Set BTSTS
[Syntax] [Instruction Code/Number of Cycles]
BTSTS dest Page=162

[Operation]

Z «~ dest
C <« dest
dest <« 1

[Function]

 This instruction transfers inverted destto the Z flag and non-inverted destto the C flag. Then it stores
1in dest.

[Selectable dest]

dest
bit,RO bit,R1 bit,R2 bit,R3
bit,A0 bit,A1 [AQ] [Al]

base:8[A0] base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1l] bit,base:16[SB] bit,base:16

[Flag Change]

Fag lU| 1 |O|B|S|Z|D]|C
Changel — | — | — | — | — | O|—10O
Conditions

Z : The flag is set when destis 0; otherwise cleared.
C : The flag is set when destis 1; otherwise cleared.

[Description Example]
BTSTS flag
BTSTS 4,Ram
BTSTS 16,Ram:16[SB]
BTSTS [AQ]

[Related Instructions] BCLR,BSET,BNOT,BNTST,BTST,BTSTC

60

Chapter 3 Functions 3.2 Functions

Exclusive OR bits
BXOR Bit eXclusive OR carry flag BXOR

[Syntax] [Instruction Code/Number of Cycles]
BXOR src Page=162
[Operation]

C <« src V C

[Function]
 This instruction exclusive ORs the C flag and src together and stores the result in the C flag.

[Selectable src]

Src
bit,RO bit,R1 bit,R2 bit,R3
bit,AO bit, AL [AO] [A1]

base:8[A0] base:8[Al] bit,base:8[SB] bit,base:8[FB]
base:16[A0] base:16[A1l] bit,base:16[SB] bit,base:16

[Flag Change]

Fag lU| 1 |O|B|S|Z|D|C
Change| — | — | — | = | = |—=|—=|0O

Conditions
C : The flag is set when the operation resulted in 1; otherwise cleared.

[Description Example]

BXOR flag

BXOR 4,Ram

BXOR 16,Ram:16[SB]
BXOR [AQ]

[Related Instructions] BAND,BOR,BNAND,BNOR,BNXOR
|

61

Chapter 3 Functions 3.2 Functions

CMP o CMP

[Syntax] [Instruction Code/Number of Cycles]
CMP.size (:-format) src,dest Page=163
‘ ' G, Q,S (Can be specified)
B,W
[Operation]
dest — src
[Function]

» Each flag bit of the flag register varies depending on the result of subtraction of src from dest.

* If destis an AO or Al when the size specifier (.size) you selected is (.B), src is zero-expanded to
perform operation in 16 bits. If srcis an AO or A1, operation is performed on the 8 low-order bits of A0

or Al.
[Selectable src/dest] (See the next page for src/dest classified by format.)
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/AQ™ A1/A1L? [AQ] [A1] AO0/AQ™ A1/A1 [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] absl6 dsp:16[A0] dsp:16[A1l] dsp:16[SB] absl6
#IMM

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or Al for src and dest simulta-
neously.

[Flag Change]

Fag |[U| I |O|B|S|Z|D|C
Change| — | — | O | — | OO =10
Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.\W) or —32768 (.W), or
+127 (.B) or —128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

The flag is set when the operation resulted in 0; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than O;
otherwise cleared.

N

[Description Example]
CMP.B:S #10,R0OL
CMP.W:G RO0,A0
CMP.W #-3,R0O

CMP.B #5,Ram:8[FB]
CMP.B AO,ROL ; AO’s 8 low-order bits and ROL are compared.

62

Chapter 3 Functions

[src/dest Classified by Format]

3.2 Functions

G format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/AQ™ Al/A1" [AQ] [A1] AO/AQ™ A1/A1" [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16
#IMM

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or Al for src and dest simulta-

neously.
Q format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0 A1/A1 [AQ] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

#IMM™2

dsp:16[A0] dsp:16[A1]

dsp:16[SB] absl16

*2 The range of values that can be taken on is -8 < #IMM < +7.

S format™
src dest
ROL ROH dsp:8[SB] dsp:8[FB]
#IMM abs16
ROL™ ROH™ dsp:8[SB] dsp:8[FB] | ROL™ ROH™
abs16

*3 You can only specify (.B) for the size specifier (.size).

*4 You cannot choose the same register for src and dest.

63

Chapter 3 Functions 3.2 Functions

Decimal add with carry
DA DC Decimal ADdition with Carry DA DC
[Syntax] [Instruction Code/Number of Cycles]

DADC.size src,dest Page=167
: B, W

[Operation]
dest < src + dest + C

[Function]

 This instruction adds dest, src, and C flag together in decimal and stores the result in dest.

[Selectable src/dest]

src dest
ROH/R1 ROL/RO
#IMM
[Flag Change]
Fag ([U| 1 |O|B|S|Z|D|C
Change| — | — | — | —] O|O| =10

Conditions
S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.
C : The flag is set when the operation resulted in exceeding +9999 (.W) or +99 (.B); otherwise
cleared.

[Description Example]
DADC.B #3,ROL
DADC.W R1,RO

[Related Instructions] DADD,DSUB,DSBB

64

Chapter 3 Functions 3.2 Functions

Decimal add without carry
DADD Decimal ADDition DADD
[Syntax] [Instruction Code/Number of Cycles]

DADD.size src,dest Page=169
' B,W

[Operation]
dest <« src + dest

[Function]
* This instruction adds dest and src together in decimal and stores the result in dest.

[Selectable src/dest]

src dest
ROH/R1 ROL/RO
#IMM
[Flag Change]
Flag 'lU| I |O|B|S|Z|D]|C
Change| — | — | — | — | OO |—=10

Conditions
S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.
C : The flag is set when the operation resulted in exceeding +9999 (.W) or +99 (.B); otherwise
cleared.

[Description Example]
DADD.B #3,ROL
DADD.W R1,RO

[Related Instructions] DADC,DSUB,DSBB

65

Chapter 3 Functions 3.2 Functions

Decrement
DEC DECrement DEC
[Syntax] [Instruction Code/Number of Cycles]

DEC.size dest Page= 171
: B, W

[Operation]
dest <« dest — 1

[Function]
e This instruction decrements 1 from dest and stores the result in dest.

[Selectable dest]

dest
ROL™ ROH™ dsp:8[SB]* dsp:8[FB]*
abs16™ A0 Al1%

*1 You can only specify (.B) for the size specifier (.size).

*2 You can only specify (.W) for the size specifier (.size).

[Flag Change]

Fag ([U| 1 |O|B|S|Z|D|C
Change| — | — | — | — | O|O| —| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]
DEC.W A0
DEC.B ROL

[Related Instructions] INC

66

Chapter 3 Functions 3.2 Functions

Signed divide
DIV DIVide DIV
[Syntax] [Instruction Code/Number of Cycles]

DIV.size src Page=172
' B,W

[Operation]
If the size specifier (.size) is (.B)
ROL (quotient), ROH (remainder) < R0 +-src
If the size specifier (.size) is (W)
RO (quotient), R2 (remainder) < R2R0 ~-src

[Function]
« This instruction divides R2R0 (R0)** by signed src and stores the quotient in RO (ROL)** and the re-
mainder in R2 (ROH)™. The remainder has the same sign as the dividend. Shown in ()™ are the
registers that are operated on when you selected (.B) for the size specifier (.size).

« If srcis an AO or A1 when the size specifier (.size) you selected is (.B), operation is performed on the
8 low-order bits of AO or Al.

* If you specify (.B) for the size specifier (.size), the O flag is set when the operation resulted in the
quotient exceeding 8 bits or the divisor is 0. At this time, ROL and ROH are indeterminate.

* If you specify (.W) for the size specifier (.size), the O flag is set when the operation resulted in the
quotient exceeding 16 bits or the divisor is 0. At this time, RO and R2 are indeterminate.

[Selectable src]

src
ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/AQ A1/A1 [A0] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] absl6

#IMM
[Flag Change]
Fag ([lU| I |O|B|S|Z|D]|C
Change| — | — | O | — | —|—|—| —
Conditions

O : Theflag is set when the operation resulted in the quotient exceeding 16 bits (.W) or 8 bits (.B) or
the divisor is 0; otherwise cleared.

[Description Example]

DIV.B AO :AQ’s 8 low-order bits is the divisor.
DIV.B #4
DIV.W RO

[Related Instructions] DIVU,DIVX,MUL,MULU

|
67

Chapter 3 Functions 3.2 Functions

Unsigned divide
DIVU DIVide Unsigned DIVU
[Syntax] [Instruction Code/Number of Cycles]

DIVU.size src Page=173
' B,W

[Operation]
If the size specifier (.size) is (.B)
ROL (quotient), ROH (remainder) < R0~ src
If the size specifier (.size) is (W)
RO (quotient), R2 (remainder) < R2R0-:- src

[Function]

« This instruction divides R2R0 (R0)™ by unsigned src and stores the quotient in RO (ROL)™ and the
remainder in R2 (ROH)™. Shown in ()™ are the registers that are operated on when you selected (.B)
for the size specifier (.size).

« If srcis an AO or Al when the size specifier (.size) you selected is (.B), operation is performed on the
8 low-order bits of AO or Al.

* If you specify (.B) for the size specifier (.size), the O flag is set when the operation resulted in the
guotient exceeding 8 bits or the divisor is 0. At this time, ROL and ROH are indeterminate.

* If you specify (.\W) for the size specifier (.size), the O flag is set when the operation resulted in the
guotient exceeding 16 bits or the divisor is 0. At this time, RO and R2 are indeterminate.

[Selectable src]

src
ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/A0 Al/Al [AO] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

#IMM
[Flag Change]
Flag |lU |l |[O|B|S|[Z|D|C
Change| — |— |[O |— |—|—|— | —
Conditions

O : The flag is set when the operation resulted in the quotient exceeding 16 bits (.\W) or 8 bits (.B) or
the divisor is O; otherwise cleared.

[Description Example]

DIVU.B AO :AO’s 8 low-order bits is the divisor.
DIVU.B #4
DIVU.W RO

[Related Instructions] DIV,DIVX,MUL,MULU
|

68

Chapter 3 Functions 3.2 Functions

Singed divide
D IVX DIVide eXtension D IVX
[Syntax] [Instruction Code/Number of Cycles]

DIVX.size src Page=174
|

[Operation]
If the size specifier (.size) is (.B)
ROL (quotient), ROH (remainder) < R0 < src
If the size specifier (.size) is (W)
RO (quotient), R2 (remainder) <~R2R0 < src

[Function]

« This instruction divides R2R0 (R0)™ by signed src and stores the quotient in RO (ROL)"* and the remainder in R2
(ROH)™. The remainder has the same sign as the divisor. Shown in ()™ are the registers that are operated on
when you selected (.B) for the size specifier (.size).

« If srcis an AO or A1 when the size specifier (.size) you selected is (.B), operation is performed on the
8 low-order bits of AO or Al.

* If you specify (.B) for the size specifier (.size), the O flag is set when the operation resulted in the
quotient exceeding 8 bits or the divisor is 0. At this time, ROL and ROH are indeterminate.

* If you specify (.W) for the size specifier (.size), the O flag is set when the operation resulted in the
quotient exceeding 16 bits or the divisor is 0. At this time, RO and R2 are indeterminate.

[Selectable src]

Src
ROL/RO ROH/R1L RIL/R2 RIH/R3
AO/AO AL/AL [AO] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

[Flag Change]

Flag Uull1l |0
Change | — | — | O | — | —|—=|—| —

Conditions
O : The flag is set when the operation resulted in the quotient exceeding 16 bits (.W) or 8 bits (.B) or
the divisor is 0; otherwise cleared.

[Description Example]

DIVX.B A0 :AO’s 8 low-order bits is the divisor.
DIVX.B #4
DIVX.W RO

[Related Instructions] DIv,DIVU,MUL,MULU

69

Chapter 3 Functions 3.2 Functions

Decimal subtract with borrow
DSB B Decimal SuBtract with Borrow DSB B
[Syntax] [Instruction Code/Number of Cycles]

DSBB.size src,dest Page=175
' B,W

[Operation]
dest < dest — src — C

[Function]
 This instruction subtracts src and inverted C flag from dest in decimal and stores the result in dest.

[Selectable src/dest]

src dest
ROH/R1 ROL/RO
#IMM
[Flag Change]
Fag ([U| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | O|1O| =10

Conditions
S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.
C : The flag is set when the operation resulted in any value equal to or greater than 0; otherwise
cleared.

[Description Example]

DSBB.B #3,ROL
DSBB.W R1,RO

[Related Instructions] DADC,DADD,DSUB

70

Chapter 3 Functions 3.2 Functions

Decimal subtract without borrow
DSUB Decimal SUBtract DSUB
[Syntax] [Instruction Code/Number of Cycles]

DSUB.size src,dest Page= 177
: B,W

[Operation]
dest <« dest — src

[Function]
* This instruction subtracts src from dest in decimal and stores the result in dest.

[Selectable src/dest]

src dest
ROH/R1 ROL/RO
#IMM
[Flag Change]
Flag ujli|jo|jB|s|zZz|b|C
Change| — | — | — | — OO | =10

Conditions
S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.
C : The flag is set when the operation resulted in any value equal to or greater than 0; otherwise
cleared.

[Description Example]
DSUB.B #3,ROL
DSUB.W R1,RO

[Related Instructions] DADC,DADD,DSBB

71

Chapter 3 Functions 3.2 Functions

ENTER ENTER fanciion ENTER

[Syntax] [Instruction Code/Number of Cycles]
ENTER src Page=179
[Operation]
SP - SP - 2
M(SP) - FB
FB - SP
SP - SP - src
[Function]

 This instruction generates a stack frame. src represents the size of the stack frame.

 The diagrams below show the stack area status before and after the ENTER instruction is executed at
the beginning of a called subroutine.

Before instruction execution After instruction execution
S Auto variable area E\ll;nt;ra bytes
Direction in indicated by src
which address FB—) FB (L)
increases FB (H)
SP— [Return address (L) J Return address (L)
Return address (M) Return address (M)
Return address (H) Return address (H)
Argument of function Argument of function
[Selectable src]
src
#IMM8
[Flag Change]
Fag |lU[I |O|B|S|Z|D]|C

Change| — | — | — | — | —|—|—| —

[Description Example]
ENTER #3

[Related Instructions] EXITD
. __|]

72

Chapter 3 Functions 3.2 Functions

Deallocate stack frame

EXITD EXIT and Deallocate stack frame EXITD

[Syntax] [Instruction Code/Number of Cycles]
EXITD Page=180

[Operation]

SP ~— FB

FB ~ M(SP)
SP ~ SP + 2
PCML ~ M(SP)
SP ~ SP + 2
PCH ~ M(SP)
SP < SP + 1

[Function]

« This instruction deallocates the stack frame and exits from the subroutine.
* Use this instruction in combination with the ENTER instruction.

» The diagrams below show the stack area status before and after the EXITD instruction is executed
at the end of a subroutine in which an ENTER instruction was executed.

Before instruction execution After instruction execution

SP—
Auto variable area

FB FB () Direction in which
address increases
FB (H)

Return address (L) J'
Return address (M)

Return address (H)
Argument of function

sp——) Argument of function

[Flag Change]
Fag lu[I |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[Description Example]
EXITD

[Related Instructions] ENTER

73

Chapter 3 Functions 3.2 Functions

Extend sign
EXTS EXTend Sign EXTS
[Syntax] [Instruction Code/Number of Cycles]

EXTS.size dest Page=180
|

[Operation]
dest <« EXT(dest)

[Function]
 This instruction sign extends dest and stores the result in dest.
« If you selected (.B) for the size specifier (.size), destis sign extended to 16 bits.
« If you selected (\W) for the size specifier (.size), RO is sign extended to 32 bits. In this case, R2 is used
for the upper bytes.

[Selectable dest]

dest
ROL/RO R1L
[AQ] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[Flag Change]

Fag |lU| 1 |O|B|S|Z|D|C
Change| — | — | — | — | O |O| —| —

Conditions
S : Ifyou selected (.B) for the size specifier (.size), the flag is set when the operation resulted in MSB
=1, otherwise cleared. The flag does not change if you selected (.W) for the size specifier (.size).
Z . Ifyou selected (.B) for the size specifier (.size), the flag is set when the operation resulted in 0O;
otherwise cleared. The flag does not change if you selected (.W) for the size specifier (.size).

[Description Example]
EXTS.B ROL
EXTSW RO

74

Chapter 3 Functions 3.2 Functions

Clear flag register bit
FCL R Flag register CLeaR FCI— R
[Syntax] [Instruction Code/Number of Cycles]
FCLR dest Page= 181

[Operation]
dest < O

[Function]
« This instruction stores 0 in dest.

[Selectable dest]

dest
cC D z S B @) I u
[Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C
Change| *1 | *1 | *1 | *1 | *1 | *1 | *1 | *1 *1 The selected flag is cleared to 0.

[Description Example]
FCLR I
FCLR S

[Related Instructions] FSET

75

Chapter 3 Functions 3.2 Functions

Set flag register bit
FS ET Flag register SET FS ET
[Syntax] [Instruction Code/Number of Cycles]
FSET dest Page=182

[Operation]
dest < 1

[Function]
» This instruction stores 1 in dest.

[Selectable dest]

[Flag Change]

Fag (lU| 1 |O|B|S|Z|D]|C
Change| *1 | *1 | *1 | *1 | *1 |*1|*1|*1| *1 The selected flag is set (= 1).

[Description Example]

FSET I
FSET S

[Related Instructions] FCLR

76

Chapter 3 Functions

INC

[Syntax]
INC.size

Increment
INCrement

[Operation]
dest <« dest

[Function]

3.2 Functions

» This instruction adds 1 to dest and stores the result in dest.

[Selectable dest]

[Flag Change]

[Instruction Code/Number of Cycles]
Page=182
dest
ROL™ ROH™ dsp:8[SB]* dsp:8[FB]*
abs16™ AO0™ Al7

*1 You can only specify (.B) for the size specifier (.size).

*2 You can only specify (.W) for the size specifier (.size).

The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Flag | U | | S| Z
Change| — | — Ol 0O
Conditions

S

Z

[Description Example]

The flag is set when the operation resulted in 0; otherwise cleared.

INC.W

INC.B

[Related Instructions]

77

DEC

Chapter 3 Functions 3.2 Functions

I N T Interrupt by INT instruction I N T
INTerrupt

[Syntax] [Instruction Code/Number of Cycles]

INT src Page=183

[Operation]

SP ~ SP - 2
M(SP) <« (PC + 2)H,FLG
SP -~ SP - 2
M(SP) « (PC + 2)mL
PC - M(IntBase + src X 4)
[Function]
 This instruction generates a software interrupt specified by src. src represents a software interrupt
number.

« If srcis 31 or smaller, the U flag is cleared to 0 and the interrupt stack pointer (ISP) is used.
« If srcis 32 or larger, the stack pointer indicated by the U flag is used.
» The interrupts generated by the INT instruction are nonmaskable interrupts.

[Selectable src]

Src

#IMM™1*2
*1 #IMM denotes a software interrupt number.

*2 The range of values that can be taken on is 0 < #IMM < 63.

[Flag Change]

Flag Ull |l O|lB|S|Z|ID|C| *3 Theflags are saved to the stack area before the INT in-
Change [O | O | —=|—=|—|—=|0O| — struction is executed. After the interrupt, the flags
change state as shown on the left.

Conditions
U : Theflag is cleared if the software interrupt number is 31 or smaller. The flag does not change if
the software interrupt number is 32 or larger.
| : Theflagis cleared.
D : Theflagis cleared.

[Description Example]
INT #0

[Related Instructions] BRK,INTO

78

Chapter 3 Functions 3.2 Functions

Interrupt on overflow
INTO INTerrupt on Overflow INTO
[Syntax] [Instruction Code/Number of Cycles]
INTO Page= 184

[Operation]
SP -~ SP - 2
M(SP) « (PC + 1)H, FLG
SP < SP - 2
M(SP) < (PC + 1)mL
PC - M(FFFEO16)

[Function]

« If the O flag is 1, this instruction generates an overflow interrupt. If the flag is 0, the next instruction is
executed.

» The overflow interrupt is a nonmaskable interrupt.

[Flag Change]

W)
O

Fag |U| 1 |O|B|S|Z *1 The flags are saved to the stack area before the INTO
Changel O | O | —|—|—|—=|O]| — instruction is executed. After the interrupt, the flags
change state as shown on the left.

Conditions
U : Theflag is cleared.
| : Theflag is cleared.
D : Theflagis cleared.

[Description Example]
INTO

[Related Instructions] BRK,INT

79

Chapter 3 Functions 3.2 Functions

Jump on condition
Jump on Condition

JCnd JCnd

[Syntax] [Instruction Code/Number of Cycles]
JCnd label Page=184
[Operation]

if true then jump label

[Function]
 This instruction causes program flow to branch off after checking the execution result of the preceding

instruction against the following condition. If the condition indicated by Cnd is true, control jumps to
label. If false, the next instruction is executed.
» The following conditions can be used for Cnd.

Cnd Condition Expression|| Cnd Condition Expression

GEU/C|C=1 Equal to or greater than = LTU/NC|C=0 Smaller than >
Cflagis 1. Cflagis 0.

EQ/z |Z=1 Equal to = NE/NZ |Z=0 Not equal z
Zflagis 1. Zflagis 0.

GTU [CAZ=1 Greater than < LEU |CAZ=0 Equal to or smaller than =

¥4 S=0 Positive or zero 0= N S=1 Negative 0>

GE |SVO0=0 Equal to or greater than = LE (SV 0)V Z=1 Equal to or smaller than =
(signed value) (signed value)

GT | (SV0)VZ=0| Greater than (signed value) < LT SV0=1 Smaller than (signed valug) >

0 0=1 Oflagis 1. NO 0=0 Oflagis 0.

[Selectable label]
label Cnd
PC*-127 = label = PC*+128 | GEU/C,GTU,EQ/Z,N,LTU/NC,LEU,NE/NZ,PZ
PC1-126 = label = PC*+129 | LE,O,GE,GT,NO,LT

*1 PC indicates the start address of the instruction.

[Flag Change]

Fag ([U| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | — | — | — | —
[Description Example]

JEQ label

JNE label
[Related Instructions] BMCnd

80

Chapter 3 Functions 3.2 Functions

U ditional j
J M P nCO”J :Jllij/lr;jl Jjump J M P

[Syntax] [Instruction Code/Number of Cycles]
JMP(.length) label Page=185
' S,B,W,A (Can be specified)

[Operation]
PC <« label

[Function]

« This instruction causes control to jump to label.

[Selectable label]

dength label

.S PC*+2 = label = PC*+9

B PC"-127 = label = PC"+128
W PC"-32767 = label = PC"+32768
A abs20

*1 The PC indicates the start address of the instruction.

[Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | —|—|—|— | —

[Description Example]
JMP label

[Related Instructions] JMPI,IJMPS

81

Chapter 3 Functions 3.2 Functions

Jump indirect
JMPI JuMP Indirect JMPI
[Syntax] [Instruction Code/Number of Cycles]

JMPIl.length src Page=187
: W, A

[Operation]

When jump distance specifier (.length) is (.\W) When jump distance specifier (.length) is (.A)
PC <« PC £ src PC <« src
[Function]

 This instruction causes control to jump to the address indicated by src. If srcis memory, specify the
address at which the low-order address is stored.

« If you selected (.W) for the jump distance specifier (.length), control jumps to the start address of the instruction
plus the address indicated by src (added including the sign bits). If src is memory, the required memory
capacity is 2 bytes.

« If srcis memory when you selected (.A) for the jump distance specifier (.length), the required memory
capacity is 3 bytes.

[Selectable src]

If you selected (.W) for the jump distance specifier (.length)

src
RO R1 R2 R3
A0 Al [A0] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[SB] absl6

dsp:20[A0] dsp:20[A1]

If you selected (.A) for the jump distance specifier (.length)

Src

[A0] [A]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[SB] absl6
dsp:20[A0] dsp:20[A1]
R2R0 R3R1 Al1AQ0

[Flag Change]
Fag |[U| 1 |O|B|S|Z|D|C

Change| = | — | — | — | —|—|— | —

[Description Example]

JMPLA A1AO0
JMPIL.W RO

[Related Instructions] JMP,IJMPS

82

Chapter 3 Functions 3.2 Functions

Jump to special page
JMPS JuMP Special page JMPS
[Syntax] [Instruction Code/Number of Cycles]
JMPS src Page=188

[Operation]
PCH OF16
PCML - M(FFFFE16 — src X 2)

t

[Function]
 This instruction causes control to jump to the address set in each table of the special page vector table
plus FO00016. The area across which control can jump is from address FO00016 to address FFFFF16.
» The special page vector table is allocated to an area from address FFE0016 to address FFFDA1s.
* srcrepresents a special page number. The special page number is 255 for address FFEOO16, and 18
for address FFFDA16.

[Selectable src]

Src

H#IMM™12
*1 #IMM denotes a special page number.

*2 The range of values that can be taken on is 18 < #IMM < 255.

[Flag Change]
Flag lU|[I |O|B|S|Z|D|C

Change| — | — | — | — | —|— | —| —

[Description Example]
JMPS #20

[Related Instructions] JMP,JMPI
|

83

Chapter 3 Functions

3.2 Functions

Subroutine call
Jump SubRoutine

JSR

[Syntax]
JSR(.Iength) label
|

W, A (Can be specified)
[Operation]

SP ~ SP -1

M(SP) ~ (PC + n)H

SP ~ SP - 2

M(SP) ~ (PC + nmL

PC «~ label

*1 n denotes the number of instruction bytes.

[Function]
 This instruction causes control to jump to a subroutine indicated by label.

[Selectable label]

[Instruction Code/Number of Cycles]

length label
W PC'-32767 = label = PC"+32768
A abs20

*1 The PC indicates the start address of the instruction.

[Flag Change]

Fag |lU|[I |O|B|S|Z|D|C
Change| — | — | — | = | — | — | — | —
[Description Example]

JSR.W func

JSR.A func
[Related Instructions] JSRI,JSRS

84

Chapter 3 Functions 3.2 Functions

Indirect subroutine call
\]SRI Jump SubRoutine Indirect \]SRI
[Syntax] [Instruction Code/Number of Cycles]
JSRI.length src Page=190
: W, A
[Operation]
When jump distance specifier (.length) is (\W) When jump distance specifier (.length) is (.A)
SP ~ SP -1 SP ~ SP - 1
M(SP) <« (PC + n)H M(SP) < (PC + n)H
SP «~ SP - 2 SP ~ SP - 2
MSP) <« (PC + nMmL M(SP) < (PC + n)H
PC — PC £ src PC <~ sIC

*1 n denotes the number of instruction bytes.

[Function]

» This instruction causes control to jump to a subroutine at the address indicated by src. If srcis
memory, specify the address at which the low-order address is stored.

« If you selected (.W) for the jump distance specifier (.length), control jumps to a subroutine at the start
address of the instruction plus the address indicated by src (added including the sign bits). If srcis
memory, the required memory capacity is 2 bytes.

« If srcis memory when you selected (.A) for the jump distance specifier (.length), the required memory
capacity is 3 bytes.

[Selectable src]

If you selected (.W) for the jump distance specifier (.length)

src
RO R1 R2 R3
AO Al [AO] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[SB] absl16

dsp:20[A0] dsp:20[A1]

If you selected (.A) for the jump distance specifier (.length)

Src

[A0] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[SB] absl6
dsp:20[A0] dsp:20[A1]
R2R0O R3R1 Al1AQ0

[Flag Change]
Flag Uujl | O|B|S|Z|D|C

Change | — | — | — | — | — | — | — | —

[Description Example]

JSRIA Al1AO
JSRIL.W RO

[Related Instructions] JSR,JSRS

85

Chapter 3 Functions 3.2 Functions

Special page subroutine call
\]SRS Jump SubRoutine Special page JSRS
[Syntax] [Instruction Code/Number of Cycles]
JSRS src Page=191

[Operation]

SP - SP - 1

M(SP) - (PC + 2)H

SP ~ SP - 2

M(SP) - (PC + 2)ML

PCH - OF16

PCML - M (FFFFE16 —src X 2)
[Function]

 This instruction causes control to jump to a subroutine at the address set in each table of the special
page vector table plus FO00016. The area across which program flow can jump to a subroutine is from
address F000016 to address FFFFF16.

» The special page vector table is allocated to an area from address FFE0016 to address FFFDA1s.
* srcrepresents a special page number. The special page number is 255 for address FFE0O16, and 18
for address FFFDA16.

[Selectable src]

Src

#IMM™12

*1 #IMM denotes a special page number.

*2 The range of values that can be taken on is 18 < #IMM < 255,

[Flag Change]
Fag (U| I |O|B|S|Z|D]|C

Change | — | — | —m | — | —m | —m | — | —

[Description Example]
JSRS #18

[Related Instructions] JSR,JSRI

86

Chapter 3 Functions 3.2 Functions

Transfer to control register
I_ DC LoaD Control register I— DC
[Syntax] [Instruction Code/Number of Cycles]
LDC src,dest Page=191

[Operation]
dest <« src

[Function]

 This instruction transfers src to the control register indicated by dest. If srcis memory, the required
memory capacity is 2 bytes.
« If the destination is INTBL or INTBH, make sure that bytes are transferred in succession.

* No interrupt requests are accepted immediately after this instruction.

[Selectable src/dest]

src dest
RO R1 R2 R3 FB SB Sp*? ISP
A0 Al [AQ] [A1] FLG INTBH INTBL

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

*1 Operation is performed on the stack pointer indicated by the U flag.

[Flag Change]
Fag |[lU| I |O|B|S|Z|D|C
Change| *2 | *2 | *2 | *2 | *2 | *2 | *2 | *2'| *2 The flag changes only when dest is FLG.

[Description Example]

LDC RO,SB
LDC AO,FB

[Related Instructions] POPC,PUSHC,STC,LDINTB

87

Chapter 3 Functions 3.2 Functions

LDCTX Loab ComText LDCTX

[Syntax] [Instruction Code/Number of Cycles]
LDCTX abs16,abs20 Page=192
[Function]

 This instruction restores task context from the stack area.

» Set the RAM address that contains the task number in abs16 and the start address of table data in abs20.

* The required register information is specified from table data by the task number and the data in the stack area
is transferred to each register according to the specified register information. Then the SP correction value is
added to the stack pointer (SP). For this SP correction value, set the number of bytes you want to the trans-
ferred.

« Information on transferred registers is configured as shown below. Logic 1 indicates a register to be
transferred and logic 0 indicates a register that is not transferred.

MSB LSB

FB|SB| A1| AO| R3| R2| R1| RO

<

Transferred sequentially
beginning with RO

« The table data is comprised as shown below.The address indicated by abs20 is the base address of
the table. The data stored at an address apart from the base address as much as twice the content of
abs16 indicates register information, and the next address contains the stack pointer correction value.

E? tsaeb?eddress Register information for the task whose task number = 0. (See the above diagram. T

SP correction value for the task whose task number = 0. (See the above diagram.
Register information for the task whose task number = 1. (See the above diagram.
SP correction value for the task whose task number = 1. (See the above diagram.

abs20 ——»

<

| —_
~

—
<

Direction in
which address

increases
A A

Register information for the task whose task number = n'. (See the above diagram.)
SP correction value for the task whose task number = n. (See the above diagram.)

ahs16X 2

—
~

v

*1 n=0to 255

[Flag Change]
Feg |lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[Description Example]
LDCTX Ram,Rom_TBL

[Related Instructions] STCTX
|

88

Chapter 3 Functions 3.2 Functions

L D E Transfer from extended data area L D E
LoaD from EXtra far data area
[Syntax] [Instruction Code/Number of Cycles]
LDE.size src,dest Page=193
B,W

[Operation]
dest <« src

[Function]
» This instruction transfers src from extended area to dest.

* If destis an AO or Al when the size specifier (.size) you selected is (.B), srcis zero-expanded to
transfer data in 16 bits.

[Selectable src/dest]

src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/AO0 Al/A1 [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16

dsp:20[A0] abs20

[A1A0]
[Flag Change]
Flag uljl|OlB|S|Zz|D|C
Change | — | — | — | — | O | O| —| —
Conditions

S : The flag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.
Z : The flag is set when the transfer resulted in dest = 0; otherwise cleared.

[Description Example]

LDEW [A1AO],RO
LDE.B Rom_TBL,A0

[Related Instructions] STE,MOV,XCHG
|

89

Chapter 3 Functions 3.2 Functions

Transfer to INTB register
I—DINTB LoaD INTB register I—DINTB
[Syntax] [Instruction Code/Number of Cycles]
LDINTB src Page=194

[Operation]
INTBHL <« src

[Function]
» This instruction transfers srcto INTB.

» The LDINTB instruction is a macro-instruction consisting of the following:

LDC #IMM, INTBH
LDC #IMM, INTBL

[Selectable src]

src
#IMM20
[Flag Change]

Fag flU[1]|O|B|S|Z|D]|C

Change| — | — | — | — | — | — | —| —

[Description Example]
LDINTB #0FOOOOH

[Related Instructions] LDC,STC,PUSHC,POPC

90

Chapter 3 Functions 3.2 Functions

Set interrupt enable level
I—DIPL LoaD Interrupt Permission Level I—DI PI—
[Syntax] [Instruction Code/Number of Cycles]
LDIPL src Page=195

[Operation]
IPL < src

[Function]
» This instruction transfers src to IPL.

[Selectable src]

Src

#IMM™

*1 The range of values that can be taken onis 0 < #IMM < 7

[Flag Change]
Fag |U| I |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[Description Example]
LDIPL #2

91

Chapter 3 Functions 3.2 Functions

Transfer
MOV MOVe MOV
[Syntax] [Instruction Code/Number of Cycles]

MOV.size (:format) src,dest Page=195
: G,Q,Z,S (Can be specified)

B,W

[Operation]
dest <« src

[Function]
» This instruction transfers src to dest.

* If dest is an AO or Al when the size specifier (.size) you selected is (.B), src is zero-expanded to
transfer data in 16 bits. If srcis an AO or Al, data is transferred from the 8 low-order bits of AO or Al.

[Selectable src/dest] (See the next page for src/dest classified by format.)
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/A0™ Al/A1" [A0] [A1] AO/A0™ AL/A1T [A0] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16 dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16

#IMM™2
dsp:8[SP]? dsp:8[SP]?2"®
*1 If you specify (.B) for the size specifier (.size), you cannot choose AO or Al for src and dest simulta-

neously.

*2 If srcis #IMM, you cannot choose dsp:8 [SP] for dest.

*3 Operation is performed on the stack pointer indicated by the U flag. You cannot choose dsp:8 [SP] for
src and dest simultaneously.

[Flag Change]

Fag |U| I |O|B|S|Z|D|C
Change| — | — | — | —|O|O | —| —
Conditions

S : The flag is set when the transfer resulted in MSB of dest = 1; otherwise cleared.
Z : The flag is set when the transfer resulted in O; otherwise cleared.

[Description Example]
MOV.B:S #0ABH,ROL
MOV.W #-1,R2

[Related Instructions] LDE,STE,XCHG
|
92

Chapter 3 Functions

[src/dest Classified by Format]

3.2 Functions

G format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 |[ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/AQ™ A1/A1™" [AO] [A1] AO0/AQ™ A1/A1™" [A0] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] absl6 dsp:16[A0] dsp:16[A1] dsp:16[SB] absl6
#IMM™
dsp:8[SP]® dsp:8[SP]?%*
*1 If you specify (.B) for the size specifier (.size), you cannot choose AO or Al for src and dest simulta-
neously.
*2 If srcis #IMM, you cannot choose dsp:8 [SP] for dest.
*3 Operation is performed on the stack pointer indicated by the U flag. You cannot choose dsp:8 [SP] for
src and dest simultaneously.
Q format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/AQ Al/Al [AQ] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

#IMM™

dsp:16[A0] dsp:16[A1]

dsp:16[SB] absl16

*4 The range of values that can be taken on is -8 < #IMM < +7.

S format
src dest

ROL"™"¢7 ROH™"6"8 dsp:8[SB]® dsp:8[FB]™®| ROL™" ROH™®

abs16™ AQ™® AL™7

ROL"™*® ROH™"® ROL"™*® ROH™® dsp:8[SB]® dsp:8[FB]*®
abs16™
ROL™ ROH™ dsp:8[SB]® dsp:8[FB]*®

#IMM™® abs16™ AQ™ A1"
*5 You can only specify (.B) for the size specifier (.size).

*6 You cannot choose the same register for src and dest.
*7 If srcis ROL, you can only choose Al for dest as the address register.
*8 If srcis ROH, you can only choose AO for dest as the address register.
*9 You can specify (.B) and (.W) for the size specifier (.size).
Z format
src dest
ROL ROH dsp:8[SB] dsp:8[FB]
#0 abs16

93

Chapter 3 Functions 3.2 Functions

Transfer effective address
M OVA MOVe effective Address M OVA
[Syntax] [Instruction Code/Number of Cycles]
MOVA src,dest Page=202

[Operation]
dest <« EVA(src)

[Function]

» This instruction transfers the affective address of src to dest.

[Selectable src/dest]

src dest
RO R1 R2 R3
A0 Al

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[Flag Change]
Fag lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | —| —

[Description Example]
MOVA Ram:16[SB],A0

[Related Instructions] PUSHA
|

94

Chapter 3 Functions 3.2 Functions

. Transfer 4-bit data -
MOV Dir MOVe nibble MOV Dir
[Syntax] [Instruction Code/Number of Cycles]
MOV Dir src,dest Page=203

[Operation]

Dir Operation
HH H4:dest <« H4:src
HL L4:.dest <« H4:src
LH H4:.dest <« L4:src
LL L4:dest <« L4:src
[Function]
» Be sure to choose ROL for either src or dest.
Dir Function
HH Transfers src’s 4 high-order bits to dest’s 4 high-order bits.
HL Transfers src’s 4 high-order bits to dest’s 4 low-order bits.
LH Transfers src’s 4 low-order bits to dest’s 4 high-order bits.
LL Transfers src’s 4 low-order bits to dest’s 4 low-order bits.

[Selectable src/dest |

src dest
ROL ROL ROH R1L R1H
[AO] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16

ROL ROH R1L R1H ROL
[A0] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[A1l] dsp:16[SB] absl6

[Flag Change]
Fag (lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | = | = | = | — | —

[Description Example]
MOVHH ROL,[AQ]

MOVHL ROL,[A0]
. __|

95

Chapter 3 Functions 3.2 Functions

Signed multiply
MUL MULtiple MUL
[Syntax] [Instruction Code/Number of Cycles]

MUL.size src,dest Page=205
' B,W

[Operation]
dest <« dest X src

[Function]

 This instruction multiplies src and dest together including the sign bits and stores the result in dest.

* If you selected (.B) for the size specifier (.size), src and dest both are operated on in 8 bits and the
result is stored in 16 bits. If you specified an AO or Al for either src or dest, operation is performed on
the 8 low-order bits of AO or Al.

* If you selected (.W) for the size specifier (.size), src and dest both are operated on in 16 bits and the
result is stored in 32 bits. If you specified RO, R1, or A0 for dest, the result is stored in R2R0, R3R1, or
A1AO0 accordingly.

[Selectable src/dest |

src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 |ROL/RO R1 R1L
AO0/AQ™ A1/A1L? [AQ] [A1] AO0/AQ™ [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1] dsp:16[SB] absl6 dsp:16[A0] dsp:16[A1l] dsp:16[SB] absl6
#IMM

*1 If you specify (.B) for the size specifier (.size), you cannot choose AO or Al for src and dest simulta-
neously.

[Flag Change]
Fag (lU| 1]|O[B|S|Z|D|C

Change| — | — | — | — | —|—|—| —

[Description Example]
MUL.B AO0,ROL ; ROL and AQ’s 8 low-order bits are multiplied.

MUL.W #3,R0
MUL.B ROL,R1L
MUL.W AO0,Ram

[Related Instructions] DIV,DIVU,DIVX,MULU
|

96

Chapter 3 Functions 3.2 Functions

Unsigned multiply
MUI—U MULtiple Unsigned MUI—U
[Syntax] [Instruction Code/Number of Cycles]

MULU.size src,dest Page=207
: B,W

[Operation]
dest <« dest X src

[Function]

 This instruction multiplies src and dest together not including the sign bits and stores the result in dest.

* If you selected (.B) for the size specifier (.size), src and dest both are operated on in 8 bits and the
result is stored in 16 bits. If you specified an AO or Al for either src or dest, operation is performed on
the 8 low-order bits of AO or Al.

* If you selected (.\W) for the size specifier (.size), src and dest both are operated on in 16 bits and the
result is stored in 32 bits. If you specified RO, R1, or A0 for dest, the result is stored in R2R0, R3R1, or
A1AO0 accordingly.

[Selectable src/dest]

src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 |ROL/RO R1 R1L
AO0/AQ™ A1/A1? [AQ] [A1] AO0/AQ™ [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] [dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[A1l] dsp:16[SB] absl6 dsp:16[A0] dsp:16[A1l] dsp:16[SB] absl6
#IMM

*1 If you specify (.B) for the size specifier (.size), you cannot choose AO or Al for src and dest simulta-
neously.

[Flag Change]

Fag (flU| I |O|B|S|Z|D]|C

Change| — | — | — | = | — | = | — | —

[Description Example]

MULU.B AO,ROL ; ROL and AQ’s 8 low-order bits are multiplied.
MULU.W #3,R0O

MULU.B ROL,R1L

MULU.W AO,Ram

[Related Instructions] DIV,DIVU,DIVX,MUL
|

97

Chapter 3 Functions 3.2 Functions

Two’s complement
NEG NEGate NEG

[Syntax] [Instruction Code/Number of Cycles]
NEG.size dest Page=209
: B,W
[Operation]
dest <« 0 -— dest
[Function]

* This instruction takes the 2’s complement of dest and stores the result in dest.

[Selectable dest |

dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
A0 Al [A0] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[Flag Change]

Fag ([lU| 1 |O|B|S|Z|D|C
Change] — | — | O | —|O|O|—1]0
Conditions

O : The flag is set when dest before the operation is —128 (.B) or —32768 (.W); otherwise cleared.
S The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared.

C The flag is set when the operation resulted in 0; otherwise cleared.

[Description Example]

NEG.B ROL
NEG.W Al

[Related Instructions] NOT
|

98

Chapter 3 Functions 3.2 Functions

No operation
NOP No OPeration NOP
[Syntax] [Instruction Code/Number of Cycles]
NOP Page=209

[Operation]
PC <« PC + 1

[Function]
» This instruction adds 1 to PC.

[Flag Change]
Flg flU| I |O|B|S|Z|D|C

Change| — | — | — | — | — | — | — | —

[Description Example]
NOP

99

Chapter 3 Functions 3.2 Functions

N OT Invel\rlt g_lll_ bits N OT

[Syntax] [Instruction Code/Number of Cycles]
NOT.size (:format) dest Page=210
: G, S (Can be specified)
B,W

[Operation]
dest <« dest

[Function]
 This instruction inverts dest and stores the result in dest.

[Selectable dest]

dest
ROL"/RO ROHY/R1 R1L/R2 R1H/R3
A0 Al [A0] [A1]

dsp:8[AO] dsp:8[Al] dsp:8[SB]* dsp:8[FB]*
dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16™

*]1 Can be selected in G and S formats.
In other cases, dest can be selected in G format.

[Flag Change]

Fag |lU| I |O|B|S|Z|D|C
Change| — | — | — | — | O |O| —| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]
NOT.B ROL
NOT.W Al

[Related Instructions] NEG
|

100

Chapter 3 Functions 3.2 Functions

O R Logigszlgy OR O R

[Syntax] [Instruction Code/Number of Cycles]

OR.size (:format) src,dest Page= 211
‘ ' G, S (Can be specified)

B,W

[Operation]
dest < src V dest

[Function]
« This instruction logically ORs dest and src together and stores the result in dest.

« If destis an AO or A1 when the size specifier (.size) you selected is (.B), src is zero-expanded to
perform operation in 16 bits. If srcis an AO or A1, operation is performed on the 8 low-order bits of A0

or Al.
[Selectable src/dest | (See the next page for src/dest classified by format.)
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/A0™ Al/A1" [AQ] [A1] AO/A0™ Al/A1" [AO] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16
#IMM

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or Al for src and dest simulta-
neously.

[Flag Change]

Feg ([lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | O|O|—| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.

[Description Example]

OR.B Ram:8[SB],ROL
OR.B:G AO,ROL ; AO’s 8 low-order bits and ROL are ORed.
OR.B:G ROL,AQ ; ROL is zero-expanded and ORed with AQ.

OR.B:S #3,ROL

[Related Instructions] AND,XOR,TST
. __|]
101

Chapter 3 Functions 3.2 FEunctions
. __|]

[src/dest Classified by Format]

G format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ Al/A11 [AQ] [A1] AO0/A0™ Al/A11 [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or Al for src and dest simulta-

neously.
S format™
src dest
ROL ROH dsp:8[SB] dsp:8[FB]
#IMM abs16
ROL™ ROH™ dsp:8[SB] dsp:8[FB] [ROL™ ROH"
abs16

*2 You can only specify (.B) for the size specifier (.size).

*3 You cannot choose the same register for src and dest.

102

Chapter 3 Functions 3.2 Functions

Restore register/memory
POP o POP

[Syntax] [Instruction Code/Number of Cycles]
POP.size (:format) dest Page=213
‘ ' G, S (Can be specified)
B,wW
[Operation]
If the size specifier (.size) is (.B) If the size specifier (.size) is (\W)
dest <« M(SP) dest <« M(SP)
SP -~ SP + 1 SP -~ SP + 2
[Function]

* This instruction restores dest from the stack area.

[Selectable dest]

dest
ROLY/RO ROHY/R1 R1L/R2 R1H/R3
A0™ Al" [AO] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

*1 Can be selected in G and S formats.

In other cases, dest can be selected in G format.

[Flag Change]
Fag lU| 1 |O|B|S|Z|D|C

Change| — | — | — | — | — | — | — | —

[Description Example]
POP.B ROL
POP.W A0

[Related Instructions] PUSH,POPM,PUSHM
. __|]

103

Chapter 3 Functions 3.2 Functions

Restore control register
POPC POP Control register POPC
[Syntax] [Instruction Code/Number of Cycles]
POPC dest Page=215

[Operation]
dest <« M(SP)
SP? <« SP + 2

*1 When destis SP or when the U flag = “0” and dest is ISP, the value 2 is not added to SP.

[Function]
* This instruction restores from the stack area to the control register indicated by dest.
« When restoring the interrupt table register, always be sure to restore INTBH and INTBL in succession.

« No interrupt requests are accepted immediately after this instruction.

[Selectable dest]

dest
FB SB SP? ISP FLG INTBH INTBL

*2 Operation is performed on the stack pointer indi-
cated by the U flag.

[Flag Change]
Fag |flU| I |O|B|S|Z|D|C
Change| +3 | *3 | *3 | *3 | *3 | *3 | *3 | *3 | *3 The flag changes only when dest is FLG.

[Description Example]
POPC SB

[Related Instructions] PUSHC,LDC,STC,LDINTB

104

Chapter 3 Functions 3.2 Functions

Restore multiple registers
POPM POP Multiple POPM
[Syntax] [Instruction Code/Number of Cycles]
POPM dest Page=215

[Operation]
dest <« M(SP)
SP ~ SP + Nt X 2
*1 Number of registers to be restored

[Function]
« This instruction restores the registers selected by dest collectively from the stack area.

» Registers are restored from the stack area in the following order:

FB|SB|Al|AO| R3|R2|R1| RO

-
Restored sequentially beginning with RO

[Selectable dest]

dest™
RO R1 R2 R3 A0 Al SB FB

*2 You can choose multiple dest.

[Flag Change]
Fag |lU| 1 |O|B|S|Z|D|C
Change| — | — | — | — | —|—|—| —

[Description Example]
POPM RO,R1,A0,SB,FB

[Related Instructions] POP,PUSH,PUSHM

105

Chapter 3 Functions 3.2 Functions

P U S H Save register/mglggrﬂ/immediate data P U S H

[Syntax] [Instruction Code/Number of Cycles]
PUSH.size (:format) src Page=216
' G, S (Can be specified)
B,wW
[Operation]
If the size specifier (.size) is (.B) If the size specifier (.size) is (W)
SP ~ SP -1 SP ~ SP - 2
M(SP) <« src M(SP) < src
[Function]

 This instruction saves src to the stack area.

[Selectable src]

src
ROLYRO ROHYR1 R1L/R2 R1H/R3
A0 A1? [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

*1 Can be selected in G and S formats.

In other cases, dest can be selected in G format.

[Flag Change]
Fag ([U| 1 |O|B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[Description Example]
PUSH.B #5
PUSHW #100H
PUSH.B ROL
PUSHW A0

[Related Instructions] POP,POPM,PUSHM
. __|]

106

Chapter 3 Functions 3.2 Functions

Save effective address
PUSHA PUSH effective Address PUSHA
[Syntax] [Instruction Code/Number of Cycles]
PUSHA src Page=218

[Operation]
SP ~ SP - 2
M(SP) <« EVA(src)

[Function]
* This instruction saves the effective address of src to the stack area.

[Selectable src]

Src

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[Flag Change]
Flag Ul lj|o/B|S|Z|D]|C

Change| — | — | — | — | — | — | — | —

[Description Example]
PUSHA Ram:8[FB]
PUSHA Ram:16[SB]

[Related Instructions] MOVA

107

Chapter 3 Functions 3.2 Functions

Save control register
PUSHC PUSH Control register PUSHC
[Syntax] [Instruction Code/Number of Cycles]
PUSHC src Page=218

[Operation]
SP - SP - 2
M(SP) <« src

*1 When srcis SP or when the U flag = “0” and src is ISP, the SP before being subtracted by 2 is saved.

[Function]
 This instruction saves the control register indicated by src to the stack area.

[Selectable src]

src
FB SB SP? ISP FLG INTBH INTBL
*2 Operation is performed on the stack pointer indicated by the U flag.

[Flag Change]
Fag |lU| 1 |O|B|S|Z|D|C

Change| — | — | — | — | — | — | — | —

[Description Example]
PUSHC SB

[Related Instructions] POPC,LDC,STC,LDINTB

108

Chapter 3 Functions 3.2 Functions

Save multiple registers
PUSHM PUSH Multiple PUSHM
[Syntax] [Instruction Code/Number of Cycles]
PUSHM src Page=219

[Operation]
SP ~ SP - N' X 2
M(SP) « src
*1 Number of registers saved.

[Function]
 This instruction saves the registers selected by src collectively to the stack area.

* The registers are saved to the stack area in the following order:

RO|R1| R2| R3| AO|Al|SB|FB

<

Saved sequentially beginning with FB

[Selectable src]

src™
RO R1 R2 R3 A0 A1 SB FB
*2 You can choose multiple src.

[Flag Change]
Fag lU| 1 |O|B|S|Z|D|C

Change| — | — | — | — | — | —| — | —

[Description Example]
PUSHM RO,R1,A0,SB,FB

[Related Instructions] POP,PUSH,POPM

109

Chapter 3 Functions 3.2 Functions

Return from interrupt
REIT REturn from InTerrupt REIT
[Syntax] [Instruction Code/Number of Cycles]
REIT Page=219

[Operation]

PCML - M(SP)
SP ~ SP + 2
PCH, FLG <« M(SP)
SP - SP + 2
[Function]

« This instruction restores the PC and FLG that were saved when an interrupt request was accepted to
return from the interrupt handler routine.

[Flag Change]

Flag |lU| 1 |O|B|S|Z|D|C
. .
Change| *1 | *1 | *1 | *1 | *1 | *1 | *1 | *1 1 The flags are reset to the previous FLG state before the

interrupt request was accepted.

[Description Example]
REIT

110

Chapter 3 Functions 3.2 Functions

Calculate sum-of-products
RMPA Repeat MultiPle & Addition RMPA
[Syntax] [Instruction Code/Number of Cycles]
RMPA.size Page=220

[Operation]*

Repeat
R2RO(R0O)? <« R2RO(R0)? + M(A0) X M(A1)
A0 — A0 + 2D
Al ~ Al + 2(1)7
R3 - R3 - 1
Until R3=0

*1 If you set a value 0 in R3, this instruction is ingored.
*2 Shown in ()" applies when (.B) is selected for the size specifier (.size).

[Function]

« This instruction performs sum-of-product calculations, with the multiplicand address indicated by A0, the multi-
plier address indicated by Al, and the count of operation indicated by R3. Calculations are performed including
the sign bits and the result is stored in R2R0 (R0)™.

« If an overflow occurs during operation, the O flag is set to terminate the operation. R2R0 (R0)™
contains the result of the addition performed last. A0, A1l and R3 are indeterminate.

* The content of the A0 or A1 when the instruction is completed indicates the next address of the last-
read data.

« If an interrupt request is received during instruction execution, the interrupt is acknowledged after a sum-of-
product addition is completed (i.e., after the content of R3 is decremented by 1).

» Make sure that R2R0 (R0)™ has the initial value set.

Shown in ()™ applies when (.B) is selected for the size specifier (.size).
[Flag Change]

Fag |lU| I |O|B|S|Z|D|C
Change| — | — | O | —| —|—|—| —

Conditions
O : The flag is set when +2147483647 (.\W) or —2147483648 (.\W), or +32767 (.B) or —32768 (.B) is
exceeded during operation; otherwise cleared.

[Description Example]
RMPA.B

111

Chapter 3 Functions 3.2 Functions

Rotate left with carry
ROLC ROtate to Left with Carry ROI—C
[Syntax] [Instruction Code/Number of Cycles]

ROLC.size dest Page=220
' B,W

[Operation]

_{MSB dest sl [c]

[Function]

« This instruction rotates dest one bit to the left including the C flag.

[Selectable dest]

dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
A0 Al [AO] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[Flag Change]

Fag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | — | O |O|—=1|0O
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in dest = 0; otherwise cleared.
C : The flag is set when the shifted-out bit is 1; otherwise cleared.

[Description Example]

ROLC.B ROL
ROLC.W RO

[Related Instructions] RORC,ROT,SHA,SHL

112

Chapter 3 Functions 3.2 Functions

Rotate right with carry
RO RC ROtate to Right with Carry RO RC
[Syntax] [Instruction Code/Number of Cycles]

RORC.size dest Page=221
' B,W

[Operation]

———[msB dest LsB|—| c |

[Function]

« This instruction rotates dest one bit to the right including the C flag.

[Selectable dest]

dest
ROL/RO ROH/R1 R1L/R2 R1H/R3
A0 Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[Flag Change]

Fag |lU| 1 |O|B|S|Z|D|C
Change| — | — | — | — | O|O|—-10
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in dest = 0; otherwise cleared.
C : The flag is set when the shifted-out bit is 1; otherwise cleared.

[Description Example]
RORC.B ROL
RORC.W RO

[Related Instructions] ROLC,ROT,SHA,SHL
. __|]

113

Chapter 3 Functions 3.2 Functions

ROT ROTate ROT

[Syntax] [Instruction Code/Number of Cycles]
ROT.size src,dest Page=222
: B,W
[Operation] srcAEO
[
MSB dest LSB
srcANO
[Function]

« This instruction rotates dest left or right the number of bits indicated by src. The bit overflowing from LSB
(MSB) is transferred to MSB(LSB) and the C flag.

» The direction of rotate is determined by the sign of src. If srcis positive, bits are rotated left; if negative, bits
are rotated right.

* If srcis an immediate, the number of rotates is -8 to —1 and +1 to +8. You cannot set values less than -8,
equal to 0, or greater than +8.

« If srcis a register and you selected (.B) for the size specifier (.size), the number of rotates is —8 to +8.
Although you can set 0, no bits are rotated and no flags are changed. If you set a value less than —8 or
greater than +8, the result of rotation is indeterminate.

« If srcis a register and you selected (.W) for the size specifier (.size), the number of rotates is —16 to +16.
Although you can set 0, no bits are rotated and no flags are changed. If you set a value less than —16 or
greater than +16, the result of rotation is indeterminate.

[Selectable src/dest]

src dest
R1H" ROL/RO ROH/R1* RI1L/R2 R1H/R31
A0 Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM™2

*1 If srcis R1H, you cannot choose R1 or R1H for dest.

*2 The range of values that can be taken on is -8 < #IMM < +8. However, you cannot set 0.

[Flag Change]

Fag lU| 1 |O|B|S|Z|D]|C
Changel — | — | — | —| O |O | —=| O *1 Ifthe number of rotates is 0, no flags are changed.
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z . The flag is set when the operation resulted in 0; otherwise cleared.
C : The flag is set when the bit shifted out last is 1; otherwise cleared.
[Description Example]
ROT.B #1,ROL ; Rotated left
ROT.B #-1,ROL ; Rotated right
ROT.W R1H,R2

[Related Instructions] ROLC,RORC,SHA,SHL

114

Chapter 3 Functions 3.2 Functions

RT S Return from subroutim? RT S
ReTurn from Subroutine

[Syntax] [Instruction Code/Number of Cycles]

RTS Page=223

[Operation]
PCML < M(SP)
SP -~ SP + 2
PCH <« M(SP)
SP < SP + 1

[Function]

* This instruction causes control to return from a subroutine.

[Flag Change]
Fag (U| 1 |O|B|S|Z|D|C

Change| — | — | — | = | = | = | —| —

[Description Example]
RTS

115

Chapter 3 Functions

3.2 Functions

SBB

[Syntax]
SBB.silze src,dest

Subtract with borrow
SuBtract with Borrow

[Instruction Code/Number of Cycles]

[Operation]
dest < dest - src

[Function]

SBB

Page=224

« This instruction subtracts src and inverted C flag from dest and stores the result in dest.

« If destis an AO or A1 when the size specifier (.size) you selected is (.B), src is zero-expanded to
perform operation in 16 bits. If srcis an AO or Al, operation is performed on the 8 low-order bits of AO

or Al.

[Selectable src/dest]

Src

dest

ROL/RO ROH/R1 R1L/R2
AO/AQ™ Al/A1" [AQ]
dsp:8[A0] dsp:8[Al] dsp:8[SB]
dsp:16[A0] dsp:16[Al] dsp:16[SB]

R1H/R3
[Al]
dsp:8[FB]
abs16
#IMM

ROL/RO ROH/R1
AO/AQ™ A1/A1"
dsp:8[AO0] dsp:8[Al]
dsp:16[A0] dsp:16[A1]

R1L/R2 R1H/R3
[AQ] [Al]
dsp:8[SB] dsp:8[FB]
dsp:16[SB] absl6

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or Al for src and dest simulta-

neously.
[Flag Change]
Flag |[U| 1 |O|B|S|Z C
- =10 |—=10|0 O
Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.\W) or —32768 (.W), or

+127 (.B) or —128 (.B); otherwise cleared.

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in O; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than 0;
otherwise cleared.

[Description Example]
SBB.B #2,ROL
SBB.W AO0,RO
SBB.B AO0,ROL
SBB.B ROL,A0

[Related Instructions]

ADC,ADCF,ADD,SUB

; AQ’s 8 low-order bits and ROL are operated on.
; ROL is zero-expanded and operated with AO.

116

Chapter 3 Functions 3.2 Functions

Subtract & conditional jump
SBJ NZ SuBtract then Jump on Not Zero SBJ NZ
[Syntax] [Instruction Code/Number of Cycles]

SBJINZ.size src,dest,label Page=226
: B,W

[Operation]
dest <« dest — src
if dest # 0 then jump label

[Function]
 This instruction subtracts src from dest and stores the result in dest.
« If the operation resulted in any value other than 0, control jumps to label. If the operation resulted in

0, the next instruction is executed.
» The op-code of this instruction is the same as that of ADJNZ.

[Selectable src/dest/label]

src dest label
ROL/RO ROH/R1 R1L/R2
R1H/R3 A0 Al PC?-126 <label <PC?+129
#IMM™ [AO] [A1] dsp:8[A0]

dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB]
abs16

*1 The range of values that can be taken on is =7 < #IMM < +8.

*2 The PC indicates the start address of the instruction.

[Flag Change]
Fag |[U| 1 |O|B|S|Z|D|C

Change| — | — | — | = | = | — | — | —

[Description Example]
SBINZ.W #1,R0,label

[Related Instructions] ADJINZ
. __|]

117

Chapter 3 Functions 3.2 Functions

Shift arithmetic
SHA SHift Arithmetic SHA

[Syntax] [Instruction Code/Number of Cycles]
SHA.size src,dest Page=227
' B,W,L
[Operation])
When src <0 | MSB dest Lse|—{ C |
When src> 0 [c}—wmsB dest LSB}F—— 0
[Function]

overflowing from LSB (MSB) is transferred to the C flag.

» The direction of shift is determined by the sign of src. If srcis positive, bits are shifted left; if negative,
bits are shifted right.

« If srcis an immediate, the number of shifts is -8 to —1 and +1 to +8. You cannot set values less than
-8, equal to 0, or greater than +8.

« If srcis a register and you selected (.B) for the size specifier (.size), the number of shifts is —8 to +8.
Although you can set 0, no bits are shifted and no flags are changed. If you set a value less than —8 or
greater than +8, the result of shift is indeterminate.

« If srcis a register and you selected (.\W) or (.L) for the size specifier (.size), the number of shifts is —16
to +16. Although you can set 0, no bits are shifted and no flags are changed. If you set a value less
than —16 or greater than +16, the result of shift is indeterminate.

[Selectable src/dest]

src dest
R1H™ ROL/RO ROH/R1" RI1L/R2 R1H/R3"
A0 Al [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

#IMM™
R2R0™® R3R13

*1 If srcis R1H, you cannot choose R1 or R1H for dest.
*2 The range of values that can be taken on is -8 < #IMM < +8. However, you cannot set 0.
*3 You can only specify (.L) for the size specifier (.size). For other dest, you can specify (.B) or (W).

[Flag Change]

Fag ([U| I |]OB|S|Z|D|C
Change| — | — | O | = | O |O|—=|0O|*L Ifthe number of shifts is 0, no flags are changed.
Conditions

O : Theflag is set when the operation resulted in MSB changing its state from 1 to 0 or from 0 to 1; otherwise
cleared. However, the flag does not change if you selected (.L) for the size specifier (.size).

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in 0; otherwise cleared. However, the flag is indeterminate if you
selected (.L) for the size specifier (.size).

C : Theflagis set when the bit shifted out last is 1; otherwise cleared. However, the flag is indeterminate if you
selected (.L) for the size specifier (.size).

[Description Example]

SHA.B #3,ROL ; Arithmetically shifted left
SHA.B #-3,ROL ; Arithmetically shifted right
SHA.L R1H,R2R0

[Related Instructions] ROLC,RORC,ROT,SHL
. __|]
118

Chapter 3 Functions

3.2 Functions

Shift logical
SHI— SHift Logical SHI—
[Syntax] [Instruction Code/Number of Cycles]
SHL.size src,dest Page=230
: B,W,L
[Operation | 0 —{msB dest Lse|—[c]

When src< 0

dest LSB |4— 0

When src >0

[Function]

« This instruction logically shifts dest left or right the number of bits indicated by src. The bit overflowing
from LSB (MSB) is transferred to the C flag.

» The direction of shift is determined by the sign of src. If srcis positive, bits are shifted left; if negative,
bits are shifted right.

* If srcis an immediate, the number of shifts is -8 to —1 and +1 to +8. You cannot set values less than
-8, equal to O, or greater than +8.

« If srcis a register and you selected (.B) for the size specifier (.size), the number of shifts is —8 to +8.
Although you can set 0, no bits are shifted and no flags are changed. If you set a value less than —8 or
greater than +8, the result of shift is indeterminate.

« If srcis a register and you selected (.W) or (.L) for the size specifier (.size), the number of shifts is —16
to +16. Although you can set 0, no bits are shifted and no flags are changed. If you set a value less
than —16 or greater than +16, the result of shift is indeterminate.

[Selectable src/dest]

src dest
R1H™ ROL/RO ROH/R1? R1L/R2 R1H/R3™
A0 Al [AO] [Al]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] abs16

#IMM™2

R2R0™ R3R1"

*1 If srcis R1H, you cannot choose R1 or R1H for dest.

*2 The range of values that can be taken on is -8 < #IMM < +8. However, you cannot set 0.

*3 You can only specify (.L) for the size specifier (.size). For other dest, you can specify (.B) or (W).

[Flag Change]

Fag |lU| 1 |O|B|S|Z|D]|C
Change| — | — | — | = | O | O | =] O * Ifthe number of shifts is 0, no flags are changed.
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z . The flag is set when the operation resulted in 0; otherwise cleared. However, the flag is
indeterminate if you selected (.L) for the size specifier (.size).

C : The flag is set when the bit shifted out last is 1; otherwise cleared. However, the flag is
indeterminate if you selected (.L) for the size specifier (.size).

[Description Example]
SHL.B #3,ROL
SHL.B #-3,ROL
SHL.L R1H,R2R0O

[Related Instructions]

; Logically shifted left
; Logically shifted right

ROLC,RORC,ROT,SHA

119

Chapter 3 Functions 3.2 Functions

Transfer string backward
SMOVB String MOVe Backward SMOVB
[Syntax] [Instruction Code/Number of Cycles]

SMOVB.size Page=232
[

[Operation]*

When size specifier (.size) is (.B) When size specifier (.size) is (\W)
Repeat Repeat
M(AL)« M(2%6 X R1H + A0) M(Al) < M(2*¥ X R1H + A0)
A0? < A0 - 1 A0? < A0 - 2
Al <« Al - 1 Al < A1l - 2
R3 <« R3 - 1 R3 <« R3 -1
Until R3=0 Until R3=0

*1 If you set a value 0 in R3, this instruction is ingored.

*2 If AO underflows, the content of R1H is decremented by 1.

[Function]

 This instruction transfers string in successively address decrementing direction from the source ad-
dress indicated by 20 bits to the destination address indicated by 16 bits.

 Set the 4 high-order bits of the source address in R1H, the 16 low-order bits of the source address in
A0, the destination address in Al, and the transfer count in R3.

* The A0 or A1 when the instruction is completed contains the next address of the last-read data.

« If an interrupt request is received during instruction execution, the interrupt is acknowledged after one
data transfer is completed.

[Flag Change]

Fag |U| 1 |O|B|S|Z|D|C
Change| — | — | — | = | = | —| — | —

[Description Example]
SMOVB.B

[Related Instructions] SMOVF,SSTR

120

Chapter 3 Functions 3.2 Functions

Transfer string forward
SMOVF String MOVe Forward SMOVF
[Syntax] [Instruction Code/Number of Cycles]

SMOVF.size Page=233
' B,W

[Operation]*

When size specifier (.size) is (.B) When size specifier (.size) is (\W)
Repeat Repeat
M(A1l) < M(2'® X R1H + A0) M(Al)<— M(2©X R1H + AQ)
A0% < A0 + 1 A0? < A0 + 2
Al -~ Al + 1 Al <= Al + 2
R3 < R3 - 1 R3 <« R3 -1
Until R3=0 Until R3=0

*1 If you set a value 0 in R3, this instruction is ingored.

*2 If AO overflows, the content of R1H is incremented by 1.

[Function]
 This instruction transfers string in successively address incrementing direction from the source ad-
dress indicated by 20 bits to the destination address indicated by 16 bits.
« Set the 4 high-order bits of the source address in R1H, the 16 low-order bits of the source address in
A0, the destination address in Al, and the transfer count in R3.
* The AO or Al when the instruction is completed contains the next address of the last-read data.

« If an interrupt request is received during instruction execution, the interrupt is acknowledged after one

data transfer is completed.
» This instruction arithmetically shifts dest left or right the number of bits indicated by src. The bit

[Flag Change]
Fag ([U| 1 |O|B|S|Z|D|C

Change| — | — | — | = | — | —| — | —

[Description Example]
SMOVF.W

[Related Instructions] SMOVB,SSTR

121

Chapter 3 Functions 3.2 Functions

Store string
SSTR String SToRe SSTR
[Syntax] [Instruction Code/Number of Cycles]

SSTR.size Page=233
[

[Operation]*

When size specifier (.size) is (.B) When size specifier (.size) is (\W)
Repeat Repeat
M(Al)<= ROL M(Al) < RO
Al - Al + 1 Al ~ Al +
R3 <« R3 -1 R3 <« R3 -
Until R3 = 0 Until R3 = 0

*1 If you set a value 0 in R3, this instruction is ingored.

[Function]

« This instruction stores string, with the store data indicated by RO, the transfer address indicated by A1,
and the transfer count indicated by R3.

* The AO or Al when the instruction is completed contains the next address of the last-written data.

« If an interrupt request is received during instruction execution, the interrupt is acknowledged after one
data transfer is completed.

[Flag Change]

Fag |lU| 1 |O|B|S|Z|D|C
Change| — | — | — | — | = | = | — | —

[Description Example]
SSTR.B

[Related Instructions] SMOVB,SMOVF

122

Chapter 3 Functions 3.2 FEunctions

ST C Transfer from control register ST C
STore from Control register

[Syntax] [Instruction Code/Number of Cycles]

STC src,dest Page=234

[Operation]
dest <« src

[Function]
 This instruction transfers the control register indicated by src to dest. If destis memory, specify the
address in which to store the low-order address.
« If destis memory while src is PC, the required memory capacity is 3 bytes. If srcis not PC, the
required memory capacity is 2 bytes.

[Selectable src/dest]

src dest
FB SB Sp1 ISP RO R1 R2 R3
FLG INTBH INTBL A0 Al [AQ] [A1]
dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl16

PC
[A0] [A]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]

dsp:16[A0] dsp:16[Al] dsp:16[SB] absl16

R2R0 R3R1 A1A0

*1 Operation is performed on the stack pointer indicated by the U flag.

[Flag Change]

Fag |[U| I |]O|B|[S|Z|D]|C
Change| — | — | = | = | — | = | = | —

[Description Example]
STC SB,RO
STC FB,A0

[Related Instructions] POPC,PUSHC,LDC,LDINTB
. __|]

123

Chapter 3 Functions 3.2 FEunctions

Save context
STCTX STore ConTeXt STCTX
[Syntax] [Instruction Code/Number of Cycles]
STCTX abs16,abs20 Page=235

[Operation]

[Function]

 This instruction saves task context to the stack area.

 Set the RAM address that contains the task number in abs16 and the start address of table data in abs20.

« The required register information is specified from table data by the task number and the data in the stack area is
transferred to each register according to the specified register information. Then the SP correction value is subtracted
to the stack pointer (SP). For this SP correction value, set the number of bytes you want to the transferred.

« Information on transferred registers is configured as shown below. Logic 1 indicates a register to be
transferred and logic O indicates a register that is not transferred.

MSB LSB

FB|SB| A1| AO| R3|R2| R1| RO

|

Transferred sequentially beginning with FB

» The table data is comprised as shown below. The address indicated by abs20 is the base address of
the table. The data stored at an address apart from the base address as much as twice the content of
abs16 indicates register information, and the next address contains the stack pointer correction value.

(B):l ;saebf;ddress Register information for the task whose task number = 0. (See the ahove diagram. T

SP correction value for the task whose task number = 0. (See the above diagram.
Register information for the task whose task number = 1. (See the above diagram.
SP correction value for the task whose task number = 1. (See the above diagram.

abs20 ——)

~

|
~

—
N

Direction in
which address

increases
= A

Register information for the task whose task number = n'. (See the above diagram.)
SP correction value for the task whose task number = n, (See the above diagram.)

abs16 x 2

—
~

v

*1 n=0to 255
[Flag Change]

Fag ([U| I |O|B|S|Z|D]|C
Change| — | — | — | = | = | = | — | —

[Description Example]
STCTX Ram,Rom_TBL

[Related Instructions] LDCTX

124

Chapter 3 Functions 3.2 Functions

ST E Transfer to extended data area ST E
STore to EXtra far data area
[Syntax] [Instruction Code/Number of Cycles]
STE.size src,dest Page=235
' B,W

[Operation]
dest <« src

[Function]
* This instruction transfers src to destin an extended area.

« If srcis an AO or Al when the size specifier (.size) you selected is (.B), operation is performed on the
8 low-order bits of A0 or Al. However, the flag changes depending on the A0 or Al status (16 bits)

before the operation is performed.

[Selectable src/dest]

src dest

ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/AQ Al/A1 [AQ] [A1]
dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

dsp:20[A0] abs20
[A1A0]

[Flag Change]

Flag |U| I |O|B|S|Z|D|C
Change| — | — | — | — | O |O | —| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z . The flag is set when the operation resulted in 0; otherwise cleared.

[Description Example]
STE.B ROL,[A1AOQ]
STE.W R0,10000H[AQ]

[Related Instructions] MOV,LDE,XCHG
. __|]
125

Chapter 3 Functions 3.2 Functions

Conditional transfer
STNZ STore on Not Zero STNZ
[Syntax] [Instruction Code/Number of Cycles]
STNZ src,dest Page=237

[Operation]
if Z=0then dest <« src

[Function]
« This instruction transfers src to dest when the Z flag is O.

[Selectable src/dest]

src dest
#IMM8 ROL ROH dsp:8[SB] dsp:8[FB]
abs16
[Flag Change]
Fag ([U| 1 |O|B|S|Z|D|C

Change| — | — | — | = | = | — | —| —

[Description Example]
STNZ #5,Ram:8[SB]

[Related Instructions] STZ,STZX
. __|

126

Chapter 3 Functions 3.2 Functions

S T Z Conditional transfer S T Z
STore on Zero

[Syntax] [Instruction Code/Number of Cycles]

STZ src,dest Page=237

[Operation]
if Z=1then dest <« src

[Function]
 This instruction transfers src to dest when the Z flag is 1.

[Selectable src/dest]

src dest
#IMM8 ROL ROH dsp:8[SB] dsp:8[FB]
abs16
[Flag Change]
Fag |U| 1 |O|B|S|Z|D|C

Change| — | — | — | = | = | — | — | —

[Description Example]
STZ #5,Ram:8[SB]

[Related Instructions] STNZ,STZX
. __|]

127

Chapter 3 Functions 3.2 Functions

Conditional transfer
STZX STore on Zero eXtention STZX
[Syntax] [Instruction Code/Number of Cycles]
STZX srcl,src2,dest Page=238

[Operation]
If Z=1then
dest <« srcl
else

dest <« src2
[Function]

 This instruction transfers src1 to dest when the Z flag is 1. When the Z flag is 0, it transfers src2 to
dest.

[Selectable src/dest]

src dest
#IMM8 ROL ROH dsp:8[SB] dsp:8[FB]
abs16
[Flag Change]
Fag |l U| I |O|B|S|Z|D]|C

Change| — | — | — | = | — | = | — | —

[Description Example]
STZX #1,#2,Ram:8[SB]

[Related Instructions] STZ,STNZ

128

Chapter 3 Functions 3.2 Functions

Subtract without borrow
SUB SUBtract SUB
[Syntax] [Instruction Code/Number of Cycles]

SUB.size (:format) src,dest Page=238
‘ ' G, S (Can be specified)
B,W

[Operation]
dest <« dest - src

[Function]
* This instruction subtracts src from dest and stores the result in dest.

« If destis an AO or A1 when the size specifier (.size) you selected is (.B), srcis zero-expanded to
perform operation in 16 bits. If srcis an AO or A1, operation is performed on the 8 low-order bits of AO

or Al.
[Selectable src/dest] (See the next page for src/dest classified by format.)
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO/AQ0™ A1/A1" [AO] [A1] AO/AQ0™ ALl/AL™? [AO] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl16
#IMM

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or Al for src and dest simulta-
neously.

[Flag Change]

Fag ([U| 1 |O|B|S|Z|D|C
Change| — | — |O|—=|O|O|—|O
Conditions

O : The flag is set when a signed operation resulted in exceeding +32767 (.\W) or —32768 (.W), or
+127 (.B) or —128 (.B); otherwise cleared.

S . The flag is set when the operation resulted in MSB = 1; otherwise cleared.

Z : The flag is set when the operation resulted in O; otherwise cleared.

C : The flag is set when an unsigned operation resulted in any value equal to or greater than O;
otherwise cleared.

[Description Example]
SUB.B AO0,ROL ; AQ’s 8 low-order bits and ROL are operated on.

SUB.B ROL,A0 ; ROL is zero-expanded and operated with AO.
SUB.B Ram:8[SB],ROL
SUB.W #2,[A0]

[Related Instructions] ADC,ADCF,ADD,SBB
. __|]

129

Chapter 3 Functions 3.2 FEunctions
. __|]

[src/dest Classified by Format]

G format
src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 [ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ Al/A11 [AQ] [A1] AO0/A0™ Al/A11 [AQ] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6
#IMM

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or Al for src and dest simulta-

neously.
S format™
src dest
ROL ROH dsp:8[SB] dsp:8[FB]
#IMM abs16
ROL™ ROH™ dsp:8[SB] dsp:8[FB] [ROL™ ROH™
abs16

*2 You can only specify (.B) for the size specifier (.size).

*3 You cannot choose the same register for src and dest.

130

Chapter 3 Functions 3.2 Functions

Test
TST TesT TST
[Syntax] [Instruction Code/Number of Cycles]

TST.size src,dest Page= 241
' B,W

[Operation]
dest A src

[Function]
« Each flag in the flag register changes state depending on the result of logical AND of src and dest.

« If destis an AO or A1 when the size specifier (.size) you selected is (.B), srcis zero-expanded to
perform operation in 16 bits. If srcis an AO or A1, operation is performed on the 8 low-order bits of AO

or Al.

[Selectable src/dest |

src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 |ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/AQ™ Al/A1™ [AO] [A1] AO0/AQ™ Al/A1™? [AO] [A1]

dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl16
#IMM

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or Al for src and dest simulta-
neously.

[Flag Change]

Fag [U| 1 |O|B|S|Z|D]|C
Change| — | — | — | = | O|O| —| —
Conditions

S : The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in 0; otherwise cleared.

[Description Example]
TST.B #3,ROL
TST.B AO0,ROL ; AQ's 8 low-order bits and ROL are operated on.

TST.B ROL,A0Q ; ROL is zero-expanded and operated on with AO.

[Related Instructions] AND,OR,XOR
. __|]
131

Chapter 3 Functions 3.2 Functions

Interrupt for undefined instruction
UND UNDefined instruction UND
[Syntax] [Instruction Code/Number of Cycles]
UND Page=243

[Operation]

SP -~ SP - 2
M(SP) <~ (PC + 1H,FLG
SP ~ SP - 2
M(SP) - (PC + 1)mL
PC < M(FFFDCzs)
[Function]

« This instruction generates an undefined instruction interrupt.

» The undefined instruction interrupt is a nonmaskable interrupt.

[Flag Change]

Flag |[U| 1 |O|B|S|Z *1 The flags are saved to the stack area before the UND
Change| O | O | = | —=|—=|—=]10| — instruction is executed. After the interrupt, the flag status
becomes as shown on the left.

O
O

Conditions
U : Theflag is cleared.
| : Theflagis cleared.
D : Theflagis cleared.

[Description Example]
UND

132

Chapter 3 Functions 3.2 Functions

Wait
WAIT WAIT WAIT
[Syntax] [Instruction Code/Number of Cycles]
WAIT Page=243

[Operation]

[Function]

« This instruction halts program execution. Program execution is restarted when an interrupt of a higher
priority level than IPL is acknowledged or a reset is generated.

[Flag Change]

Flag |U| I |O|B|S|Z|D|C
Change| — | — | — | — | — | — | — | —

[Description Example]

WAIT

133

Chapter 3 Functions 3.2 Functions

XCHG XCHG

[Syntax] [Instruction Code/Number of Cycles]
XCHG.size src,dest Page= 244
: B,W
[Operation]

dest «<— src

[Function]
 This instruction exchanges contents between src and dest.

« If destis an AO or Al when the size specifier (.size) you selected is (.B), 16 bits of zero- expanded src
data are placed in the AO or A1 and the 8 low-order bits of the AO or Al are placed in src.

[Selectable src/dest]

src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 |ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0 Al/Al [AO] [Al]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6

[Flag Change]
Fag |lU| 1 |O|B|S|Z|D]|C

Change| — | — | — | = | = | = | = | —

[Description Example]
XCHG.B ROL,A0 ; AO’s 8 low-order bits and ROL'’s zero-expanded value are exchanged.
XCHG.W RO,Al
XCHG.B ROL,[AQ]

[Related Instructions] MOV,LDE,STE
. __|

134

Chapter 3 Functions 3.2 Functions

Exclusive OR
XOR eXclusive OR XOR
[Syntax] [Instruction Code/Number of Cycles]

XOR.size src,dest Page=245
' B,W

[Operation]
dest < dest V src

[Function]
 This instruction exclusive ORs src and dest together and stores the result in dest.

« If destis an AO or A1 when the size specifier (.size) you selected is (.B), srcis zero-expanded to
perform operation in 16 bits. If srcis an A0 or A1, operation is performed on the 8 low-order bits of A0
or Al.

[Selectable src/dest]

src dest
ROL/RO ROH/R1 R1L/R2 R1H/R3 |ROL/RO ROH/R1 R1L/R2 R1H/R3
AO0/A0™ Al/A1" [AO] [A1] AO0/A0™ Al/A1™ [AQ] [A1]

dsp:8[AO0] dsp:8[Al] dsp:8[SB] dsp:8[FB] |dsp:8[A0] dsp:8[Al] dsp:8[SB] dsp:8[FB]
dsp:16[A0] dsp:16[Al] dsp:16[SB] absl6 dsp:16[A0] dsp:16[Al] dsp:16[SB] absl16
#IMM

*1 If you specify (.B) for the size specifier (.size), you cannot choose A0 or Al for src and dest simulta-
neously.

[Flag Change]

Fag |U| I |O|B|S|Z|D|C
Change| — | — | — | = | OO | —| —
Conditions

S . The flag is set when the operation resulted in MSB = 1; otherwise cleared.
Z : The flag is set when the operation resulted in O; otherwise cleared.

[Description Example]
XOR.B AO,ROL ; AO’s 8 low-order bits and ROL are exclusive ORed.
XOR.B ROL,A0 ; ROL is zero-expanded and exclusive ORed with AQ.
XOR.B #3,ROL
XOR.W AO0,Al

[Related Instructions] AND,OR,TST
. __|]
135

Chapter 3 Functions 3.2 Functions

136

Chapter 4

Instruction Code/Number of Cycles

4.1 Guide to This Chapter
4.2 Instruction Code/Number of Cycles

Chapter 4 Instruction Code 41 Guide to This Chapter

4.1 Guide to This Chapter

This chapter describes instruction code and number of cycles for each op-code.

The following shows how to read this chapter by using an actual page as an example.

Chapter 4 Instruction Code 4.2 Instruction Code/Number of Cycles

W L
@—tQ LDIM

b7 b0 b7 b0
0(11)111011010 IMM4
|\ |1] | I | | I | | I |

©)

Number of Bytes/Number of Cycles]

Bytes/Cycles 2/2

(C i

Moy
@—+ @ I\/Ie:G #IMM, dest
b

7 b0 b7 b0 dest code
(3)7* 0|:(|1>1 0|1|OS|ZE1|1|0|0 |DE|ST| |_|_EEE§|_|_’ \-m
|, dspi6fabsts [f[, ., #MM16,
size |SIZE dest DEST dest DEST
-B 0 ROL/RO 0000 :8[A
ol dsp:8[AN] dsp:8[A0] (1000
an ROH/R1 | 0001 dsp:8[Al] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] (1010
R1H/R3 | 0011 dsp:8[FB] 1011
An AO 0100 dsp:16[An] dsp:16[A0] {1100
Al 0101 dsp:16[A1] (1101
[An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] [1110
[A1] 0111 |abs16 abs16 1111
@) — [Numb@Bytes/Number of Cycles]
dgest— | Rn | an |[an] |dsp:8[an] |dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles| 3/2 | 3/2 3/3 4/3 4/3 5/3 5/3 5/3

138

Chapter 4 Instruction Code 41 Guide to This Chapter

(1) Mnemonic
Shows the mnemonic explained in this page.

(2) Syntax
Shows an instruction syntax using symbols.

(3) Instruction code
Shows instruction code. Entered in () are omitted depending on src/dest you selected.

Contents at addresses following

Content at start address Content at (start address (start address of instruction + 2)
of instruction of instruction+1) (See the following figure.)
Ny O O O O [[O [[[[[[[
b7 b7 0 dest code

b
Ollllll OI:I-I0<SIZE I:I-IOIO I@Elsb-l \

- [dspierbste [e |

Correspondence
Correspondence
Correspondence
size | SIZE dest DES dest EQEST
B ROL/RO 0000 dsp:8[AQ
wl o1 dsp:8[An] P:8IAO] 1000
: R ROH/R1 0001 dsp:8[Al] [1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] (1010
R1H/R3 0011 dsp:8[FB] (1011
A .
An 0 0100 dsp:16[An] dsp:16[A0] |1100
Al 0101 dsp:16[A1] 1101
(An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] {1110
[A1] 0111 Jabsl6 abs16 1111
Contents at addresses following (start address of instruction + 2) are arranged as follows:
+0 +1 +2
b7 b0
dsp8 .
#MME 8bit
b7 b0 b7 b0
dspl6
abs16 Low-order 8bit High-order 8bit
#IMM16
abs20 7 b0 b7 b0 b7 ' b0
dsp20 Low-order 8bit Middle-order 8bit 0000 |High-order
#IMM20 4bit

(4) Table of cycles

Shows the number of cycles required to execute this instruction and the number of instruction bytes.
There is a chance that the number of cycles increases due to an effect of software wait.

Instruction bytes are indicated on the left side of the slash and execution cycles are indicated on the right side.

139

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) ABS.size dest
dest code
b7 b0 b7 b0
0|1|1|1 0|1|15IZE1|1|1|1 |DE|ST| -m
., dspi6/absis , |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles]
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Bytes/Cycles | 2/3 2/3 2/5 3/5 3/5 4/5 4/5 4/5
(1) ADC.size #IMM, dest
b7 b0 b7 bo dest code
011 1/0 1 1|SE0 1 1 0| DEST dsp8
. dsp16/abs16 |/ [, #IMMIG |
.size | SIZE dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An]
W 1 RN ROH/R1 0001 dsp:8[A1l] 1001
R1L/R2 0010 dsp:8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 01 10 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles]
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 5/4

*1 If the size specifier (.size) is (.\W), the number of bytes above is increased by 1.

140

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) ADC.size src, dest
b7 b0 b7 b0 src code dest code
10,1 10,0 0| SRc, DEST | [, dsp8, |
|, dspi6/absie | [\ [, dspi6labsi6
size | SIZE | srcidest SRCIDEST srcidest SRCIDEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 RN ROH/R1 0001 dsp:8[A1l] 1001
R1L/R2 0010 dsp:8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
src dest] Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Rn 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
An 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
[An] 213 | 213 214 3/4 3/4 4/4 4/4 4/4
dsp:8[An] 3/3 | 33 3/4 414 414 5/4 5/4 5/4
dsp:8[SB/FB]| 3/3 | 3/3 3/4 4/4 414 5/4 5/4 5/4
dsp:16[An] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 4/3 | 43 414 5/4 5/4 6/4 6/4 6/4
absl16 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4

141

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) ADCF.size dest
b7 bo b7 bo dest code
Ollllll 0 1|15IZE1|1|1|0 |DE|ST| dSES
.. dspi6/absie , |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 RN ROH/R1 0001 dsp:8[A1l] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 4/3
(1) ADD.size:G #IMM, dest
b7 b0 b7 b0 dest code
0 1,1,1]0,1 1lefo 1,0 0] pEST, dsp8
| 11 IdISPELI6{aIbISI1IGI 11 | | 111 Il#lll\l/ll]:6I L1l
.size | SIZE dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 RN ROH/R1 0001 dsp:8[A1l] 1001
R1L/R2 0010 dsp:8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An [AQ] 01 10 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 5/4

*1 If the size specifier (.size) is (.\W), the number of bytes above is increased by 1.

142

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) ADD.size:Q #IMM, dest
b7 b0 b7 bo dest code
1|1|0|O 1IOIOSIZE |IMI|VI4| |DE|ST|
|, Osp16/absis ,
size | SIZE | #MM | IMM4 | #IMM | IMM4
B 0 0 0000| -8 1000
W 1 +1 0001} -7 1001
+2 0010) -6 1010
+3 0011} -5 1011
+4 0100 4 1100
+5 0101} -3 1101
+6 0110} -2 1110
+7 0111} 1 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
RN ROH/R1 0001 dsp:8[A1l] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
Al 0101 dsp:16[A1] 1101
[An] [AO] 0110 |]dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]Jabsl6 abs16 1111
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 4/3

143

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(3) ADD.B:S #IMMS8, dest
b7 b0 dest code
1.0 0 oo| pesy | [#mus | [dsps |
|IIIII?I§IIIIIII|
dest DEST
ROH
RN 011
ROL 100
dsp:g[se/Fg) |94SP-8[SEl 101
dsp:8[FB] 110
abs16 abs16 111
[Number of Bytes/Number of Cycles]
dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 2/1 3/3 4/3

144

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(4) ADD.size:G src, dest
b7 bo b7 bo src code dest code
10 1 0J0 0 oJsE] SRC DEST dsp8
.. dspibiabsie, | [\ [, dsplo/absi6
size | SIZE | src/dest SRCIDEST src/dest SRCIDEST
B 0 ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An]
W 1 R ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
Al 0101 dsp:16[A1] 1101
(An] [A0] 0110 |dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absi6 abs16 1111
[Number of Bytes/Number of Cycles |
src dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Rn 212 | 22 2/3 3/3 3/3 4/3 4/3 4/3
An 212 | 2/2 2/3 3/3 3/3 4/3 4/3 4/3
[An] 2/13 | 2/3 2/4 3/4 3/4 4/4 4/4 4/4
dsp:8[AN] 3/3 | 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:8[SB/FB]| 3/3 | 3/3 3/4 4/4 4/4 5/4 514 5/4
dsp:16[An] 4/13 | 4/3 4/4 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 413 | 4/3 4/4 5/4 5/4 6/4 6/4 6/4
abs16 4/13 | 4/3 4/4 5/4 5/4 6/4 6/4 6/4

145

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(5) ADD.B:S src, ROL/ROH
b7 b0 src code
0 0 1 0]O0 |pETSRC dsp8
|IIIIIaItI)SI]I-6IIIIII
src SRC dest DEST
RN ROL/ROH 0 0 ROL 0
dsp:8[SB/FE] dsp:8[SB] 0 1 ROH 1
dsp:8[FB] 1 0
abs16 abs16 1 1
[Number of Bytes/Number of Cycles]
src Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/2 2/3 3/3
(6) ADD.size:G #IMM, SP
b7 b0 b7 b0
011 1|1 1 0PEJ1 1101 0 11 #IMM8
[, #MMI6
.size | SIZE
B 0
W 1

[Number of Bytes/Number of Cycles]
3/2
*1 If the size specifier (.size) is (.\W), the number of bytes above is increased by 1.

Bytes/Cycles

146

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

ADD

(7) ADD.size:Q #IMM, SP
b7 bo b7 bo

0|1|l|1 1|1|O|1 1|o|1|1 IIM!\/I4I
*1 The instruction code is the same regardless of whether you selected (.B) or (.\W) for the size specifier (.size).

#IMM IMM4 #IMM IMM4
0 ooo0o0f] -8 1000

+1 o001y -7 1001

+2 0o010] -6 1010

+3 0011} -5 1011

+4 0100 4 1100

+5 0101] -3 1101

+6 o110] -2 1110

+7 0111} 1 1111

[Number of Bytes/Number of Cycles |

Bytes/Cycles 2/1

147

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) ADINZ.size #IMM, dest, label
b7 b0 b7 bo dest code label code
11,1 11,0 0feE[mma) DEST dsps8
., dsp16/absi6

dsp8 (label code)= address indicated by label —(start address of instruction + 2)

'size | SIZE | #AMM | IMM4 | #IMM | IMM4
.B 0 0 o0oo00} -8 1000
W 1 +1 0001 -7 1001
+2 0010 -6 1010
+3 0011} -5 1011
+4 0100] 4 1100
+5 0101] -3 1101
+6 0110 -2 1110
+7 0111} -1 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
An A0 0100 dsp:16[An] dsp:16[A0] 1100
Al 0101 dsp:16[A1] 1101
[An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/3 3/3 3/5 4/5 4/5 5/5 5/5 5/5

*1 If branched to label, the number of cycles above is increased by 4.

148

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) AND.size:G #IMM, dest
b7 b0 b7 bo dest code
011 1/0 1 1|SE0 0 1 0| DEST dsp8
., dspi6fabsi6 | [[, #IMM16 |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 5/4
*1 If the size specifier (.size) is (.\W), the number of bytes above is increased by 1.

(2) AND.B:S #IMMS8, dest

b7 b0 dest code
100 1|0| DEST | [#Mmms | [| dsp8 |
| | | | |) T 111 111
|Illllgp§1lellllll
dest DEST
ROH
RN 011
ROL 100
dsp:8[ss/rp] | 9SP-E8[SEl 101
dsp:8[FB] 110
abs16 abs16 111
[Number of Bytes/Number of Cycles]
dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 2/1 3/3 4/3

149

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(3) AND.size:G src, dest
b7 b0 b7 o]0} src code dest code
100 1/0 0 0[SEf SRC DEST dsp8
., dspi6fabsi6 | [\ [, dspi6labsi6
size | SIZE | src/dest SRCIDEST src/dest SRCIDEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles]
src destl Rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
RN 212 | 212 2/3 3/3 3/3 4/3 a/3 4/3
An 202 | 212 2/3 3/3 3/3 413 4/3 4/3
[An] 213 | 213 2/4 3/4 3/4 4/4 414 414
dsp:8[An] 3/3 | 33 3/4 414 4/4 5/4 5/4 5/4
dsp:8[SB/FB]| 3/3 | 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:16[An] 4/3 | 4/3 414 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] a3 | 43 4/4 5/4 5/4 6/4 6/4 6/4
abs16 43 | 4/3 414 5/4 5/4 6/4 6/4 6/4

150

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(4) AND.B:S src, ROL/ROH
b7 b0 src code
0 0 0 1|0 DETSRC dsp8
| L1l Iiapsl:ll-6ll L1l |
Src SRC dest DEST
RN ROL/ROH 0 0 [ROL 0
: ROH 1
dsp:8[SB/FB] | 9SP-8[SBl 0 1 0
dsp:8[FB] 1 0
abs16 abs16 1 1
[Number of Bytes/Number of Cycles]
src Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/2 2/3 3/3

151

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BAND

(1) BAND src

b7 b0 b7 bo src code
0.1.1.1 1|1|1|0 0|1|0|0 ISFIQCI dsp8
L9016, |
src SRC src SRC
bit, RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 |Pe8AN McesAall (1001
bit,R2 0 0 1 O |bit,base:8 bit,base:8[SB] ({1010
bit,R3 0011]|[SBIFB] bit,base:8[FB] 1011
) bit,AO 0100 base:16[A0] 1100
bit,An - base:16[An]
bit,Al 0101 base:16[Al] 1101
[An] [AO] 0 1 1 0 |bit,base:16[SB]| bit,pase:16[SB]{1 1 1 0
[A1] 011 1 |bitbase:16 bit,base:16 1111

[Number of Bytes/Number of Cycles]

src bit,Rn | bitAn | [An] base:8 | bit,base:8| base:16 |bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 3/3 2/7 3/7 3/4 a/7 4/4 4/4

BCLR

(1) BCLR:G dest

b7 bo b7 bo dest code
011 1/1110]1 000 DEST dsp8
[....9016,,]
dest DEST dest DEST
bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 |P28AN McesAll 1001
bit,R2 0 0 1 0] bit,base:8 bit,base:8[SB] (1010
bit,R3 0011][SBIFB] bit,base:8[FB] 1011
) bit,AO 0100 base:16[A0] 1100
bit,An - base:16[An]

bit,Al 0101 base:16[Al] 1101
[An] [AQ] 0 1 1 0 |bit,base:16[SB]| bit,pase:16[SB]{1 1 1 0
[A1] 0111 |bitbase:16 bit,base:16 1111

[Number of Bytes/Number of Cycles]

dest bitRn | bitAn | [An] base:8 | bit,base:8| base:16 |bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/2 3/2 2/6 3/6 3/3 4/6 4/3 4/3

|
152

Chapter 4

Instruction Code/Number of Cycles

(2) BCLR:S bit, base:11[SB]

b7

b0

dest code

0100

0

BIT
| |

dsES

[Number of Bytes/Number of Cycles]

Bytes/Cycles

2/3

153

4.2

Instruction Code/Number of Cycles

BCLR

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BMCnd

(1) BMCnd dest

b7 b0 b7 bo dest code
01 1 1]1 11 0o 0 1 0] DEST CND
[, 95016,]
dest DEST dest DEST
bit, RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 |Pe8AN McesAall (1001
bit,R2 0 0 1 0| bit,base:8 bit,base:8[SB] ({1010
bit,R3 0011]|[SBIFB] bit,base:8[FB] 1011
_ bit,AO 0100 base:16[A0] [1100
bit,An - base:16[An]
bit,Al 0101 base:16[Al] 1101
[An] [AO] 0 1 1 0 |hit,base:16[SB]| bit,pase:16[SB]{1 1 1 0
[A1] 011 1 |bitbase:16 bit,base:16 1111
cnd CND Cnd CND
GEU/IC| 0 0O 0O0OOO0OOO LTUNC| 1 1111000
GTU 000O0OOO0OO 0?1 LEU 11111001
EQ/Z 000O0O0OOT1O0 NE/NZ 11111010
N 0 00O0O0O0OT1I1 PZ 11111011
LE 000O0O0O1O00O0 GT 11111100
O 000O0O0O1O01 NO 11111101
GE 0000O0O110 LT 11111110

[Number of Bytes/Number of Cycles |

base:8 | bit,base:8| base:16 i : .
dest bit,Rn | bit,An | [An] I bit,base:16 bit,base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 4/6 4/6 3/10 4/10 a/7 5/10 5/7 517

154

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BMCnd

(2) BMCnd C
b7 b0 b7 b0

Ollllll 1|1|0|1 1|1|O|1 CND

Cnd CND Cnd CND
GEU/C (0000 |PZ 0111
GTU 0001 |LE 1000
EQ/Z 001010 1001
N 0011 |GE 1010
LTU/NC 0100 |GT 1100
LEU 0101 |INO 1101
NE/NZ [0110]|LT 1110

[Number of Bytes/Number of Cycles |

Bytes/Cycles 2/1

*1 If the condition is true, the number of cycles above is increased by 1.

BNAND

(1) BNAND src

b7 bO b7 bo src code
011 1|11 10]0 101 SRC dsp8
[0, 05016,]
src SRC src SRC
bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 | 8AN McesAll (1001
bit,R2 0 0 1 0] bit,base:8 bit,base:8[SB] (1010
bit,R3 00 11][SB/FB] bit,base:8[FB] (1011
_ bit, A0 0100 base:16[A0] (1100
bit,An - base:16[An]
bit,Al 0101 base:16[Al] 1101
[An] [AO] 0 11 O |bit,base:16[SB]| bit,base:16[SB]{1 1 1 0
[A1] 0111 |]bitbase:16 bit,base:16 1111

[Number of Bytes/Number of Cycles]

ore bitRn | bitAn | [An] base:8 | bit,base:8| base:16 |bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 | 33 217 37 3/4 417 414 414

155

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BNOR

(1) BNOR src

b7 b0 b7 bo src code
O|1|1|1 1|1|1|O 0|l|1|1 ISFIQCI dSES
[...0016, |
src SRC src SRC
bit, RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 |Pe8AN McesAall (1001
bit,R2 0 0 1 O |bit,base:8 bit,base:8[SB] ({1010
bit,R3 0011]|[SBIFB] bit,base:8[FB] 1011
_ bit,AO 0100 base:16[A0] [1100
bit,An - base:16[An]
bit,Al 0101 base:16[Al] 1101
[An] [AO] 0 1 1 0 |bit,base:16[SB]| bit,pase:16[SB]{1 1 1 0
[A1] 011 1 |bitbase:16 bit,base:16 1111

[Number of Bytes/Number of Cycles]

: bit,base:8 : i : .
src bit,Rn | bit,An | [An] base:8 ,Dase base:16 | bit,base:16 bit,base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 3/3 217 3/7 3/4 a/7 4/4 4/4

BNOT

(1) BNOT:G dest

b7 bo b7 bo dest code
011 1/1 1101 01 0] DEST |, dsp8 |
[....95016,]
dest DEST dest DEST
bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 |P28AN McesAll 1001
bit,R2 0 0 1 0] bit,base:8 bit,base:8[SB] (1010
bit,R3 0011|[SB/FB] bit,base:8[FB] (1011
_ bit,AO 0100 base:16[A0] (1100
bit,An - base:16[An]

bit,Al 0101 base:16[Al] 1101
[An] [AQ] 0 1 1 0 |bit,base:16[SB]| bit,pase:16[SB]{1 1 1 0
[A1] 0111 |bitbase:16 bit,base:16 1111

[Number of Bytes/Number of Cycles]

. . : bit,base:8 : i : .
dest bit,Rn | bit,An | [An] base:8 1Lbase base:16 | bit,base:16 bit,base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/2 3/2 2/6 3/6 3/3 4/6 4/3 4/3

|
156

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BNOT
(2) BNOT:S bit, base:11[SB]

b7 bo destcode

0|1|0|1 0 IBITI dsp8

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/3

BNTST

(1) BNTST src

b7 bO b7 bo src code
0|1|1|1 1|1|1|0 O|0|1|1 ISF\I’CI dSES
[...9p16,,]
src SRC src SRC
bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 | 8AN McesAll (1001
bit,R2 0 0 1 0 | bit,base:8 bit,base:8[SB] (1010
bit,R3 00 11][SB/FB] bit,base:8[FB] (1011
_ bit, A0 0100 base:16[A0] (1100
bit,An - base:16[An]
bit,Al 0101 base:16[Al] 1101
[An] [AO] 0 11 O |bit,base:16[SB]| bit,base:16[SB]{1 1 1 0
[A1] 0111 |]bitbase:16 bit,base:16 1111

[Number of Bytes/Number of Cycles]

: bit,base:8 : i :)
Src bit,Rn | bit,An | [An] base:8 L,base base:16 | bit,base:16 bit,base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 3/3 217 3/7 3/4 417 4/4 4/4

|
157

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BNXOR

(1) BNXOR src

b7 b b7 bo src code
O|1|1|1 1|1|1|O 1|1|O|1 .SR|C| dSES
[...0016, |
src SRC src SRC
bit, RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 |Pe8AN McesAall (1001
bit,R2 0 0 1 O |bit,base:8 bit,base:8[SB] ({1010
bit,R3 0011]|[SBIFB] bit,base:8[FB] 1011
_ bit,AO 0100 base:16[A0] [1100
bit,An - base:16[An]
bit,Al 0101 base:16[Al] 1101
[An] [AO] 0 1 1 0 |bit,base:16[SB]| bit,pase:16[SB]{1 1 1 0
[A1] 011 1 |bitbase:16 bit,base:16 1111

[Number of Bytes/Number of Cycles]

base:8 | bit,base:8| base:16 |bit,base:16| .
src bit,Rn | bit,An | [An] ase hbase ase hbase bit,base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 3/3 217 3/7 3/4 417 4/4 4/4

BOR

(1) BOR src

b7 b0 b7 b src code
011 1/1 1100 110 SRC dsp8
[....95016,]
src SRC src SRC
bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 |P28AN McesAll 1001
bit,R2 0 0 1 0] bit,base:8 bit,base:8[SB] |1 010
bit,R3 0011][SBIFB] bit,base:8[FB] 1011
) bit,AO 0100 base:16[A0] 1100
bit,An - base:16[An]
bit,Al 0101 base:16[Al] 1101
[An] [AQ] 0 1 1 0 |bit,base:16[SB]| bit,pase:16[SB]{1 1 1 0
[A1] 0111 |bitbase:16 bit,base:16 1111

[Number of Bytes/Number of Cycles]

: i : 1 i 1
orc bitRn | bitAn| [An] base:8 | bit,base:8| base:16 |bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 3/3 2/7 3/7 3/4 a/7 4/4 4/4

|
158

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BRK

(1) BRK
b7 b0
0.0.0.0 O.O.O.O

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/27

*1 If you specify the target address of the BRK interrupt by use of the interrupt table register (INTB), the
number of cycles shown in the table increases by two. At this time, set FF16 in addresses FFFE416
through FFFE716.

BSET

(1) BSET:G dest

b7 b0 b7 b0 dest code
O|1|1|1 1|1|1|O 1|O|0|1 |DE|ST| dSES
[...916,,]
dest DEST dest DEST
bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 | 8AN McesAll (1001
bit,R2 0 0 1 0] bit,base:8 bit,base:8[SB] |1 010
bit,R3 00 11][SB/FB] bit,base:8[FB] (1011
_ bit, A0 0100 base:16[A0] (1100
bit,An - base:16[An]
bit,A1 0101 base:16[Al] 1101
[An] [AO] 0 11 O |bit,base:16[SB]| bit,base:16[SB]{1 1 1 0
[A1] 0111 |]bitbase:16 bit,base:16 1111

[Number of Bytes/Number of Cycles]

dest bitRn | bitAn| [An] base:8 | bit,base:8 | base:16 |bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/2 3/2 2/6 3/6 3/3 4/6 4/3 4/3

|
159

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BSET
(2) BSET:S bit, base:11[SB]
b7 bo dest code

O|1|O|0 1 IBITI dsp8

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/3

BTST

(1) BTST:G src

b7 b0 b7 bo src code
O|1|1|1 1|1|1|O 1|O|1|1 ISFIQCI dSES
[, 95016, |
src SRC src SRC
bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 |P28AN McesAll 1001
bit,R2 0 0 1 0] bit,base:8 bit,base:8[SB] |1 010
bit,R3 0011][SBIFB] bit,base:8[FB] 1011
) bit,AO 0100 base:16[A0] 1100
bit,An - base:16[An]
bit,Al 0101 base:16[Al] 1101
[An] [AQ] 0 1 1 0 |bit,base:16[SB]| bit,pase:16[SB]{1 1 1 0
[A1] 0111 |bitbase:16 bit,base:16 1111

[Number of Bytes/Number of Cycles]

base:8 | bit,base:8| base:16 |bit,base:16] .
src bit,Rn | bit,An | [An] ase hbase ase fhbase bit,base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/2 3/2 2/6 3/6 3/3 4/6 4/3 4/3

|
160

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BTST
(2) BTST:S bit, base:11[SB]

b7 bo Src code

0|1|0|1 1 IBITI dsp8

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/3

BTSTC

(1) BTSTC dest

dest code

b7 b0 b7 b0
011 1{1 1 10)j0 00O DEST
| | | | | | | | | | | | |II”I(EJ§E)]I_6IIIIII
dest DEST dest DEST
bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 | 8AN McesAll (1001
bit,R2 0 0 1 0] bit,base:8 bit,base:8[SB] |1 010
bit,R3 00 11][SB/FB] bit,base:8[FB] (1011
_ bit, A0 0100 base:16[A0] (1100
bit,An - base:16[An]
bit,A1 0101 base:16[Al] 1101
[An] [AO] 0 11 O |bit,base:16[SB]| bit,base:16[SB]{1 1 1 0
[A1] 0111 |]bitbase:16 bit,base:16 1111

[Number of Bytes/Number of Cycles]

: i : 1 i 1
dest bitRn | bitAn| [an) | P2S&8 |Pitbase:8| baseil6 |bitbase:l6 . o o 14
[An] | [SB/FB] | [An] [SB]
Bytes/Cycles | 33 | 33 | 217 307 304 a7 o m

|
161

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

BTSTS

(1) BTSTS dest

b7 b0 b7 b0 dest code
O|1|1|1 1|1|1|O 0|O|0|1 .DE|ST| dsBS
[....9p16,]
dest DEST dest DEST
bit, RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 |Pe8AN McesAall (1001
bit,R2 0 0 1 O |bit,base:8 bit,base:8[SB] ({1010
bit,R3 0011]|[SBIFB] bit,base:8[FB] 1011
_ bit,AO 0100 base:16[A0] [1100
bit,An - base:16[An]
bit,Al 0101 base:16[Al] 1101
[An] [AO] 0 1 1 0 |bit,base:16[SB]| bit,pase:16[SB]{1 1 1 0
[A1] 011 1 |bitbase:16 bit,base:16 1111

[Number of Bytes/Number of Cycles]

. . base:8 | bit,base:8| base:16 |bit,base:16| .
dest bit,Rn | bit,An | [An] bit,base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 3/3 217 3/7 3/4 a7 4/4 4/4

BXOR

(1) BXOR src

b7 b0 b7 bo src code
O|1|1|1 1|1|1|O 1|1|0|0 ISFIQCI dSES
[, 95016, |
src SRC src SRC
bit,RO 0000 _ base:8[A0] 1000
bit R bit,R1 0001 |P28AN McesAll 1001
bit,R2 0 0 1 0] bit,base:8 bit,base:8[SB] |1 010
bit,R3 0011][SBIFB] bit,base:8[FB] 1011
) bit,AO 0100 base:16[A0] 1100
bit,An - base:16[An]
bit,Al 0101 base:16[Al] 1101
[An] [AQ] 0 1 1 0 |bit,base:16[SB]| bit,pase:16[SB]{1 1 1 0
[A1] 0111 |bitbase:16 bit,base:16 1111

[Number of Bytes/Number of Cycles]

: i : 1 i 1
ore bitRn | bitAn | [An] base:8 |bit,base:8 | base:16 |bit,base:16 bit base:16
[An] [SB/FB] [An] [SB]
Bytes/Cycles 3/3 3/3 217 3/7 3/4 417 4/4 4/4

|
162

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) CMP.size:G #IMM, dest
b7 b0 b7 bo dest code
011 1/0 1 1[SEf1 0 0 0| DEST dsp8
., dspi6fabsie | [[, #MMi6
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 5/4

*1 If the size specifier (.size) is (.\W), the number of bytes above is increased by 1.

163

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) CMP.size:Q #IMM, dest
b7 b0 b7 b0 dest code
1 1 0 1{0 O O]SkE IMM4 DEST
| | | | | | | | | | LLEEBE‘—'—’
., dsp16/abs16
size | SIZE | #MM | IMM4 [#IMM | IMM4
B 0 0 0000[-8 1000
W 1 +1 0001} -7 1001
+2 0010 -6 1010
+3 0011} -5 1011
+4 0100] -4 1100
+5 0101} -3 1101
+6 01104 -2 1110
+7 0111} -1 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
RN ROH/R1 0001 dsp:8[A1l] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
Al 0101 dsp:16[A1] 1101
[An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 4/3

164

(3) CMP.B:S #IMM8, dest

[N

Chapter 4

Instruction Code/Number of Cycles

4.2

b7 b0 dest code
#IMM8
111 00| DEST
dest DEST
ROH
RN 011
ROL 100
dsp:g[sp/Fg] |4SP-8[SEl 101
dsp:8[FB] 110
abs16 abs16 111
umber of Bytes/Number of Cycles]
dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 2/1 3/3 4/3

165

Instruction Code/Number of Cycles

CMP

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(4) CMP.size:G src, dest
b7 b0 b7 b0 src code dest code
110 0/0 0 0[sEf SRC DEST dsp8
|, Ospi6/absie | [\ [, dspi6labsis
size | SIZE | src/dest SRCIDEST src/dest SRCIDEST
.B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
dsp:16[A0
An A0 0100 dsp:16[An] sp:16[A0] 1100
Al 0101 dsp:16[A1] 1101
(An] [AO] 011 0|]dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absi6 abs16 1111
[Number of Bytes/Number of Cycles]
src dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Rn 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
An 22 22 2/3 3/3 3/3 4/3 4/3 4/3
[An] 2/3 2/3 2/4 3/4 3/4 4/4 4/4 4/4
dsp:8[AnN] 33 | 33 3/4 414 4/4 5/4 5/4 5/4
dsp:8[SB/FB]] 3/3 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:16[An] 4/13 | 4/3 414 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4
abs16 4/3 4/3 4/4 5/4 5/4 6/4 6/4 6/4

166

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(5) CMP.B:S src, ROL/ROH
b7 bo src code
0 0,1 1]1ESRC . dsp8,]
|IIIII§lI)SI]I.6IIIIII|
src SRC dest DEST
Rn ROL/ROH 0 O ROL 0
dsp:8[SB/FB] |9SP-8[SB] 0 1 ROH 1
dsp:8[FB] 1 0
absl6 abs16 1 1
[Number of Bytes/Number of Cycles]
src Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/2 2/3 3/3
(1) DADC.B #IMM8, ROL
b7 b0 b7 bo
0.1.1.1 1.1.0.0 1|1|1|0 1|1|1|0 #IMM8

[Number of Bytes/Number of Cycles]

Bytes/Cycles

3/5

167

Chapter 4

DADC

Instruction Code/Number of Cycles

(2) DADC.W #IMM16, RO

b7

b0 b7

4.2

Instruction Code/Number of Cycles

0111
| |

1101
| |

1110
| |

1110
| —

[Number of Bytes/Number of Cycles]

Bytes/Cycles

4/5

DADC

(3) DADC.B ROH, ROL

b7

b0 b7

b0

0111
| |

110
e

0 1|1|1|0

0110
| —

[Number of Bytes/Number of Cycles]

Bytes/Cycles

2/5

168

Chapter 4

Instruction Code/Number of Cycles

[Number of Bytes/Number of Cycles]

Bytes/Cycles

3/5

169

4.2 Instruction Code/Number of Cycles

(4) DADC.W R1, RO

b7 b0 b7 b0

01112 1011j2 1120011 0

| | | | | | | | | | | |
[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/5
(1) DADD.B #IMM8, ROL

b7 b0 b7 b0

01111 100J1 1101100 #IMM8

Chapter 4

DADD

Instruction Code/Number of Cycles

(2) DADD.W #IMM16, RO

b7

b0 b7

4.2

Instruction Code/Number of Cycles

0111
| |

1101
| |

1110
| |

1100
| —

[Number of Bytes/Number of Cycles]

Bytes/Cycles

4/5

DADD

(3) DADD.B ROH, ROL

b7

b0 b7

b0

0111
| |

1100
| |

1110
| |

0|1|0|0

[Number of Bytes/Number of Cycles]

Bytes/Cycles

2/5

170

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

DADD

(4) DADD.W R1, RO
b7 b0 b7 b0
O|1|1|1 1|1|0|1 1|1|1|0 O|1|0|0

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/5

DEC

(1) DEC.B dest
b7 b0 dest code

1 0 1 0]1] DEST (dsps)

||||||||S|||||||||

dest DEST
ROH 011

Rn
ROL 100
dsp:8[sa/Fp] | 9SP-8[SEl 101
dsp:8[FB] 110
abs16 abs16 11 1

[Number of Bytes/Number of Cycles]

dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/1 2/3 3/3

171

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

DEC

(2) DEC.W dest
b7 b0

1|1|1|1DESTOI1IO

dest DEST
A0 0
Al 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/1

DIV

(1) DIV.size #IMM

b7 b0 b7 b0
0.1.1.1 1|1|0 SlZEl.l.l.o 0.0 I0 I1 #IMM8
T
.size | SIZE
.B 0
A 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 3/22
*1 If the size specifier (.size) is (.\W), the number of bytes and cycles above are increased by 1 and 6,

respectively.
*2 The number of cycles may decrease when an overflow occurs or depending on the value of the divisor or

dividend.

172

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) DIV.size src
b7 bo b7 bo src code
0.1.1.1 0.1.1 SIZE1I1|0|1 .SF?C. dSES
| dsp16/absi6 |
Size | SIZE | src SRC src SRC
.B 0 ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
dsp:16[A0
An A0 0100 dsp:16[An] sp:16[AQ] 1100
Al 0101 dsp:16[A1] 1101
(An] [AO] 011 0|]dsp:16[SB] dsp:16[SB] 1110
[A1] 011 1]absi6 abs16 1111
[Number of Bytes/Number of Cycles]
src Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] abs16

Bytes/Cycles | 2/22 | 2/22 | 2/24 3/24 3/24 4/24 4/24 4/24

*1 If the size specifier (.size) is (.\W), the number of cycles above is increased by 6.
*2 The number of cycles may decrease when an overflow occurs or depending on the value of the divisor or

dividend. D IVU

(1) DIVU.size #IMM

b7 b0 b7 b0
0.1.1.1 1.1.OS|ZE1.1.1.0 0.0.0.0 #IMM8
L
.size | SIZE
.B 0
W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 3/18

*2 The number of cycles may decrease when an overflow occurs or depending on the value of the divisor or
dividend.

*3 If the size specifier (.size) is (.\W), the number of bytes and cycles above are increased by 1 and 7,
respectively.

173

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) DIVU.size src
b7 b0 b7 bo src code
011 1/0 1 1[SE1 1 00 SRC dsp8
| dsp16/absi6 |
Size | SIZE | src SRC src SRC
.B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
dsp:16[A0
An A0 0100 dsp:16[An] sp:16[AQ] 1100
Al 0101 dsp:16[A1] 1101
(An] [AO] 011 0|]dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 |abs16 abs16 1111
[Number of Bytes/Number of Cycles]
src Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] abs16
Bytes/Cycles | 2/18 | 2/18 | 2/20 3/20 3/20 4/20 4/20 4/20

*1 If the size specifier (.size) is (.\W), the number of cycles above is increased by 7.
*2 The number of cycles may decrease when an overflow occurs or depending on the value of the divisor or
dividend.

DIVX

(1) DIVX.size #IMM

b7 b0 b7 b0
0.1.1.1 1.1.OS|ZE1.1.1.0 0.0.1.1 #IMM8
[#MMie
size | SIZE |
B | 0
W 1
[Number of Bytes/Number of Cycles]
Bytes/Cycles 3/22
*2 The number of cycles may decrease when an overflow occurs or depending on the value of the divisor or
dividend.

*3 If the size specifier (.size) is (.\W), the number of bytes and cycles above are increased by 1 and 6,
respectively.

174

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) DIVX.size src
b7 bo b7 bo src code
0.1.1.1 0|1|18IZE1|0|0|1 .SR.C. dSES
., dsp16/absie |
size | SIZE | src SRC src SRC
.B 0 ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An] -
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
dsp:16[A0
An A0 0100 dsp:16[An] sp:16[AQ] 1100
Al 0101 dsp:16[A1] 1101
(An] [AO] 011 0|]dsp:16[SB] dsp:16[SB] 1110
[A1] 011 1]absi6 abs16 1111
[Number of Bytes/Number of Cycles]
src Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/22 | 2/22 | 2/24 3/24 3/24 4/24 4/24 4/24

*1 If the size specifier (.size) is (.\W), the number of cycles above is increased by 6.
*2 The number of cycles may decrease when an overflow occurs or depending on the value of the divisor or

dividend. DSB B

(1) DSBB.B #IMM8, ROL

b7 b0 b7 b0
Ollllll 1|1|0|0 1|1|1|0 1|1|1|1 #IMM8

[Number of Bytes/Number of Cycles]
Bytes/Cycles 3/4

175

Chapter 4

DSBB

Instruction Code/Number of Cycles

(2) DSBB.W #IMM16, RO
bo b7

b7

4.2

Instruction Code/Number of Cycles

011 1
IR

1 101
I

1110
I

11 1 1
e

[Number of Bytes/Number of Cycles]

Bytes/Cycles

4/4

DSBB

(3) DSBB.B ROH, ROL

b7

b0 b7

b0

01 11
I

1100
I

1110
R

0111
IR

[Number of Bytes/Number of Cycles |

Bytes/Cycles

2/4

176

Chapter 4

Instruction Code/Number of Cycles

[Number of Bytes/Number of Cycles |

Bytes/Cycles

3/4

177

4.2 Instruction Code/Number of Cycles
DSBB
(4) DSBB.W R1, RO
b7 b0 b7 b0
0111110111 1210|0111
| | | | | | | | | | | |
[Number of Bytes/Number of Cycles]
Bytes/Cycles 2/4
(1) DSUB.B #IMM8, ROL
b7 b0 b7 b0
Ollllll 1|1|O|0 1|1|1|O 1|1|O|1 #IMM8

Chapter 4

DSUB

Instruction Code/Number of Cycles

(2) DSUB.W #IMM16, RO

b7

b0 b7

4.2

Instruction Code/Number of Cycles

011 1
IR

110
I

1 l|l|1|0

11 01
[

[Number of Bytes/Number of Cycles]

Bytes/Cycles

414

DSUB

(3) DSUB.B ROH, ROL

b7

b0 b7

b0

01 1 1
I

1100
I

1110
I

0101
e

[Number of Bytes/Number of Cycles |

Bytes/Cycles

2/4

178

Chapter 4

Instruction Code/Number of Cycles

[Number of Bytes/Number of Cycles |

Bytes/Cycles

3/4

179

4.2 Instruction Code/Number of Cycles
DSUB
(4) DSUB.W R1, RO
b7 b0 b7 b0
0111110 1}J1 121 0|01 01
| | | | | | | | | | | |
[Number of Bytes/Number of Cycles]
Bytes/Cycles 2/4
(1) ENTER #IMM8
b7 b0 b7 b0
Ollllll 1|1|O|0 1|1|1|1 0|0|1|0 #IMM8

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(1) EXITD
b7 b0 b7 b0
0|1|1|1 1|1|O|1 1|1|1|1 0|0|1|0
[Number of Bytes/Number of Cycles]
Bytes/Cycles 2/9
(1) EXTS.B dest
b7 bo b7 bo dest code
011 1[1 10 0o 11 0] DEST | dsps |
.. dsp16/absi6 , |
dest DEST dest DEST
ROL 0000 . dsp:8[A0] 1000
o 000 1|dsPelAn dsp:8[AL] 1001
R1L 0010 dsp:8[SBIFE] dsp:8[SB] 1010
0011 dsp:8[FB] 1011
0100 dsp:16[A0 1100
dsp:16[An] p:16[A0]
0101 dsp:16[A1] 1101
(A [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
*1 Marked by --- cannot be selected.
[Number of Bytes/Number of Cycles]
dest Rn [An] dsp:8[An] | dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles 2/3 2/5 3/5 3/5 4/5 4/5 4/5

180

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

EXTS

(2) EXTS.W RO
b7 b0 b7 b0
Ollllll lIlIOIO 1|1|1|1 OIOIlIl

[Number of Bytes/Number of Cycles]
Bytes/Cycles 2/3

FCLR

(1) FCLR dest
b7 b0 b7 b0

1|1|1|0 1|0|1|1 0 D.ES.T 0.1.0.1
dest DEST |
C 00O
D 001
Z 010
S 011
B 100
@] 101
I 110
U 111

[Number of Bytes/Number of Cycles]
Bytes/Cycles 2/2

181

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

FSET

(1) FSET dest
b7 b0 b7 b0

1|1|1|0 1|0|1|1 0 DIEST 0|1|0|O
dest DEST |
C 000
D 001
Z 010
S 011
B 100
@] 101
I 110
U 111

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/2

INC

(1) INC.B dest

b7 bo dest code
101 00| DEST dsp8
|Illllial?sl:ll_6llllll
dest DEST
ROH
RN 011
ROL 1 00
dsp:8[ss/Fp] | 9SP-8[SEl 101
dsp:8[FB] 110
abs16 abs16 111

[Number of Bytes/Number of Cycles]

dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/1 2/3 3/3

182

Chapter 4

Instruction Code/Number of Cycles

(2) INC.W dest
b7 b0
1IOI1I1 DEST 0|1|0
dest DEST
A0 0
Al 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 11
(1) INT #IMM
b7 b0
#IMM
1|1|1|O 1|0|1|1 11

[Number of Bytes/Number of Cycles |

Bytes/Cycles

2/19

183

Instruction Code/Number of Cycles

INC

INT

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

INTO

(1) INTO
b7 b0
1|1|1|1 0|1|1|0

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/1

*1 If the O flag = 1, the number of cycles above is increased by 19.

JCnd

(1)JdCnd label

b7 po label code
dsp8

0 . 1 . 1 I0 1 C.N[? P

dsp8 = address indicated by label — (start address of instruction + 1)

Cnd CND Cnd CND
GEU/C |0 0 OJLTU/NC |1 0 O
GTU 0 0 1JLEU 101
EQ/Z 0 1 O|NE/NZ |1 1 0
N 01 1|Pz 111

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/2
*2 If branched to label, the number of cycles above is increased by 2.

184

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

JCnd
(2)JCnd label
b7 b0 b7 pbo label code
dsp8
Oulul.l 1|1|O|1 1|1|O|0 ICI\IIDI S

dsp8 =address indicated by label — (start address of instruction + 2)

Cnd CND Cnd CND
LE 1000|GT 1100
o 1001|NO 1101
GE 1010|LT 1110

[Number of Bytes/Number of Cycles]

Bytes/Cycles 3/2
*1 If branched to label, the number of cycles above is increased by 2.

JMP

Q) IMP.S label

b7 b0
0 | 1 . 1 . 0|0 gspI
dsp = address indicated by label — (start address of instruction + 2)

[Number of Bytes/Number of Cycles |

Bytes/Cycles 1/5

185

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

JMP
(2) JIMP.B label

b7 pbo label code
dsp8
1|1|1|1 1|1|1|O P

dsp8 = address indicated by label — (start address of instruction + 1)

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/4

JMP

(3) IMP.W label

b7 bo label code
1|1|1|1 O|1|O|O ||||IIqSIFI)]I-6IIIIII|

dspl6 = address indicated by label — (start address of instruction + 1)

[Number of Bytes/Number of Cycles |
Bytes/Cycles 3/4

186

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

JMP
(4) IMP.A label

07 bo label code
1|1|1 1 1|1|O|0
L

[Number of Bytes/Number of Cycles]

Bytes/Cycles 4/4

JMPI

(1) IMPLW src

b7 bo b7 b0 src code
011 1110 1Jo 01 0] SRC |, dsp8_|
.. dsp16/absi6 , |
|IIIIIII(IjSIFI)2I(I)IIIIIII|
src SRC src SRC
RO 0000 0B dsp:8[A0] 1000
o RL 000 1|dsPeAn dsp:8[AL] 1001
:8[SB
R2 0010 dsp-B[SBIFE] dsp:8[SB] 1010
R3 0011 dsp:8[FB] 1011
A0 0100 dsp:20[A0] 1100
An dsp:20[An]
Al 0101 dsp:20[A1] 1101
[An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
src Rn An [An] | dsp:8[An]|dsp:8[SB/FB]| dsp:20[An] | dsp:16[SB]| absl16
Bytes/Cycles | 2/7 217 2/11 3/11 3/11 5/11 4/11 4/11

187

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) IMPILLA src
b7 b0 b7 b0 src code
011 1[1 10 1fo 00 0] SrRC |, dsp8 |
|, dsp16/absi6 , |
|IIIIIII(EJ§FI)2I(I)IIIIIII|
src SRC src SRC
0000 dsp:8[A0 1000
R2R0 dsp:8[AN] p:8[AQ]
RN R3R1 0001 dsp:8[A1l] 1001
0010 dsp:8[SBIFE] dsp:8[SB] 1010
0011 dsp:8[FB] 1011
0100 dsp:20[A0 1100
An ALAO dsp:20[An] p:20[A0]
0101 dsp:20[A1] 1101
(An] [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111}]absl6 abs16 1111
*1 Marked by --- cannot be selected.
[Number of Bytes/Number of Cycles]
src Rn An [An] | dsp:8[An] |dsp:8[SB/FB]| dsp:20[An] | dsp:16[SB]| absl16
Bytes/Cycles | 2/6 2/6 2/10 3/10 3/10 5/10 4/10 4/10
(1) IMPS #IMM8
b7 bo
11101110 #IMM8

[Number of Bytes/Number of Cycles |
2/9

Bytes/Cycles

188

Chapter 4

(1) JISR.W

b7

Instruction Code/Number of Cycles

label
b0

label code

1111
I

01 0 1
e

dspl6 = address indicated by label — (start address of instruction + 1)

dspl6

[Number of Bytes/Number of Cycles]

Bytes/Cycles 3/8

(2) JSR.A label

b7 bo label code
lllllll lllloll |IIIIIII??§%QIIIIIII

[Number of Bytes/Number of Cycles |

Bytes/Cycles

4/9

189

Instruction Code/Number of Cycles

JSR

JSR

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

JSRI

(1) ISRLW src

b7 b0 b7 bo src code
01 1 1[1 1 0 1J0 0 1 1] SRC |, dsp8_|
., dsp16/abs16 |
|IIIIIIIqSIFI)2I(I)IIIIIII|
src SRC src SRC
RO 0000 R dsp:8[A0] 1000
o R1 0001 |dsPelAn dsp:8[AL] 1001
R2 0010 dsp8[SBIFE] dsp:8[SB] 1010
R3 0011 dsp:8[FB] 1011
A0 0100 dsp:20[A0 1100
An dsp:20[An] p:20(A0]
Al 0101 dsp:20[A1] 1101
(An] [AQ] 0110|dsp:16[SB] |dsp:16[SB] [1110
[A1] 0111]absi6 abs16 1111
[Number of Bytes/Number of Cycles]
src Rn An [An] | dsp:8[An] |dsp:8[SB/FB]| dsp:20[An] | dsp:16[SB]| absl16
Bytes/Cycles | 2/11 | 2/11 2/15 3/15 3/15 5/15 4/15 4/15
(2) JSRILA src
b7 bo b7 bo src code
011 1[1 10 1]o 00 1] SRC |, dsp8_|
., dsp16/abs16 |
|IIIIIIIqSIFI)2I(I)IIIIIII|
src SRC src SRC
R2R0 0000 dsp:8[AQ] 1000
dsp:8[An] -
RN R3R1 0001 dsp:8[A1l] 1001
:8[SB
0010 - dsp:8[SB] 1010
0011 dsp:8[FB] 1011
A1A0 0100 dsp:20[A0] 1100
An dsp:20[An]
0101 dsp:20[A1] 1101
[An] [AQ] 0110]dsp:16[SB] dsp:16[SB] 1110
[Al] 0111|absi6 abs16 1111

*1 Marked by --- cannot be selected.

[Number of Bytes/Number of Cycles]
src Rn An [An] | dsp:8[An] |dsp:8[SB/FB]| dsp:20[An] | dsp:16[SB]| absl16
Bytes/Cycles | 2/11 | 2/11 2/15 3/15 3/15 5/15 4/15 4/15

190

Chapter 4 Instruction Code/Number of Cycles

(1) JSRS #IMM8
b7 b0

#IMM8
l|1|1|0 1|l|1|1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/13

(1) LDC #IMM16, dest

b7 b0 b7 b0
1|1|1|O 1|0|1|1 0 D.ES.T 0.0.0.0

@)
m
wn

Oo|lr|O|rRr|O|Fr|O]H

dest

INTBL
INTBH
FLG
ISP
SP

SB

FB 1
*1 Marked by --- cannot be selected.

P|lRr|Rr|kr|o|lo|o|o
Rlr|lo|lo|r|r|olo

[Number of Bytes/Number of Cycles]

Bytes/Cycles 4/2

191

4.2 Instruction Code/Number of Cycles

JSRS

LDC

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) LDC src, dest
b7 bO b7 bo src code
011 1|1 0 1 0|1| DEST SRC dsp8
., dsp16/abs16
Src SRC src SRC dest DEST
RO 0000 dsp:8[AQ] 1000] |- 00O
dsp:8[An]
RN R1 0001 dsp:8[A1l] 1001] |INTBL 001
0010 :
R2 dsp:8[SB/FB] dsp:8[SB] 1010] |INTBH 010
R3 0011 dsp:8[FB] 1011] |FLG 011
A0 0100 dsp:16[A0 1100] |ISP 100
An dsp:16[An] sp-16[A0]
Al 0101 dsp:16[A1] |1101] |SP 101
[An] [AO] 0110 |dsp:16[SB] |dsp:16[SB] |1110] |sB 110
[A1] 0111 |abs16 abs16 1111] |FB 111
*1 Marked by --- cannot be
selected.
[Number of Bytes/Number of Cycles]
src Rn An [An] | dsp:8[An]|dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 4/3
(1) LDCTX abs16, abs20
b7 b0 b7 b0
IIIIIIIIIIIIIII| |Illllllial?sI2IOIIIIIIII

0|1|1|1 1|1|O|0 1|1|1|1 0|0|0|0

[Number of Bytes/Number of Cycles]

Bytes/Cycles | 7/11+2Xm
*2 m denotes the number of transfers performed.

192

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(1) LDE.size abs20, dest
b7 b0 b7 bo dest code src code
dsp8 abs20
0 11 1]0 1 OJSE[L 0 0 0] DEST sp o520,]
.. dsp16/absi6 , |
'size | SIZE | dest DEST dest DEST
B | O ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 5/4 5/4 5/5 6/5 6/5 715 715 715
(2) LDE.size dsp:20[AOQ], dest
b7 bo b7 bo dest code src code
01 1 1[0 1 ofsE]r o o 1[pest |f[dsps |0020
.. dsp16/absi6 , |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 01 10 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 |absl6 abs16 1111
[Number of Bytes/Number of Cycles]
dest Rn An [An] |dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles | 5/4 5/4 5/5 6/5 6/5 7/5 7/5 7/5

193

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(3) LDE.size [A1AQ], dest
b7 bo b7 bo dest code
011 1/0 1 OSEj1 0 1 0| DEST dsp8
., dspi6/abse |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 RN ROH/R1 0001 dsp:8[Al] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0] 1100
An dsp:16[An]
Al 0101 dsp:16[A1] 1101
[An] [AO] 0110 |]dsp:16[SB] dsp:16[SB] 1110
[A1] 0111jJabsl6 abs16 1111
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/4 2/4 2/5 3/5 3/5 4/5 4/5 4/5

LDINTB

(1) LDINTB #IMM

b7 b0 b7 b0
1 1.1 0[10 1 1Jo, 0,1 0]0 0.0 0
0,00 0 #vvMiL |o 0 0, 0]0 0 0 0
11,1010 1 1]o, 00 1]/00 00
L L L L L I#HVIIMZI L L L L

*1 #IMM1 indicates the 4 high-order bits of #IMM.
#IMM2 indicates the 16 low-order bits of #IMM.

[Number of Bytes/Number of Cycles]

Bytes/Cycles 8/4

194

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

LDIPL

(1) LDIPL #IMM
b7 b0 b7 b0
Ollllll lIlIOIl 1|0|1|O 0 #III\/IMI

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/2

MOV

(1) MOV.size:G #IMM, dest

b7 bo b7 bo dest code
011 1Jo 1 ofs&Jt 1 0 0] DEST, dsp8
|, dspi6labsie | [[, #MM16
size | SIZE | dest DEST dest DEST
.B 0 ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An]
W 1 RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
[An] [AO] 0 11 0 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 |absi6 abs16 1111
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] abs16
Bytes/Cycles | 3/2 3/2 3/3 4/3 4/3 5/3 5/3 5/3

*1 If the size specifier (.size) is (.\W), the number of bytes above is increased by 1.

195

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) MOV.size:Q #IMM, dest
b7 b0 b7 bo dest code
1|1|O|1 1|0|0 SIZE |IM||V|4| |DE|ST| dSBS
., dsp16/absis ,
size | SIZE | #MM | IMM4 [#IMM | IMM4
B 0 0 0000] -8 1000
W 1 +1 0001} -7 1001
+2 0010) -6 1010
+3 0011) -5 1011
+4 0100 4 1100
+5 0101) -3 1101
+6 0110} -2 1110
+7 0111) 1 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
RN ROH/R1 0001 dsp:8[A1l] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
Al 0101 dsp:16[A1] 1101
[An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Bytes/Cycles | 2/1 2/1 2/2 3/2 3/2 4/2 4/2 4/2

196

Chapter 4

Instruction Code/Number of Cycles

(3) MOV.B:S #IMM8, dest

[N

4.2

b7 b0 dest code
11 0 0|0| DEST #IMM8
|Illllialsllllllll|
dest DEST
ROH
RN 011
ROL 100
dsp:g[se/Fg] |9SP-8[SEl 101
dsp:8[FB] 110
abs16 abs16 111
umber of Bytes/Number of Cycles]
dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 2/1 3/2 4/2

197

Instruction Code/Number of Cycles

MOV

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(4) MOV.size:S #IMM, dest
b7 b0
1 | SIZE 1|0DESTO|1|0 #IMM8
L., #MM16
Size | SIZE | dest DEST
B 1 AO 0
W 0 Al 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/1
*1 If the size specifier (.size) is (W), the number of bytes and cycles above are increased by 1 and 1,
respectively.

(5) MOV.B:Z #0, dest

b7 bo dest code

101 10| DEST dsp8

|Illllial?sl:ll_6llllll
dest DEST

ROH

RN 011
ROL 1 00

dsp:8[ss/Fp] | 9SP-8[SEl 101
dsp:8[FB] 110

abs16 abs16 111

[Number of Bytes/Number of Cycles |

dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/1 2/2 3/2

198

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(6) MOV.size:G src, dest
b7 bo b7 bo src code dest code
01 1 1[0 o 1]sE] srcC DEST dsp8
., dspi6labsi6 | [| [, dspi6/absie
size | SIZE | srcidest SRCIDEST srcidest SRCIDEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W | 1 an ROH/R1 0001 dsp:8[A1] 1001
RIL/R2 0010 dsp8[SBIFB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(AT [AO] 011 0 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
src destl rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
RN 22 | 22 | 212 312 312 4/2 412 412
An 22 | 22 | 22 312 312 4/2 4/2 4/2
[An] 23 | 213 | 213 313 313 4/3 4/3 4/3
dsp:8[An] 33 | 33 | 33 4/3 4/3 5/3 5/3 5/3
dsp:8[SB/FB]| 3/3 | 33 | 33 4/3 4/3 5/3 5/3 5/3
dsp:16[An] 43 | 43 | 43 5/3 5/3 6/3 6/3 6/3
dsp:16[SB] 4/3 | 43 | 43 5/3 5/3 6/3 6/3 6/3
abs16 4/3 | 43 | 43 5/3 5/3 6/3 6/3 6/3

199

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(7) MOV.B:S src, dest
b7 b0 src code
0|O| 1I 1| O [DEST SRIC dsE8
| L1l I?I?I L1111 |
src SRC dest DEST
Rn ROL/ROH 0 O AO 0
: Al 1
dsp:8[SB/FB] |9SP-8[SE] 0 1
dsp:8[FB] 1 0
abs16 abs16 1 1
[Number of Bytes/Number of Cycles]
src Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/2 2/3 3/3
(8) MOV.B:S ROL/ROH, dest
b7 bo dest code
0.0.0.0 0 | SRC DEIST dsp8
| 1111 Iial?sI]I_GII 1111 |
src SRC dest DEST
ROL 0 .
dsp:a[se/Fa] |9SP-ESEl 0 1
ROH 1 dsp:8[FB] 10
abs16 abs16 1 1

[Number of Bytes/Number of Cycles]

dest dsp:8[SB/FB] abs16
Bytes/Cycles 2/2 3/2

200

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(9) MOV.B:S src, ROL/ROH
b7 b0 src code
O|0|O.0 1 |DEST SFIQC dsES
| L1l IialeI]I-6ll L1l |
SrC SRC dest DEST
RN ROL/ROH 0 0 [ROL 0
: ROH 1
dsp:8[SB/FB] | 9SP-8[SBl 0 1 0
dsp:8[FB] 1 0
abs16 abs16 1 1
[Number of Bytes/Number of Cycles]
src Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/2 2/3 3/3
(10) MOV.size:G dsp:8[SP], dest
b7 b0 b7 b0 dest code src code
dsp8
011 1/0 1 O|sEf1 0 1 1| DEST sp
|, dspl6/absi6 |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An]
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 01 10 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 |absl6 abs16 1111
[Number of Bytes/Number of Cycles]
dest RN An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] abs16
Bytes/Cycles 3/2 3/2 3/3 4/3 4/3 5/3 5/3 5/3

201

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(11) MOV.size:G src, dsp:8[SP]
b7 bo b7 bo src code dest code
011 1J0 1 ofEfo 01 1] SRC dsps
.. dsp16/absi6 , |
'size | SIZE | src SRC Src SRC
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/3 3/3 3/4 4/4 4/4 5/4 5/4 5/4
(1) MOVA src, dest
b7 bO b7 bo src code
1|1|1|0 1|0|1|1 0 D.ES.T |S|RC| dSBS
|IIIIIqSIFI)jI_6IIIIII
src SRC dest | DEST
0B dsp:8[A0] 1000 RO 0 0 0
sp-8An] dsp:8[AL] 1001 RL |0 0 1
dsp:8[SBIFE] dsp:8[SB] 1010 R2 010
dsp:8[FB] 1011 R3 011
dsp:16[A0 1100 100
dsp:16[An] p:16[A0] A0
dsp:16[A1] 1101 Al 101
dsp:16[SB] dsp:16[SB] 1110
abs16 abs16 1111
[Number of Bytes/Number of Cycles]
src dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] abs16
Bytes/Cycles 3/2 3/2 4/2 4/2 4/2

202

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(1) MOVDir ROL, dest
b7 bo b7 bo dest code
0111|110 0]1 0|DR DEST dsp8
|, dsp16labsis
Dir DIR
LL 00
LH 10
HL 01
HH 11
dest DEST dest DEST
0000 dso:8TA dsp:8[AQ] 1000
o ROH 000 1|dsPeAn dsp:8[AL] 1001
R1L 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H 0011 dsp:8[FB] 1011
0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
0101 dsp:16[A1] 1101
(An] [A0] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
*1 Marked by - - - cannot be selected.
[Number of Bytes/Number of Cycles]
dest Rn [An] dsp:8[An] | dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl16
MOVHH, 24 25 3/5 3/5 415 415 415
MOVLL
MOVHL, 217 28 3/8 3/8 4/8 4/8 4/8
MOVLH

203

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
MOV Dir
(2) MOVDir src, ROL
b7 bo b7 bo dest code
0.1.1.1 1|1|O|0 0.0 DIIR |SF\TC| dSES
|, dsp16/absis , |
Dir DIR
LL 00
LH 10
HL 01
HH 11
src SRC src SRC
ROL 0000 dsp:8[A0] 1000
dsp:8[An]
an ROH 0001 dsp:8[A1] 1001
R1L 0010 dsp:8[SBIFE] dsp:8[SB] 1010
R1H 0011 dsp:8[FB] 1011
0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
0101 dsp:16[A1] 1101
(An] [AQ] 01 10 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
*1 Marked by - - - cannot be selected.
[Number of Bytes/Number of Cycles]
src Rn [An] dsp:8[An] | dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB]| absl16
MOVHH
© ' 2/3 2/5 3/5 3/5 4/5 4/5 4/5
MOVLL
MOVHL, 216 2/8 3/8 3/8 4/8 4/8 4/8
MOVLH

204

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(1) MUL.size #IMM, dest
b7 b0 b7 b0 dest code
0111 1 o|sEjo 1 0 1| DEST, dsp8
.. dspibiabsie, | [[, , #MMi6,
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 Rn - R1 0001 dsp:8[A1] 1001
R1L/--- 0010 dsp:8[SBIFB] dsp:8[SB] 1010
0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
0101 dsp:16[A1] 1101
(An] [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
*1 Marked by - - - cannot be selected.
[Number of Bytes/Number of Cycles |
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] absl6
Bytes/Cycles | 3/4 | 3/4 3/5 4/5 4/5 5/5 5/5 5/5

*2 If dest is Rn or An while the size specifier (.size) is (.\W), the number of bytes and cycles above are

increased by 1 each.

*3 If dest is neither Rn nor An while the size specifier (.size) is (.\W), the number of bytes and cycles
above are increased by 1 and 2, respectively.

205

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(2) MUL.size src, dest
b7 bo b7 bo src code dest code
01 1 1[1 0 ofsE] SRC DEST dsp8
. ds5p16/abs16 | [\ |,, dsp16/absis
size | SIZE | src SRC src SRC
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An]
an --- IR1 0001 dsp:8[A1] 1001
R1L/--- 0010 dsp:8[SB/FE] dsp:8[SB] 1010
0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] Sp-16[A0]
0101 dsp:16[A1] 1101
[An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absl6 abs16 1111
*1 Marked by - - - cannot be selected.
[Number of Bytes/Number of Cycles |
src destl Rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16]An] | dsp:16[SB]| abs16
Rn 214 | 2/4 2/5 3/5 3/5 4/5 4/5 4/5
An 214 | 2/5 2/5 3/5 3/5 4/5 4/5 4/5
[An] 216 | 2/6 2/6 3/6 3/6 4/6 4/6 4/6
dsp:8[An] 3/6 | 3/6 3/6 4/6 4/6 5/6 5/6 5/6
dsp:8[SB/FB]| 3/6 | 3/6 3/6 4/6 4/6 5/6 5/6 5/6
dsp:16[An] 4/6 | 4l6 4/6 5/6 5/6 6/6 6/6 6/6
dsp:16[SB] 4/6 | 4/6 4/6 5/6 5/6 6/6 6/6 6/6
abs16 4/6 | 4/6 4/6 5/6 5/6 6/6 6/6 6/6

*2 If src is An and dest is Rn while the size specifier (.size) is (.\W), the number of cycles above is increased by 1.

*3 If src is not An and dest is Rn or An while the size specifier (.size) is (.\W), the number of cycles above is
increased by 1.

*4 If dest is neither Rn nor An while the size specifier (.size) is (.\W), the number of cycles above is increased by 2.

206

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(1) MULU.size #IMM, dest
b7 bo b7 bo dest code
01 1 1[1 1 ofs&fo 1 0 o] DEST, dsp8
[dsp16labsis | [[#wMie
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 an - |R1 0001 dsp:8[A1] 1001
R1L/--- 0010 dsp:8[SBIFE] dsp:8[SB] 1010
0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
0101 dsp:16[A1] 1101
(An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
*1 Marked by - - - cannot be selected.
[Numbera of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/4 3/4 3/5 4/5 4/5 5/5 5/5 5/5

*2 If dest is Rn or An while the size specifier (.size) is (.\W), the number of bytes and cycles above are

increased by 1 each.

*3 If dest is neither Rn nor An while the size specifier (.size) is (W), the number of bytes and cycles
above are increased by 1 and 2, respectively.

207

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles

(2) MULU.size src, dest
b7 b0 b7 b0 src code dest code
dsp8 dsp8
0,11 1[0 0 o[s] SRC DEST sp
., dsp16labsi6 |/ \ [, dspi6/absie
size | SIZE | Src SRC src SRC
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 R ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [A0] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An]
R -- |R1 0001 dsp:8[A1] 1001
R1L/--- 0010 dsp:8[SB/FE] dsp:8[SB] 1010
0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
0101 dsp:16[A1] 1101
[An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absl6 abs16 1111

*1 Marked by - - - cannot be selected.

[Number of Bytes/Number of Cycles |

src destl Rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
RN 214 | 214 | 2/5 3/5 3/5 4/5 4/5 4/5
An 214 | 215 | 25 3/5 3/5 4/5 4/5 4/5
[An] 206 | 206 | 2/6 3/6 3/6 4/6 4/6 4/6
dsp:8[An] 36 | 36 | 3/6 4/6 4/6 5/6 5/6 5/6
dsp:8[SB/FB]| 3/6 | 3/6 | 3/6 4/6 416 5/6 5/6 5/6
dsp:16[An] 46 | 46 | 4/6 5/6 5/6 6/6 6/6 6/6
dsp:16[SB] 416 | 46 | 4/6 5/6 5/6 6/6 6/6 6/6
abs16 46 | 46 | 4/6 5/6 5/6 6/6 6/6 6/6

*2 If src is An and dest is Rn while the size specifier (.size) is (.\W), the number of cycles above is increased by 1.

*3 If src is not An and dest is Rn or An while the size specifier (.size) is (.\W), the number of cycles above is

increased by 1.

*4 |If dest is neither Rn nor An while the size specifier (.size) is (.\W), the number of cycles above is increased by 2.

208

Chapter 4 Instruction Code/Number of Cycles

[Number of Bytes/Number of Cycles |

Bytes/Cycles

1/1

209

4.2 Instruction Code/Number of Cycles
(1) NEG.size dest
b7 bo b7 b0 dest code
0.1.1.1 0.1.OS|ZEO.1.O.1 .DE.ST. dSES
.. dspi6/absie , |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
dest Rn An [An] |dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 4/3
(1) NOP
b7 b0
OI 0I OI 0 OI 1I O.O

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) NOT.size:G dest
b7 bO b7 b0 dest code
011 1/0 1 OfSEJjo 1 1 1 DEST dsp8
| | | | | | | | | | |
., dsp16/absi6 |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
[An] [AQ] 011 0 |]dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 4/3
(2) NOT.B:S dest
b7 bo dest code
101 1|1| DEST dsp8
|IIIIIII§IIIIIII
dest DEST
ROH
RN 011
ROL 100
dsp:g[se/Fg) |9SP-8[SEl 101
dsp:8[FB] 110
abs16 abs16 111
[Number of Bytes/Number of Cycles]
dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/1 2/3 3/3

210

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) OR.size:G #IMM, dest
b7 bo b7 b0 dest code
0 1 1 1[0 1 1fsEfo o 1 1] DEST dsps
[dspi6fabsis | [[#MM16
'size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 RN ROH/R1 0001 dsp:8[Al] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
[An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 5/4
*1 If the size specifier (.size) is (.\W), the number of bytes above is increased by 1.

(2) OR.B:S #IMMS8, dest

b7 b0 dest code
1I 0I OI 11 I.DES.T #IMM8 dsES
dest DEST |

ROH
RN 011

ROL 100
dsp:g[sp/Fg] [USP8SBI |1 0 1

dsp:8[FB] 110
abs16 abs16 111

[Number of Bytes/Number of Cycles]

dest Rn dsp:8[SB/FB] abs16

Bytes/Cycles 2/1 3/3 4/3

211

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(3) OR.size:G src, dest
b7 b0 b7 bo src code dest code
100 1]1 0 o] SRC DEST dsp8
| | | | | | | | | |
., dsp16labsi6 | [\[,, dsp16/absi6
size | SIZE | srcidest SRCIDEST srcidest SRCIDEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 - ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An [AO] 011 0 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles]
src destf Rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB]| abs16
RN 22 | 22 2/3 3/3 3/3 4/3 4/3 4/3
An 212 | 22 2/3 3/3 3/3 4/3 4/3 4/3
[An] 213 | 2/3 2/4 3/4 3/4 4/4 4/4 4/4
dsp:8[An] 3/3 | 33 3/4 414 4al4 5/4 5/4 5/4
dsp:8[SB/FB]| 3/3 | 3/3 3/4 4/4 414 5/4 5/4 5/4
dsp:16[An] 4/3 | 4/3 414 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 4/13 | 4I3 4/4 5/4 5/4 6/4 6/4 6/4
abs16 4/3 | 4/3 4/4 5/4 5/4 6/4 6/4 6/4

212

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(4) OR.B:S src, ROL/ROH
b7 bo dest code
dsp8
olololl 1 [DEST SIIQC Ssp
| L1l Iiapsljl-ell L1l |
Src SRC dest DEST
RN ROL/ROH 0 0 'ROL 0
: ROH 1
dsp:8[SB/FB] | 9SP:8ISE] 0 1 0
dsp:8[FB] 1 0
absl16 abs16 1 1
[Number of Bytes/Number of Cycles]
src Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/2 2/3 3/3
(1) POP.size:G dest
b7 bo b7 bo dest code
0|1|1|1 0|1IOSIZE1|1|0|1 |DE|ST| dSES
|, dsp16/absi6 |
Size | SIZE | dest DEST dest DEST
.B 0 ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An]
W 1 RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
[An] [AO] 0 11 0 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111|absl6 abs16 1111
[Number of Bytes/Number of Cycles]
dest Rn An [An] |dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles | 2/3 2/3 2/4 3/4 3/4 4/4 4/4 4/4

213

Chapter 4

Instruction Code/Number of Cycles

POP
(2) POP.B:S dest
b7 b0
100 1E]0 1 0
dest DEST
'ROL 0
ROH 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/3
POP
(3) POP.W:S dest
b7 Jo]0)
lI 1I OI 1 |DEST OI 1I 0
dest DEST
A0 0
Al 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles

1/3

214

Instruction Code/Number of Cycles

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

POPC

(1) POPC dest
b7 bo b7 bo

1|1|1|0 1|0|1|10 D.ES.T 0.0.1.1
dest DEST dest DEST |

000]ISP 100

INTBL 001]|SP 101

INTBH 010 |SB 110

FLG 011]|FB 111

*1 Marked by - - - cannot be selected.

[Number of Bytes/Number of Cycles]
| Bytes/Cycles | 213 |

POPM

(1) POPM dest
b7 b0

DEST
1|l|1|0 1|1|0|1

dest
FB|SB|Al1| AO| R3| R2| R1| RO
. DEST?
*2 The bit for a selected register is 1.
The bit for a non-selected register is 0.

[Number of Bytes/Number of Cycles |

Bytes/Cycles 2/3

*3 If two or more registers need to be restored, the number of required cycles is 2 x m (m: number of
registers to be restored).

215

Chapter 4 Instruction Code/Number of Cycles | .~ 0\ imber of Cycles
(1) PUSH.size:G #IMM
b7 b0 b7 b0

011 11 1 O[SEf1 1 1 0(0 0 1 O #IMM8

| | | | | | | | | | |

L. fMMIE |

'size | SIZE |

B | 0

W | 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles

3/2

*1 If the size specifier (.size) is (.\W), the number of bytes above is increased by 1.

(2) PUSH.size:G src
b7 b0 b7 bo src code
011 1/0 1 0fSEO 1 0 0| SRC dsp8
|, dspi6labsie |
.size | SIZE src SRC src SRC
.B 0 ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An]
W 1 RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
[An] [AO] 0110 |]dsp:16[SB] dsp:16[SB] 1110
[A1] 0111|absi6 abs16 1111
[Number of Bytes/Number of Cycles]
src Rn An [An] |dsp:8[An]|dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB] abs16
Bytes/Cycles | 272 | 2/2 2/4 3/4 3/4 4/4 4/4 4/4

216

Chapter 4

Instruction Code/Number of Cycles

(3) PUSH.B:S src
b7 b0
100 O/R|0 10
src SRC
'ROL 0
ROH 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/2
(4) PUSH.W:S src
b7 b0

1|1|0|0 SRC 0.1.0

src SRC

A0 0

Al 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles

1/2

217

4.2

Instruction Code/Number of Cycles

PUSH

PUSH

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) PUSHA src
b7 b0 b7 bo src code
d ES
O|1|1|1 1|1|0|1 1|O|0|1 ISF\I’CI S
., dsp16/absie |
src SRC
dsp:8IA dsp:8[AQ] 1000
sp:8[An] dsp:8[A1] 1001
dsp:8[SB/FE] dsp:8[SB] 1010
dsp:8[FB] 1011
dsp:16[A0 1100
dsp:16[An] p:16[A0]
dsp:16[A1] 1101
dsp:16[SB] dsp:16[SB] 1110
abs16 abs16 1111
[Number of Bytes/Number of Cycles]
src dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs:16
Bytes/Cycles 3/2 3/2 4/2 4/2 4/2
(1) PUSHC src
b7 b0 b7 b0
1|1|1|O 1|O|1|10 ISRCI O|O|1|O
src SRC src SRC
000 |ISP 100
INTBL 001]|SP 101
INTBH 010]SB 110
FLG 0O11]FB 111

*1 Marked by - - - cannot be selected.

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/2

218

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

PUSHM

(1) PUSHM src

b7 b0
lI 1|1|0 l|1|0|0 SRC
Src
RO|R1|R2| R3| A0O| A1|SB| FB
1 SRIC*l 1

*1 The bit for a selected register is 1.
The bit for a non-selected register is 0.

[Number of Bytes/Number of Cycles |
Bytes/Cycles 2/2Xm

*2 m denotes the number of registers to be saved.

REIT

(1) REIT
b7 b0
lllllll l|0|1|1

[Number of Bytes/Number of Cycles |

Bytes/Cycles 1/6

219

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

RMPA

(1) RMPA.size
b7 b0 b7 b0
011 1|1 1 OsE1 11 1/0 0 01

.size | SIZE
B 0
W 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles | 2/4+7Xm

*1 m denotes the number of operation performed.
*2 If the size specifier (.size) is (W), the number of cycles is (6+9X m).

ROLC

(1) ROLC.size dest

b7 bo b7 bo dest code
0|1|1|1 0|1|15IZE1|O|1|0 |DE|ST| dSES
|, dspl6/absi6 |
Size | SIZE | dest DEST dest DEST
.B 0 ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An]
W 1 RN ROH/R1 0001 dsp:8[A1l] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
[An] [AO] 0110 |]dsp:16[SB] dsp:16[SB] 1110
[Al] 0111})absl6 abs16 1111
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] abs16
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 4/3

220

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) RORC.size dest
b7 bo b7 bo dest code
0|1|1|1 0|1|15IZE1|0|1|1 |DE|ST| dSE8
.. dspi6/abste , |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
dest Rn An [An] |dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles | 2/1 2/1 2/3 3/3 3/3 4/3 4/3 4/3

221

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) ROT.size #IMM, dest
b7 b b7 bo dest code
1 11 0[{0 O O|S IMM4 DEST dsp8
[[I L |—'—'—'—B'—'—"’
|, dsp16/abs16
size | SIZE | #MM | IMM4 [#IMM | IMM4
B 0 +1 0000[-1 1000
W 1 +2 0001 -2 1001
+3 0010] -3 1010
+4 0011] -4 1011
+5 0100] -5 1100
+6 0101 -6 1101
+7 o110 —7 1110
+8 0111 -8 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An]
RN ROH/R1 0001 dsp:8[Al] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
Al 0101 dsp:16[A1] 1101
[An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles |2/1+m | 2/1+m | 2/2+m | 3/2+m 3/2+m 4/2+m 4/2+m 4/2+m

*1 m denotes the number of rotates performed.

222

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(2) ROT.size R1H, dest
b7 bo b7 bo dest code
011 1/0 1 O|sEjo 1 1 0| DEST dsp8
., dsp16/abs16 |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 RN ROH/--- 0001 dsp:8[Al] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
---IR3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
*1 Marked by - - - cannot be selected.
[Number of Bytes/Number of Cycles |
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles |2/2+m|2/2+m| 2/3+m | 3/3+m 3/3+m 4/3+m 4/3+m 4/3+m

*2 m denotes the number of rotates performed.

(1) RTS

b7

b0

1111
e

0 011
R

Bytes/Cycles

[Number of Bytes/Number of Cycles |
1/6

223

RTS

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) SBB.size #IMM, dest
b7 bo b7 bo dest code
011 1]0 1 1hEfo 1 1 1] DEST, dsps
[dsp1biabsi6 | [[#MMI6
'size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 5/4

*1 If the size specifier (.size) is (.\W), the number of bytes above is increased by 1.

224

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) SBB.size src, dest
b7 bo b7 bo src code dest code
10 1 1[1 o osE|] SRC DES dsp8 dsp8
[L [L |—'—'—'—B'—'—'"
|, dspi6labsi6 | [\ [, dspi6/absie
size | SIZE | srcidest SRCIDEST srcidest SRCIDEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 - ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SBIFB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
src dstt rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB]| absi6
Rn 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
An 22 | 22 2/3 3/3 3/3 4/3 4/3 4/3
[An] 2/13 | 2/3 2/4 3/4 3/4 414 414 414
dsp:8[An] 3/3 | 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:8[SB/FB]| 3/3 | 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:16[An] 4/3 | 4I3 4/4 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 4/13 | 4/3 4/4 5/4 5/4 6/4 6/4 6/4
abs16 4/3 | 4I3 4/4 5/4 5/4 6/4 6/4 6/4

225

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SBJINZ

(1) SBINZ.size #IMM, dest, label

b7 bo b7 bo dest code label code
111 1)1 0 ofsE] Mma DEST | dsp8
.. dspi6/absis , |

dsp8(label code) = address indicated by label — (start address of instruction + 2)

size | SIZE | #IMM | IMM4 [#IMM | IMM4
.B 0 0 0000} +8 1000
W 1 -1 0001] +7 1001
-2 0010f] +6 1010
-3 0011} +5 1011
-4 0100] +4 1100
-5 0101} +3 1101
—6 0110f +2 1110
-7 0111} +1 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
An A0 0100 dsp-16[A] dsp:16[A0] 1100
Al 0101 dsp:16[A1] 1101
(An] [AQ] 01 10 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Bytes/Cycles | 3/3 3/3 3/5 4/5 4/5 5/5 5/5 5/5

*1 If branched to label, the number of cycles above is increased by 4.

226

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) SHA.size #IMM, dest
b7 b0 b7 bO dest code
dsES
1|1|1|1 OIOIOSIZE |IMI|VI4| |DE|ST|
|, dspi6/absie ,
size | SIZE | #MM | IMM4 | #IMM | IMM4
B 0 +1 0000] -1 1000
W 1 +2 0001} -2 1001
+3 0010 -3 1010
+4 0011} 4 1011
+5 0100 -5 1100
+6 0101} -6 1101
+7 0110y -7 1110
+8 0111} -8 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
RN ROH/R1 0001 dsp:8[A1l] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
Al 0101 dsp:16[A1] 1101
[An] [AO] 0110 |]dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]Jabsl6 abs16 1111
[Number of Bytes/Number of Cycles |
dest Rn An [An] |dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles | 2/1+m|2/1+m| 2/2+m | 3/2+m 3/2+m 4/2+m 4/2+m 4/2+m

*1 m denotes the number of shifts performed.

227

Bytes/Cycles

2/3+m

[Number of Bytes/Number of Cycles]

*2 m denotes the number of shifts performed.

228

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(2) SHA.size R1H, dest
b7 b0 b7 b0 dest code
O|1|1|1 O|1|OS|ZE1|1|1|1 |DE|ST| dsES
|, dsp16/abs16 |
'size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 RN ROH/--- 0001 dsp:8[Al] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
---/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
[An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
*1 Marked by - - - cannot be selected.
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles |2/2+m|2/2+m | 2/3+m | 3/3+m 3/3+m 4/3+m 4/3+m 4/3+m
*2 m denotes the number of shifts performed.
(3) SHA.L #IMM, dest
b7 b0 b7 b0
1I 1|1|O 1|0|1|1 l|0|1DEST |IM|M4|
#IMM IMM4 #IMM IMM4 dest DEST
+1 0000} 1 1000 R2R0 0
+2 0001} -2 1001 R3R1 1
+3 0010} -3 1010
+4 0011 4 1011
+5 0100f -5 1100
+6 0101} -6 1101
+7 0110f -7 1110
+8 0111} -8 1111

Chapter 4

Instruction Code/Number of Cycles

(4) SHA.L R1H, dest
b7 b0 b7 b0
1|l|1|0 1|O|1|1 O|0|1DESTO|O|O|1
dest DEST
R2R0 0
R3R1 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles

2/4+m

*1 m denotes the number of shifts performed.

229

4.2

Instruction Code/Number of Cycles

SHA

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

SHL

(1) SHL.size #IMM, dest

b7 b0 b7 bo dest code
1|1|1|0 1|0|O SIZE |IMI|VI4| |DE|ST| dsES
|, dsp16/absis , |
size | SIZE | #MM | IMM4 [#IMM | IMM4
B 0 +1 0000[1 1000
W 1 +2 0001} -2 1001
+3 0010] -3 1010
+4 0011] 4 1011
+5 0100} -5 1100
+6 0101y -6 1101
+7 0110} —7 1110
+8 0111] -8 1111
dest DEST dest DEST
ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An]
RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
Al 0101 dsp:16[A1] 1101
[An] [AO] 01 10|dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles |2/1+m | 2/1+m | 2/2+m | 3/2+m 3/2+m 4/2+m 4/2+m 4/2+m

*1 m denotes the number of shifts performed.

230

Bytes/Cycles

2/3+m

[Number of Bytes/Number of Cycles]

*2 m denotes the number of shifts performed.

231

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(2) SHL.size R1H, dest
b7 bo b7 bo dest code
0|1|1|1 0|1|OS|ZE1|1|1|0 |DE|ST| dSEB
, dsp16/abs16 |
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 RN ROH/--- 0001 dsp:8[Al] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
---IR3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
*1 Marked by - - - cannot be selected.
[Number of Bytes/Number of Cycles |
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles |2/2+m | 2/2+m | 2/3+m | 3/3+m 3/3+m 4/3+m 4/3+m 4/3+m
*2 m denotes the number of shifts performed.
(3) SHL.L #IMM, dest
b7 b0 b7 b0
1I 1|1|O 1|0|1|1 1|0|ODEST |IM|M4|
#IMM IMM4 #IMM IMM4 dest DEST
+1 0000y -1 1000 R2R0 0
+2 0001y -2 1001 R3R1 1
+3 0010] -3 1010
+4 0011y 4 1011
+5 0100 -5 1100
+6 0101y -6 1101
+7 0110y -7 1110
+8 0111] -8 1111

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles

SHL
(4) SHL.L R1H, dest
b7 b0 b7)
1|l|1|0 1|0|l|1 O|0|ODEST0|O|O|1
dest DEST
[R2R0 0
R3R1 1

[Number of Bytes/Number of Cycles]

Bytes/Cycles 2/4+m

*1 m denotes the number of shifts performed.

SMOVB

(1) SMOVB.size
b7
0111|110

b0 b7
SIZE l|l|1|0

b0
1|0|0|1

.size | SIZE
.B 0
W 1

[Number of Bytes/Number of Cycles |
2/5+5X'm
*2 m denotes the number of transfers performed.

Bytes/Cycles

232

Chapter 4 Instruction Code/Number of Cycles

(1) SMOVF.size
b7 b0 b7 b0

Ollllll 11 OSIZElIlIlIO 1|0|O|O

.Ssize | SIZE
B 0
W 1

[Number of Bytes/Number of Cycles]
Bytes/Cycles 2/5+5X'm

*1 m denotes the number of transfers performed.

(1) SSTR.size
b7 b0 b7 b0

Ollllll 11 OSIZElIlIlIO l|0|1|0

.Size | S
B
W

[Number of Bytes/Number of Cycles]
Bytes/Cycles | 2/3+2X'm
*1 m denotes the number of transfers performed.

233

Instruction Code/Number of Cycles

SMOVF

SSTR

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

STC

(1) STC src, dest

b7 b0 b7 b0 dest Code

dsp8

0.1.1.1 1|0|1|1 1 ?RCIZ .DE.ST. P
., dsp16/absie |
Src SR dest DEST dest DEST
000 RO 0000 dsp:8[AQ] 1000
dsp:8[An]

INTBL 001 RN R1 0001 dsp:8[A1] 1001

0010 :
INTBH 010 R2 dsp:8[SBIFE] dsp:8[SB] 1010
FLG 011 R3 0011 dsp:8[FB] 1011
ISP 100 AO 0100 dsp:16[A0 1100

An dsp:16[An] sp-16[A0]

SP 101 Al 0101 dsp:16[A1] (1101
SB 110 [An] [AO] 0110 |dsp:16[SB] |dsp:16[SB] |1110
FB 111 [A1] 0111 |abs16 abs16 1111

*1 Marked by - - - cannot be selected.

[Number of Bytes/Number of Cycles]

dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | absl6
Bytes/Cycles | 2/1 2/1 2/2 3/2 3/2 4/2 4/2 4/2
(2) STC PC, dest
b7 b0 b7 b0 dest Code
011 1/1 1001 10 0][DEST | dsps |
.. dsp16/absi6 , |
dest DEST dest DEST
R2R0 0000 dsp:8[A0Q] 1000
dsp:8[An]
Rn R3R1 0001 dsp:8[A1] 1001
0010 dsp:8[SB/FB] dsp:8[SB] 1010
0011 dsp:8[FB] 1011
Al1AQ0 0100 dsp:16[A0 1100
An dsp:16[An] p:16[A0]
0101 dsp:16[A1] 1101
(A [AO] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111

*1 Marked by - - - cannot be selected.

[Number of Bytes/Number of Cycles]

dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Bytes/Cycles | 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3

234

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

STCTX

(1) STCTX abs16, abs20
b7 b0 b7 b0

01111101t 111]000o0f[, avst6 | [, a0s20 |
[Number of Bytes/Number of Cycles]
Bytes/Cycles | 7/11+2Xm
*1 m denotes the number of transfers performed.
(1) STE.size src, abs20
b7 bo b7 bo src code dest code
0 1 1 1[0 1 ofs&Jo o 0o o src | ([dsps_ | .. o020
.. dsp16/absi6 , |
size | SIZE | src SRC src SRC
B 0 ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An]
W 1 RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
[An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absi6 abs16 1111
[Number of Bytes/Number of Cycles]
src Rn An [An] |dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles | 5/3 5/3 5/4 6/4 6/4 7/4 7/4 714

235

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles
(2) STE.size src, dsp:20[A0]
b7 bo b7 bo src code dest code
011 10 1 ofse]o o 0 1] srRC |[[dsps] Lo, 95920
.. dsp16/abs16 |
'size | SIZE | src SRC Src SRC
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles]
src Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 5/3 5/3 5/4 6/4 6/4 714 714 714
(3) STE.size src, [A1AQ]
b7 bO b7 bo src code
0111 1 0EJ0 01 0| SRC dsp8
.. dsp16/absi6 , |
size | SIZE | src SRC src SRC
B 0 ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An]
W 1 RN ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 01 10 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles]
src Rn An [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/3 2/3 2/4 3/4 3/4 4/4 4/4 4/4

236

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

STNZ

(1) STNZ #IMMS, dest

b7 bo dest code
11 0 1]o| pesT | [#mms] ([, dsps |
|Illllla.tl)§1lellllll
dest DEST
ROH
RN 011
ROL 100
dsp:8[ss/Fp] | 9SP-8[SEl 101
dsp:8[FB] 110
abs16 abs16 111

[Number of Bytes/Number of Cycles |

dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 2/1 3/2 4/2
*1 If the Z flag = 0, the number of cycles above is increased by 1.

STZ

(1) STZ #IMMS8, dest

07 bo dest code
110 o] pesy | [#mwa] ([, dsps |
|IIIII?.tI)§1I6IIIIII
dest DEST
ROH
RN 011
ROL 100
dsp:8[ss/rp] | 9SP-E8[SEl 101
dsp:8[FB] 110
abs16 abs16 11 1

[Number of Bytes/Number of Cycles]

dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 2/1 3/2 4/2
*2 If the Z flag = 1, the number of cycles above is increased by 1.

237

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

STZX

(1) STZX #IMM81, #IMM82, dest

b7 b0 dest code
1.1 0 1[1] DEST | [#mms1] ([dsps]
dest DEST
ROH
RN 011
ROL 100
dsp:8[sa/Fp] | 9SP-8[SEl 101
dsp:8[FB] 110
abs16 abs16 11 1

[Number of Bytes/Number of Cycles]

dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 3/2 4/3 5/3

SUB

(1) SUB.size:G #IMM, dest

b7 bo b7 bo dest code
01 1 1[0 1 1]sfo 1 0 1] DEST, dsps
|, dsp16/absis || [, #MM16
Size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 RN ROH/R1 0001 dsp:8[A1l] 1001
R1L/R2 0010 dsp:8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 01 10 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles]
dest Rn An [An] | dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB] abs16
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 5/4

*1 If the size specifier (.size) is (.\W), the number of bytes above is increased by 1.

238

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(2) SUB.B:S #IMM8, dest
b7 b0 dest code
#IMM8
100 0[1| DEST
|IIIII?I§IIIIIII|
dest DEST
ROH
RN 011
ROL 100
dsp:8[ss/Fp] | 9SP-8[SEl 101
dsp:8[FB] 110
abs16 abs16 11 1

[Number of Bytes/Number of Cycles |

dest Rn dsp:8[SB/FB] abs16
Bytes/Cycles 2/1 3/3 4/3

239

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(3) SUB.size:G src, dest
b7 bo b7 bo src code dest code
101 0[1 0 ofsE[] Src DEST dsp8
., dspi6labsi6 | [\ [, dspi6/absie
size | SIZE | srcidest SRCIDEST srcidest SRCIDEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W | 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(AT [AO] 011 0 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles]
src St Rn | An | [An] |dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
RN 22 | 212 | 213 3/3 313 4/3 4/3 4/3
An 22 | 212 | 213 313 313 4/3 4/3 4/3
[An] 23 | 213 | 2/4 3/4 3/4 4/4 4/4 4/4
dsp:8[An] 33 | 3/3 | 3/4 4/4 4/4 5/4 5/4 5/4
dsp:8[SB/FB]| 3/3 | 313 | 3/4 4/4 4/4 5/4 5/4 5/4
dsp:16[An] 4/3 | 413 | 4l4 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 4/3 | a3 | 4/4 5/4 5/4 6/4 6/4 6/4
abs16 4/3 | 43 | 4l4 5/4 5/4 6/4 6/4 6/4

240

Chapter 4 Instruction Code/Number of Cycles 4.2 Instruction Code/Number of Cycles

(4) SUB.B:S src, ROL/ROH
07 bo dest code
0 0 1 0| 1]0Es]SRC dsp8
| 1111 Iiapsljl-6ll 1111
SIC SRC dest DEST
RN ROL/ROH 0 0 'ROL 0
: ROH 1
dsp:8[SB/FB] | 9SP:8ISE] 0 1 0
dsp:8[FB] 1 0
abs16 abs16 1 1
[Number of Bytes/Number of Cycles |
src Rn dsp:8[SB/FB] abs16
Bytes/Cycles 1/2 2/3 3/3
(1) TST.size #IMM, dest
b7 bo b7 bo dest code
01 1 1[0 1 1]s&fo 0 0 o] DEST, dsp8
|, dsp16labs16 | [[, #MM16
Size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 RN ROH/R1 0001 dsp:8[A1l] 1001
R1L/R2 0010 dsp:8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 01 10 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111 |absl6 abs16 1111
[Number of Bytes/Number of Cycles]
dest Rn An [An] |dsp:8[An] |dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB] | abs16
Bytes/Cycles 3/2 3/2 3/4 4/4 4/4 5/4 5/4 5/4

*1 If the size specifier (.size) is (.\W), the number of bytes above is increased by 1.

241

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) TST.size src, dest
b7 b0 b7 bo src code dest code
100 00 0 OfSE] SRC, DEST. dsp8
., dsp16/absie | [\ [, dsp16labsi6
size | SIZE | srcidest SRCIDEST srcidest SRCIDEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 Rn ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [A0] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles]
src dest] Rn | An | [An] |dsp:8[An]|dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| abs16
Rn 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
An 212 | 212 2/3 3/3 3/3 4/3 4/3 4/3
[An] 2/13 | 2/3 2/4 3/4 3/4 4/4 4/4 4/4
dsp:8[An] 3/3 | 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:8[SB/FB]| 3/3 | 3/3 3/4 4/4 4/4 5/4 5/4 5/4
dsp:16[An] 4/3 | 4/3 4/4 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 4/3 | 4/3 4/4 5/4 5/4 6/4 6/4 6/4
abs16 4/3 | 4/3 4/4 5/4 5/4 6/4 6/4 6/4

242

Chapter 4

(1) UND

b7

Instruction Code/Number of Cycles

b0

1111
|

1111
|

[Number of Bytes/Number of Cycles]

Bytes/Cycles 1/20
(1) WAIT

b7 b0 b7 b0
0|1|1|1 1|1|O|1 l|1|1|1 0|O|1|1

[Number of Bytes/Number of Cycles |

Bytes/Cycles

2/3

243

4.2

Instruction Code/Number of Cycles

UND

WAIT

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) XCHG.size src, dest
b7 bo b7 bo dest code
0 1 1 1|1 0 1(S®E0 O|SRC DEST dsp8
| | | | | | | | |
|, dsp16/absis , |
size | SIZE | src SRC
B 0 ROL/RO [0 O
W 1 ROH/R1 0 1
R1L/R2 10
R1H/R3 1 1
dest DEST dest DEST
ROL/RO 0000 dsp:8[AQ] 1000
dsp:8[An]
- ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
[An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[Al] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
dest Rn An [An] | dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Bytes/Cycles | 2/4 2/4 2/5 3/5 3/5 4/5 4/5 4/5

244

Chapter 4 Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(1) XOR:.size #IMM, dest
b7 bo b7 bo dest code
01 1 1[0 1 1fs&fo 0 0 1] DEST, dsp8
. dsp16labsis | [[#mMie .
size | SIZE | dest DEST dest DEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SB/FB] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
AO 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 0110 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles |
dest Rn An [An] |dsp:8[An]|dsp:8[SB/FB]| dsp:16[An] | dsp:16[SB] | absl6
Bytes/Cycles | 3/2 3/2 3/4 4/4 4/4 5/4 5/4 5/4

*1 If the size specifier (.size) is (.\W), the number of bytes above is increased by 1.

245

Chapter 4

Instruction Code/Number of Cycles

4.2 Instruction Code/Number of Cycles
(2) XOR:.size src, dest
b7 bo b7 bo src code dest code
100 0[1 0 o[sE] SRC DEST dsp8
., dspi6labsi6 | [\ [, dspi6/absie
size | SIZE | srcidest SRCIDEST srcidest SRCIDEST
B 0 ROL/RO 0000 dsp:8[A0] 1000
dsp:8[An]
W 1 an ROH/R1 0001 dsp:8[A1] 1001
R1L/R2 0010 dsp:8[SBIFE] dsp:8[SB] 1010
R1H/R3 0011 dsp:8[FB] 1011
A0 0100 dsp:16[A0 1100
An dsp:16[An] p:16(A0]
Al 0101 dsp:16[A1] 1101
(An] [AQ] 011 0 |dsp:16[SB] dsp:16[SB] 1110
[A1] 0111]absl6 abs16 1111
[Number of Bytes/Number of Cycles]
src st Rn | An | [An] |dsp:8[An] |dsp:8[SB/FB]|dsp:16[An] | dsp:16[SB]| absl6
Rn 2/2 2/2 2/3 3/3 3/3 4/3 4/3 4/3
An 22 | 212 | 213 313 313 4/3 4/3 4/3
[An] 23 | 213 | 2/4 3/4 3/4 4/4 4/4 4/4
dsp:8[An] 33 | 3/3 | 3/4 4/4 4/4 5/4 5/4 5/4
dsp:8[SB/FB]| 3/3 | 3/3 | 3/4 4/4 4/4 5/4 5/4 5/4
dsp:16[An] 4/3 | 413 | 4l4 5/4 5/4 6/4 6/4 6/4
dsp:16[SB] 43 | 413 | 4/4 5/4 5/4 6/4 6/4 6/4
abs16 4/3 | 43 | 4l4 5/4 5/4 6/4 6/4 6/4

246

5.1
5.2
5.3
5.4
5.5
5.6
5.7

Chapter 5

Interrupt

Outline of Interrupt

Interrupt Control

Interrupt Sequence

Return from Interrupt Routine
Interrupt Priority

Multiple Interrupts
Precautions for Interrupts

Chapter 5 Interrupt 5.1 Outline of Interrupt

5.1 Outline of Interrupt

When an interrupt request is acknowledged, control branches to the interrupt routine that is set to an inter-
rupt vector table. Each interrupt vector table must have had the start address of its corresponding interrupt
routine set. For details about the interrupt vector table, refer to Section 1.10, “Vector Table.”

5.1.1 Types of Interrupts

Figure 5.1.1 lists the types of interrupts. Table 5.1.1 lists the source of interrupts (honmaskable) and the
fixed vector tables.

[] Undefined instruction (UND instruc-
[] tion)
Software [] Overflow (INTO instruction)
[[1 BRKinstruction
0 [1 INT instruction
-
Interrupt [] 0 Reset
0 L nwir
0 Special o DBC ;
[[] =P [J watchdog timer
[[[single step
Hardware] [Address matched
[l
O Peripheral 1/0™
*1 Peripheral I/O interrupts are generated by the peripheral functions built into the microcomputer system.

Figure 5.1.1. Classification of interrupts

Table 5.1.1 Interrupt Source (Nonmaskable) and Fixed Vector Table

Interrupt source Vector table addresses Remarks
Address (L) to address (H)
Undefined instruction FFFDC16 to FFFDF16 | Interrupt generated by the UND instruction.
Overflow FFFEO16 to FFFE316 | Interrupt generated by the INTO instruction.

Executed beginning from address indicated by vector in

BRK instruction FFFE416 to FFFE716
variable vector table if all vector contents are FF16
Address match FFFEB816 to FFFEB16 | Can be controlled by an interrupt enable bit.
Single step™ FFFEC16 to FFFEF16 | Normally do not use this interrupt.
Watchdog timer FFFFO16 to FFFF316
DBC " FFFF416 to FFFF716 | Normally do not use this interrupt.
NMI FFFF816 to FFFFB16 | External interrupt generated by driving NMI pin low.
Reset FFFFC16 to FFFFF16

*1 This interrupt is used exclusively for debugger purposes.

B Maskable interrupt: This type of interrupt can be controlled by using the | flag to enable (or
disable) an interrupt or by changing the interrupt priority level.

B Nonmaskable interrupt: This type of interrupt cannot be controlled by using the | flag to enable (or disable)
an interrupt or by changing the interrupt priority level.

248

Chapter 5 Interrupt 5.1 Outline of Interrupt

5.1.2 Software Interrupts
Software interrupts are generated by some instruction that generates an interrupt request when ex-
ecuted. Software interrupts are nonmaskable interrupts.
(1) Undefined-instruction interrupt

This interrupt occurs when the UND instruction is executed.

(2) Overflow interrupt

This interrupt occurs if the INTO instruction is executed when the O flag is 1.

The following lists the instructions that cause the O flag to change:

ABS, ADC, ADCF, ADD, CMP, DIV, DIVU, DIVX, NEG, RMPA, SBB, SHA, SUB

(3) BRK interrupt

This interrupt occurs when the BRK instruction is executed.

(4) INT instruction interrupt

This interrupt occurs when the INT instruction is executed after specifying a software interrupt number
from O to 63. Note that software interrupt numbers 0 to 31 are assigned to peripheral I/O interrupts. This
means that by executing the INT instruction, you can execute the same interrupt routine as used in
peripheral 1/O interrupts.

The stack pointer used in INT instruction interrupt varies depending on the software interrupt number.
For software interrupt numbers 0 to 31, the U flag is saved when an interrupt occurs and the U flag is
cleared to O to choose the interrupt stack pointer (ISP) before executing the interrupt sequence. The
previous U flag before the interrupt occurred is restored when control returns from the interrupt routine.
For software interrupt numbers 32 to 63, such stack pointer switchover does not occur.

249

Chapter 5 Interrupt 5.1 Outline of Interrupt

5.1.3 Hardware Interrupts

There are Two types in hardware Interrupts; special interrupts and Peripherai 1/O interrupts.

(1) Special interrupts

Special interrupts are nonmaskable interrupts.

* Reset
A reset occurs when the RESET pin is pulled low.

« NMI interrupt
This interrupt occurs when the NMI pin is pulled low.

» DBC interrupt
This interrupt is used exclusively for debugger purposes. You normally do not need to use this interrupt.

» Watchdog timer interrupt
This interrupt is caused by the watchdog timer.

» Single-step interrupt
This interrupt is used exclusively for debugger purposes. You normally do not need to use this inter-
rupt. A single-step interrupt occurs when the D flag is set (= 1); in this case, an interrupt is generated
each time an instruction is executed.

» Address-match interrupt
This interrupt occurs when the program's execution address matches the content of the address match
register while the address match interrupt enable bit is set (= 1).
This interrupt does not occur if any address other than the start address of an instruction is set in the
address match register.

(2) Peripheral I/O interrupts

These interrupts are generated by the peripheral functions built into the microcomputer system. The
types of built-in peripheral functions vary with each M16C model, so do the types of interrupt causes. The
interrupt vector table uses the same software interrupt numbers 0-31 that are used by the INT instruction.
Peripheral I/O interrupts are maskable interrupts. For details about peripheral I/O interrupts, refer to the
M16C User’s Manual.

250

Chapter 5 Interrupt 5.2 Interrupt Control

5.2 Interrupt Control

The following explains how to enable/disable maskable interrupts and set acknowledge priority. The expla-
nation here does not apply to non-maskable interrupts.

Maskable interrupts are enabled and disabled by using the interrupt enable flag (I flag), interrupt priority
level select bit, and processor interrupt priority level (IPL). Whether there is any interrupt requested is
indicated by the interrupt request bit. The interrupt request bit and interrupt priority level select bit are
arranged in the interrupt control register provided for each specific interrupt. The interrupt enable flag (I
flag) and processor interrupt priority level (IPL) are arranged in the flag register (FLG).

For details about the memory allocation and the configuration of interrupt control registers, refer to the
M16C User's Manual.

5.2.1 Interrupt Enable Flag (I Flag)
The interrupt enable flag (I flag) is used to disable/enable maskable interrupts. When this flag is set (=
1), all maskable interrupts are enabled; when the flag is cleared to 0, they are disabled. This flag is
automatically cleared to O after a reset is cleared.
When the | flag is changed, the altered flag status is reflected in determining whether or not to accept an
interrupt request at the following timing:
« If the flag is changed by an REIT instruction, the changed status takes effect beginning with that
REIT instruction.
« If the flag is changed by an FCLR, FSET, POPC, or LDC instruction, the changed status takes
effect beginning with the next instruction.

When changed by REIT instruction

Determination whether or not to

Interrupt request generated accept interrupt request
— Tne
_______________ /
Previous |
! A nterrupt sequence
instruction REIT pt seq

(If I flag is changed from 0 to 1 by REIT instruction)

When changed by FCLR, FSET, POPC, or LDC instruction
Determination whether or not to

Interrupt request generated accept interrupt request
{} —p e
_______________ /
Previous . .
instruction FSET | Next instruction |Interrupt sequence S
______________ -

(If I flag is changed from 0 to 1 by FSET instruction)

Figure 5.2.1 Timing at which changes of | flag are reflected in interrupt handling

5.2.2 Interrupt Request Bit
This bit is set (= 1) when an interrupt request is generated. This bit remains set until the interrupt request
is acknowledged. The bit is cleared to 0 when the interrupt request is acknowledged.
This bit can be cleared to 0 (but cannot be set to 1) in software.

251

Chapter 5 Interrupt 5.2 Interrupt Control

5.2.3 Interrupt Priority Level Select Bit and Processor Interrupt Priority Level (IPL)
Interrupt priority levels are set by the interrupt priority select bit in an interrupt control register. When an
interrupt request is generated, the interrupt priority level of this interrupt is compared with the processor
interrupt priority level (IPL). This interrupt is enabled only when its interrupt priority level is greater than
the processor interrupt priority level (IPL). This means that you can disable any particular interrupt by
setting its interrupt priority level to 0.

Table 5.2.1 shows how interrupt priority levels are set. Table 5.2.2 shows interrupt enable levels in
relation to the processor interrupt priority level (IPL).

The following lists the conditions under which an interrupt request is acknowledged:
* Interrupt enable flag (1 flag) =1

* Interrupt request bit =1

* Interrupt priority level > Processor interrupt priority level (IPL)

The interrupt enable flag (I flag), interrupt request bit, interrupt priority level select bit, and the processor
interrupt priority level (IPL) all are independent of each other, so they do not affect any other bit.

Table 5.2.1 Interrupt Priority Levels Table 5.2.2 IPL and Interrupt Enable Levels
Interrupt priority Interrupt priority Priority Processor interrupt Enabled interrupt priority
level select bit level order priority level (IPL) levels
%2 %1 go Level O(interupt disabled) | ——— |ng 'ng 'S’LD Interrupt levels 1 and above are enabled.
o o 1 Level 1 Low o o0 1 Interrupt levels 2 and above are enabled.
0 1 o0 Level 2 o 1 o0 Interrupt levels 3 and above are enabled.
o 1 1 Level 3 o 1 1 Interrupt levels 4 and above are enabled.
1 0 0 Level 4 1 0 0 Interrupt levels 5 and above are enabled.
1 0 1 Level 5 1 0 1 Interrupt levels 6 and above are enabled.
1 1 o0 Level 6 1 1 0 Interrupt levels 7 and above are enabled.
1 1 1 Level 7 High 1 1 1 All maskable interrupts are disabled.

When the processor interrupt priority level (IPL) or the interrupt priority level of some interrupt is

changed, the altered level is reflected in interrupt handling at the following timing:

« If the processor interrupt priority level (IPL) is changed by an REIT instruction, the changed level takes
effect beginning with the instruction that is executed two clock periods after the last clock of the REIT
instruction.

* If the processor interrupt priority level (IPL) is changed by a POPC, LDC, or LDIPL instruction, the
changed level takes effect beginning with the instruction that is executed three clock periods after the
last clock of the instruction used.

« If the interrupt priority level of a particular interrupt is changed by an instruction such as MOV, the
changed level takes effect beginning with the instruction that is executed two clock or three clock
periods after the last clock of the instruction used.

M16C/60, M16C/61 group, and M16C/20 series: two clock
M16C/60 series after M16C/62 group (it has M16C/62 group), M16C/Tiny series : three clock

|
252

Chapter 5 Interrupt 5.2 Interrupt Control

5.2.4 Rewrite the Interrupt Control Register

(1) The interrupt control register for any interrupt should be modified in places where no requests for that
interrupt may occur. Otherwise, disable the interrupt before rewriting the interrupt control register.

(2) To rewrite the interrupt control register for any interrupt after disabling that interrupt, be careful with the
instruction to be used.

Changing any bit other than the IR bit

If while executing an instruction, a request for an interrupt controlled by the register being modified
occurs, the IR bit in the register may not be set to “1” (interrupt requested), with the result that the
interrupt request is ignored. If such a situation presents a problem, use the instructions shown below
to modify the register.
Usable instructions: AND, OR, BCLR, BSET

Changing the IR bit
Depending on the instruction used, the IR bit may not always be cleared to “0” (interrupt not re-
quested). Therefore, be sure to use the MOV instruction to clear the IR bit.

(3) When using the | flag to disable an interrupt, refer to the sample program fragments shown below as
you set the | flag. (Refer to (2) for details about rewrite the interrupt control registers in the sample
program fragments.)

Examples 1 through 3 show how to prevent the | flag from being set to “1” (interrupts enabled) before the

interrupt control register is rewrited, owing to the effects of the internal bus and the instruction queue

buffer.

Example 1:Using the NOP instruction to keep the program waiting until
the interrupt control register is modified

INT_SWITCHZ1:
FCLR | ; Disable interrupts.
AND.B #00h, 0055h ; Set the TAOIC register to “0016".
NOP ; Four NOP instructions are required when using HOLD function.
NOP ; Refer to hardware manual about the number of NOP
; instruction
FSET ; Enable interrupts.

Example 2:Using the dummy read to keep the FSET instruction waiting

INT_SWITCH2:
FCLR | ; Disable interrupts.
AND.B #00h, 0055h ; Set the TAOIC register to “0016".
MOV.W MEM, RO ; Dummy read.
FSET | ; Enable interrupts.

Example 3:Using the POPC instruction to changing the | flag

INT_SWITCHS3:
PUSHC FLG
FCLR | ; Disable interrupts.
AND.B #00h, 0055h ; Set the TAOIC register to “0016".
POPC FLG ; Enable interrupts.

253

Chapter 5 Interrupt 5.3 Interrupt Sequence

5.3 Interrupt Sequence

An interrupt sequence — what are performed over a period from the instant an interrupt is accepted to the

instant the interrupt routine is executed — is described here.

If an interrupt occurs during execution of an instruction, the processor determines its priority when the

execution of the instruction is completed, and transfers control to the interrupt sequence from the next

cycle. If an interrupt occurs during execution of either the SMOVB, SMOVF, SSTR or RMPA instruction,
the processor temporarily suspends the instruction being executed, and transfers control to the interrupt
sequence.

In the interrupt sequence, the processor carries out the following in sequence given:

(1) CPU gets the interrupt information (the interrupt number and interrupt request level) by reading address
0000016.

(2) Saves the content of the flag register (FLG) as it was immediately before the start of interrupt sequence
in the temporary register (Note) within the CPU.

(3) Sets the interrupt enable flag (I flag), the debug flag (D flag), and the stack pointer select flag (U flag) to
“0” (the U flag, however does not change if the INT instruction, in software interrupt numbers 32
through 63, is executed)

(4) Saves the content of the temporary register (Note 1) within the CPU in the stack area.

(5) Saves the content of the program counter (PC) in the stack area.

(6) Sets the interrupt priority level of the accepted instruction in the IPL.

After the interrupt sequence is completed, the processor resumes executing instructions from the first ad-
dress of the interrupt routine.

Note: This register cannot be utilized by the user.

254

Chapter 5 Interrupt 5.3 Interrupt Sequence

5.3.1 Interrupt Response Time
The interrupt response time means a period of time from when an interrupt request is generated till when
the first instruction of the interrupt routine is executed. This period consists of time (a) from when an
interrupt request is generated to when the instruction then under way is completed and time (b) in which
an interrupt sequence is executed. Figure 5.3.1 shows the interrupt response time.

Interrupt request generated Interrupt request acknowledged

{} {} —p Time
ya /

. Instruction in interrupt
Instruction Interrupt sequence |, tine

A ole ®]

-t

Interrupt response time

(a) Time from when interrupt request is generated to when the instruction then under execution is completed

(b) Time in which the interrupt sequence is executed

Figure 5.3.1. Interrupt response time

Time (a) varies with each instruction being executed. The DIVX instruction requires a maximum time
that consists of 30 cycles (without wait state) .
Time (b) is shown below.

Table 5.3.1 Interrupt Sequence Execution Time

Interrupt vector address | Stack pointer (SP) value 16 bits data bus 8 bits data bus
Without wait state Without wait state
Even address Even address 18 cycle™ 20 cycle™
Even address Odd address 19 cycle™ 20 cycle™
Odd address™ Even address 19 cycle™ 20 cycle™
Odd address™ Odd address 20 cycle™ 20 cycle™

*1 Add two cycles for the DBC interrupt. Add one cycle for the address match and single-step interrupts.

*2 Allocate interrupt vector addresses in even addresses as must as possible.

255

Chapter 5 Interrupt 5.3 Interrupt Sequence

5.3.2 Changes of IPL When Interrupt Request Acknowledged
When an interrupt request is acknowledged, the interrupt priority level of the acknowledged interrupt is
set to the processor interrupt priority level (IPL).
If an interrupt request is acknowledged that does not have an interrupt priority level, the value shown in
Table 5.3.2 is set to the IPL.

Table 5.3.2 Relationship between Interrupts without Interrupt Priority Levels and IPL

Interrupt sources without interrupt priority levels Value that is set to IPL
Watchdog timer, NMI 7

Reset 0

Other Not changed

5.3.3 Saving Registers
In an interrupt sequence, only the contents of the flag register (FLG) and program counter (PC) are
saved to the stack area.
The order in which these contents are saved is as follows: First, the 4 high-order bits of the program
counter and 4 high-order bits and 8 low-order bits of the FLG register for a total of 16 bits are saved to
the stack area. Next, the 16 low-order bits of the program counter are saved. Figure 5.3.2 shows the
stack status before an interrupt request is acknowledged and the stack status after an interrupt request
is acknowledged.
If there are any other registers you want to be saved, save them in software at the beginning of the
interrupt routine. The PUSHM instruction allows you to save all registers except the stack pointer (SP)
by a single instruction.

Address Stack area Address Stack area
MSB LSB MSB LSB
Program counter
m-4 m—-4 (PCL) [SP]
Program counter New stack
m-3 m-3 (PCwm) pointer value
Flag register
m—2 m-2 (FLGL)
Flag register Program counter
m-1 m-1 (FLGH) (PCy)
m Content of [Pl m Content of
previous stack ~e— Stack pointer previous stack
Content of value before Content of
ontent o interrupt occurs
m+1 previous stack P m+1 previous stack
Stack status before interrupt request is acknowledged Stack status after interrupt request is acknowledged

Figure 5.3.2 Stack status before and after an interrupt request is acknowledged

256

Chapter 5

Interrupt

5.3 Interrupt Sequence

The register save operation performed in an interrupt sequence differs depending on whether the con-
tent of the stack pointer (SP)™ is an even or an odd number when an interrupt request is acknowledged.
If the stack pointer (SP)" indicates an even number, the contents of the flag register (FLG) and program
counter (PC) each are saved simultaneously all 16 bits together. If the stack pointer indicates an odd
number, the register contents each are saved in two operations 8 bits at a time. Figure 5.3.3 shows how
registers are saved in each case.

*1 Stack pointer indicated by the U flag.

Address

[SP]-5

(Odd address)
[SP]-4

(Even address)
[SP]-3

(Odd address)
[SP]-2

(Even address)
[SP]-1

(Odd address)
[SP]

(Even address)

Stack area

Program counter (PC,)

(1) When stack pointer (SP) contains an even number

Sequence in which order
registers are saved

Program counter (PCy)

(2) Saved simul-
taneously, all 16

Flag register (FLGL)

bits together

Flag register

(FLGy) (PCy)

Program counter |

(1) Saved simul-
taneously, all 16

bits together

Einished saving registers
in two operations.

(2) When stack pointer (SP) contains an odd humber

Address

[SP]-5

(Even address)
[SP]-4

(Odd address)

[SP]-3

(Even address)
[SP]-2

(Odd address)

[SP]-1

(Even address)
[SP]

(Odd address)

Stack area

Sequence in which order
registers are saved

Program counter (PC\)

Program counter (PCy)

Flag register (FLG,)

Flag register | Program counter
(FLGw) (PCy)

@
¢—(4) | saved
) separately, 8
« bits at a time
<« @

Finished saving registers in

* [SP] denotes the initial value of the stack pointer (SP) when interrupt request is acknowledged.
After the microcomputer finishes saving registers, the SP content is [SP] minus 4.

four operations.

Figure 5.3.3 Operations to save registers

257

Chapter 5 Interrupt 5.4 Return from Interrupt Routine

5.4 Return from Interrupt Routine

As you execute the REIT instruction at the end of the interrupt routine, the contents of the flag register
(FLG) and program counter (PC) that have been saved to the stack area immediately preceding the inter-
rupt sequence are automatically restored. Then control returns to the routine that was under execution
before the interrupt request was acknowledged, and processing is resumed from where control left off. If
there are any registers you saved via software in the interrupt routine, be sure to restore them using an
instruction (e.g., POPM instruction) before executing the REIT instruction.

258

Chapter 5 Interrupt 5.5 Interrupt Priority

5.5 Interrupt Priority

If two or more interrupt requests are sampled active at the same time, whichever interrupt request is ac-
knowledged that has the highest priority.

Maskable interrupts (Peripheral I/O interrupts) can be assigned any desired priority by setting the interrupt
priority level select bit accordingly. If some maskable interrupts are assigned the same priority level, the
priority between these interrupts is resolved by the priority that is set in hardware™.

Certain nonmaskable interrupts such as a reset (reset is given the highest priority) and watchdog timer
interrupt have their priority levels set in hardware. Figure 5.5.1 lists the hardware priority levels of these
interrupts.

Software interrupts are not subjected to interrupt priority. They always cause control to branch to an inter-
rupt routine whenever the relevant instruction is executed.

*1 Hardware priority varies with each M16C model. Please refer to your M16C User’'s Manual.

Reset > NMI > DBC > Watchdog timer > Peripheral I/O > Single step > Address match

Figure 5.5.1. Interrupt priority that is set in hardware

259

Chapter 5 Interrupt 5.6 Multiple interrupts

5.6 Multiple Interrupts

The following shows the internal bit states when control has branched to an interrupt routine:
» The interrupt enable flag (I flag) is cleared to 0 (interrupts disabled).
» The interrupt request bit for the acknowledged interrupt is cleared to O.
» The processor interrupt priority level (IPL) equals the interrupt priority level of the acknowledged interrupt.

By setting the interrupt enable flag (I flag) (= 1) in the interrupt routine, you can reenable interrupts so that an
interrupt request can be acknowledged that has higher priority than the processor interrupt priority level
(IPL). Figure 5.6.1 shows how multiple interrupts are handled.

The interrupt requests that have not been acknowledged for their low interrupt priority level are kept pend-
ing. When the IPL is restored by an REIT instruction and interrupt priority is resolved against it, the pending
interrupt request is acknowledged if the following condition is met:

Interrupt priority level of > Restored processor interrupt
pending interrupt request priority level (IPL)

260

Chapter 5

Interrupt

5.6 Multiple interrupts

Interrupt request
generated

Nesting

_—

Time

Reset

Interrupt 1

O

Interrupt priority level = 3

Interrupt 2

D

Interrupt priority level = 5

Interrupt 3

D

Interrupt priority level = 2

-

Main routine

Multiple interrupts
/

5

Not acknowledged because
of low interrupt priority

Main routine instructions
are not executed.

. Interrupt enable flag

: Processor interrupt priority level
: Automatically executed.

: Be sure to set in software.

Figure 5.6.1. Multiple interrupts

261

Chapter 5 Interrupt

5.7 Precautions for Interrupts

5.7.1 Reading address 0000016
Do not read the address 0000016 in a program. When a maskable interrupt request is accepted, the CPU
reads interrupt information (interrupt number and interrupt request priority level) from the address
0000016 during the interrupt sequence. At this time, the IR bit for the accepted interrupt is cleared to “0”.
If the address 0000016 is read in a program, the IR bit for the interrupt which has the highest priority
among the enabled interrupts is cleared to “0”. This causes a problem that the interrupt is canceled, or an
unexpected interrupt request is generated.

5.7.2 Setting the SP

Set any value in the SP(USP, ISP) before accepting an interrupt. The SP(USP, ISP) is cleared to ‘000016’
after reset. Therefore, if an interrupt is accepted before setting any value in the SP(USP, ISP), the pro-
gram may go out of control.

Especially when using NMI interrupt, set a value in the ISP at the beginning of the program. For the first
and only the first instruction after reset, all interrupts including NMI interrupt are disabled.

5.7.3 Rewrite the Interrupt Control Register

(1) The interrupt control register for any interrupt should be modified in places where no requests for that
interrupt may occur. Otherwise, disable the interrupt before rewriting the interrupt control register.

(2) To rewrite the interrupt control register for any interrupt after disabling that interrupt, be careful with the
instruction to be used.

Changing any bit other than the IR bit

If while executing an instruction, a request for an interrupt controlled by the register being modified
occurs, the IR bit in the register may not be set to “1” (interrupt requested), with the result that the
interrupt request is ignored. If such a situation presents a problem, use the instructions shown below
to modify the register.
Usable instructions: AND, OR, BCLR, BSET

Changing the IR bit
Depending on the instruction used, the IR bit may not always be cleared to “0” (interrupt not re-
guested). Therefore, be sure to use the MOV instruction to clear the IR bit.

(3) When using the I flag to disable an interrupt, refer to the sample program fragments shown below as
you set the | flag. (Refer to (2) for details about rewrite the interrupt control registers in the sample
program fragments.)

Examples 1 through 3 show how to prevent the | flag from being set to “1” (interrupts enabled) before the

interrupt control register is rewrited, owing to the effects of the internal bus and the instruction queue

buffer.

262

Chapter 5 Interrupt

Example 1:Using the NOP instruction to keep the program waiting until
the interrupt control register is modified

INT_SWITCH1:
FCLR | ; Disable interrupts.
AND.B #00h, 0055h ; Set the TAOIC register to “0016".
NOP ; Four NOP instructions are required when using HOLD function.
NOP ; Refer to hardware manual about the number of NOP
; instruction
FSET | ; Enable interrupts.

Example 2:Using the dummy read to keep the FSET instruction waiting

INT_SWITCH2:
FCLR I ; Disable interrupts.
AND.B #00h, 0055h ; Set the TAOIC register to “0016".
MOV.W MEM, RO ; Dummy read.
FSET | ; Enable interrupts.

Example 3:Using the POPC instruction to changing the | flag

INT_SWITCHS3:
PUSHC FLG
FCLR | ; Disable interrupts.
AND.B #00h, 0055h ; Set the TAOIC register to “0016".
POPC FLG ; Enable interrupts.

263

Chapter 5 Interrupt

264

Chapter 6

Calculation Number of Cycles

6.1 Instruction queue buffer

6 Calculation number of cycles
6.1 Instruction queue buffer

6.1 Instruction queue buffer

The M16C/60, M16C/20, M16C/Tiny series have 4-stage (4-byte) instruction queue buffers. If the instruc-
tion queue buffer has a free space when the CPU can use the bus, instruction codes are taken into the
instruction queue buffer. This is referred to as “prefetch”. The CPU reads (fetches) these instruction codes
from the instruction queue buffer as it executes a program.

Explanation about the number of cycles in Chapter 4 assumes that all the necessary instruction codes are
placed in the instruction queue buffer, and that data is read or written to the memory connected via a 16-bit
bus (including the internal memory) beginning with even addresses without software wait or RDY or other
wait states. In the following cases, more cycles may be needed than the number of cycles shown in this
manual:

» When not all of the instruction codes needed by the CPU are placed in the instruction queue buffer...
Instruction codes are read in until all of the instruction codes required for program execution are avail-
able. Furthermore, the number of read cycles increases in the following cases:

(1) The number of read cycles increases as many as the number of wait cycles incurred when reading
instruction codes from an area in which software wait or RDY or other wait states exist.

(2) When reading instruction codes from memory chips connected to an 8-bit bus, more read cycles are
required than for 16-bit bus.

» When reading or writing data to an area in which software wait or RDY or other wait states exist...

The number of read or write cycles increases as many as the number of wait cycles incurred.

* When reading or writing 16-bit data to memory chips connected to an 8-bit bus...

The memory is accessed twice to read or write one 16-bit data. Therefore, the number of read or write
cycles increases by one for each 16-bit data read or written.

» When reading or writing 16-bit data to memory chips connected to a 16-bit bus beginning with an odd
address...

The memory is accessed twice to read or write one 16-bit data. Therefore, the number of read or write
cycles increases by one for each 16-bit data read or written.

Note that if prefetch and data access occur in the same timing, data access has priority. Also, if more than
three bytes of instruction codes exist in the instruction queue buffer, the CPU assumes there is no free

space in the instruction queue buffer and, therefore, does not prefetch instruction code.

Figures 6.1.1 to 6.1.8 show examples of instruction queue buffer operation and CPU execution cycles.

266

Calculation number of cycles
6.1 Instruction queue buffer

Instructions
ey exoention C JMP TEST_11 X movw Y JMP TEST_12 D
Fechcose [64 [| [| Jmu[Je[[[[|
Content at jump address is Content at jump address is
prefetched at the same time the prefetched at the same time the
instruction queue buffer is Fetch Fetch instruction queue buffer is
cleared. \ cleared.
04 04 | o4 73 /73\ 64 (54) 04 04 04 73 73
Instruction 04 | oa [o4 [o [\or /[04 | 04 | 04 | 04 | 04 [FL [FL
queue buffer 04 04 | o4 64 04 | 04 04 04 04 00
04 04 04 40
Jump address
BCLK Sample program
Address Code Instruction
FCO050 64 JMP TEST_11
FCO051 04 NOP
FC052 04 NOP
Address bus FC052 FCO056 | FC058 FCO5A FC060 FC053 04 NOP
FC054 04 NOP
FC055 04 NOP
FC056 TEST_11:
FC056 7301 MOV.W RO,R1
Data bus(H) ' @ 04 FL @ FCO58 64 MP TEST 12
FC059 04 NOP
FCO5A 04 NOP
FCo05B 04 NOP
Data bus(L) 04 73 FCO5C 04 NOP
FCO05D 04 NOP
FCO5E TEST_12:
RD P P P P P
WR
P : Indicates a prefetch (reading from memory into the instruction queue buffer).
|:| :Indicates the locations of the instruction queue buffer that are cleared.

Figure 6.1.1. When executing a register transfer instruction starting from an even address

(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

Instructions
under execution

C

JMP TEST_11

X movw X

JMP TEST_12

)

[od)

Data bus (L)

a

&]

\0_4/

[ea)
o

mj

[~

]

e

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

l:l : Indicates the locations of the instruction queue buffer that are cleared.

Fechcode [65 [[[[| [wu] Je[[[[[]
Content at jump address is Not all codes are ready in Content at jump address is Not all codes are ready in the
prefetched at the same time the instruction queue buffer, prefetched at the same time instruction queue buffer, so the
the instruction queue buffer so the next read is the instruction queue buffer is next read is performed
is cleared. \performed * Fetch Fetch Cleared.
04 [04 [o4 | 73 [78 [[73 64 [(6a)] 04 [04 [04 [738 | 73 [73
Instruction 04 | 04 | o4 o1 [\or/[o4 [04 | 04 | 04 [04 FL | F1
queue buffer 04 04 04 64 64 04 04 04 04 04 00 00
Sample program
04 04 04 Address Code Instruction
FCOC2 65 IMP TEST_11
Jump address FCOC3 04 NOP
FCOC4 04 NOP
FCOC5 04 NOP
BCLK FCOC6 04 NOP
FCoC7 04 NOP
FCOC8 04 NOP
FCOC9 TEST_11:
FCOC9 7301 MOV.W RO,R1
Address bus < FCoc4 FCOCA >< Fcocc X FCOCE FCOD1| FCOD2 } Fooce o2 MP TEST 12
FCOCC 04 NOP
FCOCD 04 NOP
FCOCE 04 NOP
Data bus (H) 64 04 04 73 FCOCF 04 NOP
/ / FCODO 04 NOP
FCOD1 TEST_12:

Figure 6.1.2. When executing a register transfer instruction starting from an odd address

(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

267

6 Calculation number of cycles
6.1 Instruction queue buffer

Instructions JMP TEST_11 X MOV.W X JMP TEST_12 D
under execution

Fechcose [64 [|] [7Fjoodo] e [| []

Content at jump address is Corfﬂeﬂlfl aélumﬁ address is

: refetched at the same time
e e e Fetch Fetch 51e instruction queue buffer is
the instruction queue buffer Fetcl I d
is cleared. cleared.

04 | 04 | 04 7 [[1\]/ 00‘\ 64 [(e4)[04 [04 [04 3| 73
Instruction 04 04 04 F1 [\FL/N40/] o4 04 04 | o4 04 F1 | F1
queue buffer 04 04 04 00 64 04 04 04 04 00
Sample program
40 04 04 40 Address Code Instruction
- FC058 64 JMP TEST 11
Jump address Address from which to read data FC059 04 NOP
FCO5A 04 NOP
FCO5B 04 NOP
BCLK FCO5C 04 NOP
FCO5D 04 NOP
FCO5E TEST_11:

FCOSE 73F10040 MOV.W 04000h, R1

FC062 64 JMP TEST_12
Address bus FCO5A FCOSE | FC060| FC062 | 04000 FC064 FCO068 | FCO6A FC063 04 NOP
FC064 04 NOP

FC065 04 NoP
Content at address 400116 FC066 04 NOP

s FCO067 04 NOP
Data bus (H) a @ @ @ @ a @ FC068 TEST_12:

Content at address 400016

perabust) @ @ @ a ﬁ
P P P — DR— P P P
" - Juboy Uy

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
R : Indicates a data read.
l:l : Indicates the locations of the instruction queue buffer that are cleared.

Figure 6.1.3. When executing an instruction to read from even addresses starting from an even address

(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

instructions JMP_TEST 11 X MOV.W X JMP TEST_12)
under execution
Fechcode [64 [] [Ffomo]| [Je [[T]
Content at jump address is Content at jump address is
prefetched at the same lime Read from even prefetched at the same time
the instruction queue buffer Fetch address the instruction queue buffer
is cleared. Fetch is cleared.
04 | o4 [04 [73]/ 73\ oo\ 64 | 64 [(64)] 04 [04 [04 [73 [73
Instruction 04 | o4 [0a | 1 [\Fr/\40/| 04 | 04 [04 [04 | 04| 04 | A [R
queue buffer 04 04 | 04 o1 64 04 04 04 04 00
40 | o4 04 40 Sample program
Address Code Instruction
Jump address ~ Low-order address from High-order address from FC062 64 JMP TEST_11
which to read data which to read data FC063 04 NOP
FC064 04 NOP
BCLK FC065 04 NOP
FC066 04 NOP
FC067 04 NOP
FCo068 TEST_11:
FCO068 73F10140 MOV.W 04001h, R1
Address bus FCO064 FC068|FC06A| FCO6C}| 04001 | 04002 FCO6E FC072| FC074 FCo6C 64 VP TEST_12
FCo06D 04 NOP
FCO6E 04 NOP

Content at address 400116

FCO6F 04 NOP
/ FCO070 04 NOP
Data bus (H) @ @ AA 04, F1 FCO071 04 NOP
U FC072 TEST_12:
Content at address 400216

Data bus (L) E @ 64 AA—{04 73 @
P P P — DR— DR P P T P
ﬁ —|_|_|_|_|_|_|_|_|—|_|—’—U

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

R : Indicates a data read.
l:l : Indicates the locations of the instruction queue buffer that are cleared.

Figure 6.1.4. When executing an instruction to read from odd addresses starting from an even address

(Program area: 16-bit bus without wait state; Data area: 16-bit bus without wait state)

268

Calculation number of cycles
6.1 Instruction queue buffer

Instructions JMP TEST_11

X

MOvV.wW

under execution

JMP TEST_12

Content at address 400016

-
i

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
R : Indicates a data read.

Data bus (L)

DW : Indicates a data write.
: Indicates the locations of the instruction queue buffer that are cleared.

Fetchcode | 64 | [[73FF [0040 [0240 | [[6a | [[[|
] . The instruction Content at jump address is
Content at jump address is queue buffer is Fetch prefetched at the same time
prefetched at the same time Fetch /' Fetch/ Fetch/ emptied, so one the instruction queue buffer is
the instruction queue buffer more cycle is waited. cleared
is cleared.)
04 [04 [oa | 73 [[73\[00\[02 64 [(64)] 04 [04 [04 73 [73
Instruction o4 | o4 | oa | Fr [\Fe/[\40/[\40/ 04 | 04 | 04 | 04 | 0a| F1| F1
queue buffer 04 04 04 00 02 04 04 04 04 00
20 20 04 40 Sample program .
Address Code Instruction
FCo06C 64 JMP TEST_11
Jump address ~ Address from which to read data Address from which to write data FCO6D 04 NOP
FCO6E 04 NOP
FCO6F 04 NOP
FCO71 04 NOP
FC072 TEST_11:
FC072 73FF00400240 MOV.W 04000h, 04002h
Address bus FC078 64 JMP TEST_12
FCOGE Feora FCO79 04 NOP
FCO7A 04 NOP
Content at address 400116 FCO7B 04 NOP
r's FCO7C 04 NOP
Data bus (H) FCO7D 04 NOP
FCO7E TEST_12:

Figure 6.1.5. When executing an instruction to transfer data between even addresses starting from an even address

(Program area:

16-bit bus without wait state; Data area: 16-bit bus without wait state)

Content at address 400016

Vs
&

Data bus (L)

—|_P|_|_P|_|J

DR

P : Indicates a prefetch (reading from memory into the instruction queue buffer).
R : Indicates a data read.
W : Indicates a data write.

: Indicates the locations of the instruction queue buffer that are cleared.

Instructions JMP TEST_11 X MOV.W X IMP_ TEST_12 D
under execution
Fetchcode | 64 | [[73F1 [o040 | [[64 | [[[|
Content at jump address is prefetched at
Content at jump address is . ! N
prefetched at the same time Fetch/ Fetch Fetch iﬂ;ilse:'::j“me the instruction queue buffer
the instruction queue buffer .
is cleared.
04 [o0a [oa [73 [[73\][00\] 64 | 64 [(64)] 04 [04 [04 [73 [73
Instruction 04 | o4 | oa | Fr [\FL/N\4o/| 04 | 04 | 04 [04 [04 | 04 | FF [FF
queue buffer 04 | 04 | o4 0 | 64 04 | 0a | oa | o4 00
40 04 04 40 Sample program
Address Code Instruction
Jump address Address from which 1 wait FC150 64 JMP TEST_11
to read data FC151 04 NOP
FC152 04 NOP
BCLK FC153 04 NOP
FC154 04 NOP
FC155 04 NOP
FC156 TEST_11:
FC156 73F10040 MOV.W 04000h, R1
Address bus FC152 FC156{ FC158) FC15A) 04000 FC15C FC160| FC162 FCI15A 64 JMP TEST_12
FC15B 04 NOP
Content at address 400116 Egigg 83 mgg
FCISE 04 NOP
Data bus (H) @ @ @ FCI5F 04 NOP
FC160 TEST_12:

Figure 6.1.6. When executing an instruction to read from even addresses starting from an even address

(Program area: 16-bit bus without wait state; Data area: 16-bit bus with wait state)

269

6 Calculation number of cycles
6.1 Instruction queue buffer

Instructions JMP_ TEST_11 X MOV.W X IMP_TEST_12 D

under execution

Fetchcode | 64 | [[[[73F1] 0040 | [[64] [[[|
Content at jump address is Fetch Content at jump address is prefetched
prefetched at the same time Fetch Fetch at the same time the instruction queue
the instruction queue buffer buffer is cleared.
is cleared. \

04 | 0a [0a [73 [[73\[00\] 64 | 64 [(6a)] 04 [04] 0a [73| 73
Instruction 04 04 04 F1 Qzlj \4y 04 04 04 04 04 04 FF FF
00

queue buffer 04 04 04 o4 o o ” o m
40 04 04 40 Sample program
Address Code Instruction
Low-order address from High-order address from FC058 64 JMP TEST_11

Jump address which to read data FC059 04 NOP

which to read data

FCO5A 04 NOP
FCO05B 04 NOP
BCLK FCO05C 04 NOP
FCO05D 04 NOP
FCO5E TEST_11:
FCO5E 73F10040 MOV.W 04000h, R1
FC063 04 NOP
FC064 04 NOP
FCO065 04 NOP
/—\ FCO066 04 NOP
Data bus (H) 04 04 FC067 04 NOP
FC068 TEST_12:

Content at address 400016 Content at address 400116

prapee® a @ @ @ @ @ a @
. P P P —DRDR P P P

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

R : Indicates a data read.
DW : Indicates a data write.

l:l : Indicates the locations of the instruction queue buffer that are cleared.

Figure 6.1.7. When executing a read instruction for memory connected to 8-bit bus

(Program area: 16-bit bus without wait state; Data area: 8-bit bus without wait state)

Instructions
Instructions C JMP TEST_11 X MOV.W D¢ JMP TEST_12 D)
recheode [0] [T [[fma[[Jew[T Te[[T [T 1]
Content at jump address is Content at jump address is prefetched
prefetched at the same time at the same time the instruction queue
the instruction queue buffer Fetch Fetch Fetch buffer is cleared.
is cleared. \
04 [0a [oa [73] 73 [/73\] 00 | oo [/o0\[64 [64 [(ea)] 04 [0a [04 [73 [73 [73
Sample programs
Instruction 04 | 04 | o4 Fi [\FL/[40 | 40 [\40 /] 04 |04 [0a |04 [0a | 04 FE | FF | adoes Yode Instruction
queue buffer 04 | 04 | 04 00 64 | 64 04 | 04 [04 | 04 00 | FCO62 64 JMP - TEST_11
FC063 04 NOP
04 FC064 04 NOP
Low-order address from High-order address from FC065 04 NOP
Jump address which to read data prciiieonrivg FCO66 04 NOP
FCO67 04 NOP
FC068 TEST 11:
BCLK FCO68 73F10040 MOV.W 04000h, R1
FCO6C 64 JMP TEST_i2
FCO6D 04 NOP
FCO6E 04 NOP
FCOBF 04 NOP
Address bus FC065 FC068| FC069| FCO6A| FCOBB | FCOBC| FCO6D] 04000 | 04001 | FCOGE FCOBF FCo72| FCO73| FCO74F réo70 o4 NOP
FCO71 04 NOP
FCO72 TEST_12:
Data bus (H)

Content at address 400016 Content at address 400116

o o e e /O G e G Wi
_ P P P P P P—DR[DR P P P P P
RD

P : Indicates a prefetch (reading from memory into the instruction queue buffer).

DR : Indicates a data read.
DW : Indicates a data write.
: Indicates the locations of the instruction queue buffer that are cleared.

Figure 6.1.8. When executing a read instruction for memory connected to 8-bit bus
(Program area: 8-bit bus without wait state; Data area: 8-bit bus without wait state)

270

Q&A

Information in a Q&A form to be used to make the most of the M16C family is given below.

Usually, one question and the answer to it are given on one page; the upper section is for the question, and
the lower section is for the answer (if a pair of question and answer extends over two or more pages, a page
number is given at the lower-right corner).

Functions closely connected with the contents of a page are shown at its upper-right corner.

Q&A-1

CPU

Q

How do | distinguish between the static base register (SB) and the frame base register (FB)?

A

SB and FB function in the same manner, so you can use them as intended in programming in the
assembly language. If you write a program in C, use FB as a stack frame base register.

Q&A-2

Interrupt

Q

Is it possible to change the value of the interrupt table register (INTB) while a program is being
executed?

A

Yes. But there can be a chance that the microcomputer runs away out of control if an interrupt
request occurs in changing the value of INTB. So it is not recommended to frequently change the
value of INTB while a program is being executed.

Q&A-3

CPU

Q

What is the difference between the user stack pointer (USP) and the interrupt stack pointer (ISP)?,
What are their roles?

You use USP when using the OS. When several tasks run, the OS secures stack areas to save
registers of individual tasks. Also, stack areas have to be secured, task by task, to be used for
handling interrupts that occur while tasks are being executed. If you use USP and ISP in such an

instance, the stack for interrupts can be shared by these tasks; this allows you to efficiently use
stack areas.

Q&A-4

CPU

Q

How does the instruction code become if | use a bit instruction in absolute addressing ?

An explanation is given here by taking BSET bit,base:16 as an example.

This instruction is a 4-byte instruction. The 2 higher-order bytes of the instruction code indicate
operation code, and the 2 lower-order bytes make up addressing mode to expresse bit,base:16.
The relation between the 2 lower-order bytes and bit,base:16 is as follows.

2 lower-order bytes = base:16 X 8 + bit

For example, in the case of BSET 2,0AH (setting bit 2 of address 000A16 to 1), the 2 lower-order
bytes turn to A X 8 + 2 = 52H.

In the case of BSET 18,8H (setting the 18th bit from bit 0 of address 000816 to 1), the 2 lower-order
bytes turn to 8 X 8 + 18 = 52H, which is equivalent to BSET 2,AH.

The maximum value of base:16 X 8 + bit, FFFFH, indicates bit 7 of address 1FFFi6. This is the
maximum bit you can specify when using the bit instruction in absolute addressing.

Q&A-5

CPU

Q

What is the difference between the DIV instruction and the DIVX instruction?

Either of the DIV instruction and the DIVX instruction is an instruction for signed division, the sign of
the remainder is different.

The sign of the remainder left after the DIV instruction is the same as that of the dividend, on the
contrary, the sign of the remainder of the DIVX instruction is the same as that of the divisor.

In general, the following relation among quotient, divisor, dividend, and remainder holds.

dividend = divisor X quotient + remainder

Since the sign of the remainder is different between these instructions, the quotient obtained either
by dividing a positive integer by a negative integer or by dividing a negative integer by a positive
integer using the DIV instruction is different from that obtained using the DIVX instruction.

For example, dividing 10 by —3 using the DIV instruction yields —3 and leaves +1, while doing the
same using the DIVX instruction yields —4 and leaves —2.

Dividing —10 by +3 using the DIV instruction yields —3 and leaves —1, while doing the same using the
DIVX instruction yields —4 and leaves +2.

Q&A-6

Glossary

Technical terms used in this software manual are explained below. They are good in this manual only.

Glossary-1

Term

borrow

Meaning Related word
___|
Tomove a digit to the next lower position. carry
Tomove a digit to the next higher position. borrow

carry

context

decimal addition

displacement

effective address

extention area

LSB

Registers that a program uses.

An addition in terms of decimal system.

The difference between the initial position and later
position.

An after-modification address to be actually used.

For the M16C/60, M16C/20, M16C/Tiny series, the area
from 1000016 through FFFFF16.

Abbreviation for Least Significant Biit MSB
The bit occupying the lowest-order position of a data item.

Glossary-2

Term

Meaning

Related word

macro instruction

MSB

operand

operation

operation code

overflow

pack

SFR area

An instruction, written in a source language, to be
expressed in a number of machine instructions when
compiled into a machine code program.

Abbreviation for Most Significant Bit
The bit occupying the highest-order position of a
data item.

A part of instruction code that indicates the object on
which an operation is performed.

A generic term for move, comparison, bit processing,
shift, rotation, arithmetic, logic, and branch.

A part of instruction code that indicates what sort of
operation the instruction performs.

To exceed the maximum expressible value as a result
of an operation.

To join data items.

Used to mean to form two 4-bit data items into one 8-
bit data item, to form two 8-bit data items into one 16-
bit data item, etc.

Abbreviation for Special Function Area. An area in
which control bits of peripheral circuits embodied in a
microcomputer and control registers are located.

LSB

operation code

operand

unpack

Glossary-3

Term

Meaning Related word

shift out

sign bit

sign extension

stack frame

string

unpack

Zero extension

To move the content of a register either to the right or
left until fully overflowed.

A bit that indicates either a positive or a negative (the
highest-order bit).

To extend a data length in which the higher-order to be
extended are made to have the same sign of the sign
bit. For example, sign-extending FF16 results in
FFFF16, and sign-extending OF16 results in 000F16.

An area for automatic variables the functions of the C
language use.

A sequence of characters.

To restore combined items or packed informationto pack
the original form. Used to mean to separate 8-bit
information into two parts — 4 lower-order bits and

four higher-order bits, to separate 16-bit information

into two parts — 8 lower-order bits and 8 higher-order

bits, or the like.

To extend a data length by turning higher-order bits to
0's. For example, zero-extending FF16 to 16 bits
results in 00FF16.

Glossary-4

Table of symbols

Symbols used in this software manual are explained below. They are good in this manual only.

Symbol-1

Symbol Meaning
- Transposition from the right side to the left side
—— Interchange between the right side and the left side
+ Addition
- Subtraction
X Multiplication
- Division
AN Logical conjunction
\ Logical disjunction
A4 Exclusive disjunction
B Logical negation
dspl6 16-bit displacement
dsp20 20-bit displacement
dsp8 8-bit displacement
EVA() An effective address indicated by what is enclosed in (A@)
EXT() Sign extension
(H) Higher-order byte of a register or memory
H4: Four higher-order bits of an 8-bit register or 8-bit memory
[1 Absolute value
L) Lower-order byte of a register or memory
L4: Four lower-order bits of an 8-bit register or 8-bit memory
LSB Least Significant Bit
M() Content of memory indicated by what is enclosed in (A@)
(M) Middle-order byte of a register or memory
MSB Most Significant Bit
PCH Higher-order byte of the program counter
PCML Middle-order byte and lower-order byte of the program counter
FLGH Four higher-order bits of the flag register
FLGL Eight lower-order bits of the flag register

Symbol-2

A0 and Al e 5
A1AQ eee 5

Address register ess 5
Address space e 3

Addressing mode ees 22

B

B flag e 6
Byte (8-bit) data e 16

C
Cflag e 6
Carry flag e 6
Cycles e 139

D

D flag e 6

Data arrangement in memory e 17

Data arrangement in Register ess 16

Data register e 4
Data type e 10
Debug flag e« 6

Description example e 37

dest eee 18

FB eee 5
Fixed vector table ees 19
Flag change e 37
Flag register eee 5

FLG eee 5

Index

Index-1

Frame base register eee 5

Function eee 37

Interrupt table register ese 5
| flag ees 6

Instruction code ees 139
Instruction Format e 18
Instruction format specifier e 35
INTB eee 5

Integer ees 10

Interrupt enable flag e 6
Interrupt stack pointer ess 5
Interrupt vector table e 19
IPL eee 7

ISP eee 5

L

Long word (32-bit) data e 16

M

Maskable interrupt see 248
Memory bit ees 12

Mnemonic ee» 35, 38

N
Nibble (4-bit) data e 16
Nonmaskable interrupt e 248
@)

O flag e« 6
Operand e+ 35, 38

Operation ees 37

Overflow flag e+ 6

PC s 5

Processor interrupt priority level eee 7

Program counter eee 5

R

RO, R1, R2, and R3 ee* 4
ROH, R1H eee 4

ROL, R1L eee 4

R2RQ eee 4

R3R1 eee 4

Register bank e 8

Register bank select flag *ss 6
Register bit eee 12

Related instruction ees 37

Reset eee 9

Sflag e 6

SB eee §

Selectable src / dest (label) e 37
Sign flag e+ 6

Size specifier eee 35

Software interrupt number ese 20
Special page number ess 19
Special page vector table e 19
SIc ees 18

Stack pointer e 5

Stack pointer select flag e 6

Index-2

Static base register e 5
String ee* 15
Syntax eee 35, 38

U flag e+ 6
User stack pointer see 5

USP e 5

Vv

Variable vector table ees 20

w

Word (16-bit) data = 16

z

Z flag e 6

Zero flag e 6

REVISION HISTORY M16C/60, M16C/20, M16C/Tiny Series Software Manual

Rev.

Date

Description

Page

Summary

Sep 09, 1999

Page 104 [Operation] Line 3
Add to “ *1 When dest is SP or when the U flag = “0” and dest is ISP, the value 2 is
not added to SP.”

Page 108 [Operation] Line 3
Add to “ *1 When srcis SP or when the U flag = “0” and src is ISP, the SP before
being subtracted by 2 is saved. ”

*Page 111 [Function] Line 5
Add to “ A0, Al and R3 are indeterminate. ”

*Page 125 [Function] Line 3
Add to “ However, the flag changes depending on the AO or Al status (16 bits)
before the operation is performed. ”

*Page 265 to 270
Add to “Chapter 6”

Bl

Sep 21, 2000

Page 194 (1) LDINTB #IMM
*1 #IMM1 indicates the 4 high-order bits of #IMM.
#IMM2 indicates the 4 low-order bits of #IMM.
—>
*1 #IMM1 indicates the 4 high-order bits of #IMM.
#IMM2 indicates the 16 low-order bits of #IMM.

B2

Mar 07, 2001

Page 255
The DIVX instruction requires a maximum time that consists of 30 cycles

(without wait state) er-31-eyetes{with-ene-wait-cyele).

B3

Jul 09, 2002

Page 74
« If you selected (.B) for the size specifier (.size), RO is sign extended to
32 bits. In this case, R2 is used for the upper bytes.

—>
* If you selected (.W) for the size specifier (.size), RO is sign extended to
32 bits. In this case, R2 is used for the upper bytes.
Page 126
[Function]
——
[Function]
* This instruction transfers src to dest when the Z flag is O.

B-1

REVISION HISTORY M16C/60, M16C/20, M16C/Tiny Series Software Manual

Rev.

Date

Description

Page

Summary

B3

Jul 09, 2002

Page 127 [Function]
 This instruction transfers src to dest when the Z flag is 0.
>

 This instruction transfers src to dest when the Z flag is 1.

Page 128 [Function]
 This instruction transfers src to dest when the Z flag is 1.
>
« This instruction transfers src1 to dest when the Z flag is 1. When the Z
flag is O, it transfers src2 to dest.

Page 129 [Function]
 This instruction transfers src1 to dest when the Z flag is 1. When the Z
flag is O, it transfers src2 to dest.

* This instruction subtracts src from dest and stores the result in dest.

« If destis an AO or A1 when the size specifier (.size) you selected is (.B),
srcis zero-expanded to
>
 This instruction subtracts src from dest and stores the result in dest.
« If destis an AO or A1 when the size specifier (.size) you selected is (.B),
srcis zero-expanded to perform operation in 16 bits. If srcis an AO or
Al, operation is performed on the 8 low-order bits of AO or Al.

Page 131 [Function]
perform operation in 16 bits. If srcis an AO or Al, operation is per-
formed on the 8 low-order bits of AO or Al.

« Each flag in the flag register changes state depending on the result of
logical AND of src and dest.
« If destis an AO or A1 when the size specifier (.size) you selected is (.B),

srcis zero-expanded to
—>

« Each flag in the flag register changes state depending on the result of
logical AND of src and dest.

« If destis an AO or A1 when the size specifier (.size) you selected is (.B),
srcis zero-expanded to perform operation in 16 bits. If srcis an AO or
Al, operation is performed on the 8 low-order bits of AO or Al.

B-2

REVISION HISTORY M16C/60, M16C/20, M16C/Tiny Series Software Manual

Rev. Date Description

Page Summary

B3 | Jul 09, 2002 - Page 132 [Function]
perform operation in 16 bits. If srcis an AO or Al, operation is per-
formed on the 8 low-order bits of AO or Al.

—>
 This instruction generates an undefined instruction interrupt.
» The undefined instruction interrupt is a nonmaskable interrupt.

Page 133 [Function]
 This instruction generates an undefined instruction interrupt.
—>
» This instruction halts program execution. Program execution is re-
started when an interrupt of a higher priority level than IPL is acknowl-
edged or a reset is generated.

Page 134 [Function]
* The undefined instruction interrupt is a nonmaskable interrupt.
 This instruction halts program execution. Program execution is re-
started when an interrupt of a higher priority level than IPL is acknowl-
edged or a reset is generated.

—>
* This instruction exchanges contents between src and dest.
« If destis an AO or A1 when the size specifier (.size) you selected is (.B),
16 bits of zero- expanded src data are placed in the AO or A1 and the 8
low-order bits of the AO or Al are placed in src.

Page 135 [Function]
* This instruction exchanges contents between src and dest.

« If destis an AO or A1 when the size specifier (.size) you selected is (.B),
16 bits of zero- expanded src data are placed in the AO or A1 and the 8
low-order bits of the AO or Al are placed in src.

B-3

REVISION HISTORY M16C/60, M16C/20, M16C/Tiny Series Software Manual

Rev. Date Description
Page Summary
4.00 | Jan 21, 2004 253, 262| Add TECHNICAL NEWS NO M16C-85-0204 “M16C Family Usage Precautions when

Clearing Interrupt Request Bit “

B-4

RENESAS 16-BIT SINGLE-CHIP MICROCOMPUTER
SOFTWARE MANUAL
M16C/60, M16C/20, M16C/Tiny Series

Publication Data : Rev.B3 Jul 15, 2002
Rev.4.00 Jan 21, 2004
Published by : Sales Strategic Planning Div.
Renesas Technology Corp.

© 2003, 2004. Renesas Technology Corp., All rights reserved. Printed in Japan.

M16C/60, M16C/20, M16C/Tiny Series
Software Manual

RENESAS

Renesas Electronics Corporation
1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan REJO9B0137-0400Z

