

Hi-performance Regulator IC Series for PCs

Nch FET Ultra LDOs for Desktop PCs Chipsets with Power Good

Description

The BD3540NUV, BD3541NUV low-voltage output linear 1ch series chipset regulator IC operates from a very low input supply, and offers ideal performance in low input voltage to low output voltage applications. It incorporates a built-in N-MOSFET power transistor to minimize the input-to-output voltage differential to the ON resistance (Ron= $200m\Omega \sim 400m\Omega$) level. By lowering the dropout voltage in this way, the regulator realizes high current output (lomax= $0.5A \sim 1.0A$) with reduced conversion loss, and thereby obviates the switching regulator and its power transistor, choke coil, and rectifier diode. Thus, the BD3540NUV, BD3541NUV are designed to enable significant package profile downsizing and cost reduction. An external resistor allows the entire range of output voltage configurations between 0.65 and 2.7V, while the NRCS (soft start) function enables a controlled output voltage ramp-up, which can be programmed to whatever power supply sequence is required.

Features

- 1) High-precision voltage regulator(0.65V±1%)
- 2) Built-in VCC undervoltage lockout circuit
- 3) NRCS (soft start) function reduces the magnitude of in-rush current
- 4) Internal Nch MOSFET driver offers low ON resistance
- 5) Built-in current limit circuit
- 6) Built-in thermal shutdown (TSD) circuit
- 7) Variable output
- 8) Small package VSON010V3030 : 3.0 × 3.0 × 1.0(mm)
- 9) Tracking function

Applications

Notebook computers, Desktop computers, LCD-TV, DVD, Digital appliances

●Line-up

It is available to select power supply voltage and maximum output voltage.

it is a tailable to color portor supply tollage and maximum surput tollage.						
Maximum Output Voltage	Package	Vcc=5V				
0.5A	VSON040V2020	BD3540NUV				
1.0A	VSON010V3030	BD3541NUV				

Absolute maximum ratingsBD3540NUV, BD3541NUV

Parameter	Cumbal	Lir	l leit	
Farameter	Symbol BD3540NUV	BD3541NUV	Unit	
Input Voltage 1	Vcc	+6.	0 *1	V
Input Voltage 2	V_{IN}	+6.	0 *1	V
Enable Input Voltage	V _{en}	-0.3~	+ 6.0	V
PGOOD Input Voltage	V_{PGOOD}	+6.	0*1	V
Power Dissipation 1	Pd1	0.70*2		W
Power Dissipation 2	Pd2	1.27 ^{*2}		W
Power Dissipation 3	Pd3	3.0	3 ^{*2}	W
Operating Temperature Range	Topr	-10~	+100	°C
Storage Temperature Range	Tstg	-55~	+150	°C
Junction Temperature	Tjmax	+1	50	°C

^{*1} Should not exceed Pd.

●Operating Voltage(Ta=25°C)

©BD3540NUV, BD3541NUV

Parameter	Symbol	Min.	Max.		Unit
Input Voltage 1	V_{CC}	3.0	5.5		V
Input Voltage 2	V _{IN}	0.95	VCC-1 *1*5		V
Output Valtage	Io	-	BD3540NUV	BD3541NUV	А
Output Voltage			0.5	1.0	
PGOOD Input Voltage	V_{PGOOD}	-0.3	5.5		V
Output Voltage Setting Range	Vo	V_{FB}	2.7		V
Enable Input Voltage	Ven	0	5.5		V

^{*5} VCC and VIN do not have to be implemented in the order listed.

Attention : About this document

The official specification of this product (BD354XNUV) is the Japanese version.

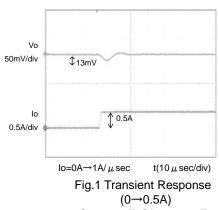
This translation is intended only as a reference to understand the official version.

If there are any differences between the Japanese and this translated version, the official Japanese version takes priority.

^{*2} Reduced by 5.6mW/°C for each increase in Ta≧25°C (when mounted on a 74.2mm × 74.2mm × 1.6mm glass-epoxy board, 1-layer) On less than 0.2% (percentage occupied by copper foil.

^{*3} Reduced by 10.1mW/°C for each increase in Ta≥25°C (when mounted on a 74.2mm×74.2mm×1.6mm glass-epoxy board, 1-layer) On less than 7.0% (percentage occupied by copper foil.

^{*4} Reduced by 24.2mW/°C for each increase in Ta≥25°C (when mounted on a 74.2mm × 74.2mm × 1.6mm glass-epoxy board, 1-layer) On less than 65.0% (percentage occupied by copper foil.


^{*}This product is not designed for use in radioactive environments.

Electrical Characteristics

(Unless otherwise specified, Ta=25°C, VCC=5V, Ven=3V, VIN=1.7V, R1=3.9K Ω , R2=3.3K Ω)

(Unless otherwis	Parameter		1, 10 07, 1	Limit		ŕ	0 177
Paran	neter	Symbol	Min.	Тур.	Max.	Unit	Condition
Bias Current		ICC	-	0.7	1.0	mA	
VCC Shutdown M	Node Current	IST	-	0	10	μΑ	Ven=0V
Output Voltage		VOUT	-	1.200	-	V	
Output Voltage Te	emperature	Tcvo	-	0.01	-	%/°C	
Feedback Voltage	e 1	VFB1	0.643	0.650	0.657	V	
Feedback Voltage	e 2	VFB2	0.637	0.650	0.663	V	Tj=-10 to 100°C
Load Regulation		Reg.L	-	0.5	10	mV	(BD3540NUV lo=0A to 0.5A) (BD3541NUV lo=0A to 1.0A)
Line Regulation 1		Reg.I1	-	0.1	0.5	%/V	VCC=3.0V to 5.5V
Line Regulation 2	2	Reg.l2	-	0.1	0.5	%/V	VIN=1.5V to 3.3V
Standby Discharg	je Current	Iden	1	-	-	mA	Ven=0V, Vo=1V
[ENABLE]							
Enable Pin Input Voltage Hig	h	Enhi	2	-	-	V	
Enable PinInput Voltage Low		Enlow	0	-	VCC × 0.15	V	
Enable Input Bias	Current	len	-	7	10	μA	Ven=3V
[NRCS]							
NRCS Charge Current		Inrcs	14	20	26	μΑ	Vnrcs=0.5V
NRCS Standby V	oltage	VSTB	-	0	50	mV	Ven=0V
[UVLO]							
VCC Undervoltage Threshold Voltage	e	VccUVLO	2.3	2.5	2.7	V	Vcc:Sweep-up
VCC Undervoltag Hysteresis Voltag		Vcchys	50	100	150	mV	Vcc:Sweep-down
[PGOOD]							
Low-side Threshold Voltage		V_{THPGL}	VO×0.87	VO×0.9	VO×0.93	V	
High-side Threshold Voltage		V_{THPGL}	VO×1.07	VO × 1.1	VO×1.13	V	
PGDLY charge current		I _{PGDLY}	1.4	2.0	2.6	μΑ	
Ron		R _{PG}	30	75	150	Ω	
[AMP]	[AMP]						
Minimum	BD3540NUV	dVo	-	200	300	mV	Io=0.5A, VIN=1.2V, Ta=-10 to 100°C
dropout voltage	BD3541NUV	dvo	-	200	300	mV	Io=1.0A, VIN=1.2V, Ta=-10 to 100°C

● Reference Data(BD3540NUV)

Co=100µF, Cfb=1000pF

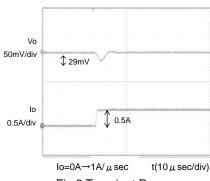
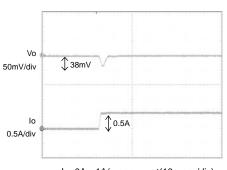



Fig.2 Transient Response $(0 \to 0.5A)$ Co=47µF, Cfb=1000pF

 $t(10 \,\mu\,\text{sec/div})$ $lo=0A\rightarrow 1A/\mu sec$ Fig.3 Transient Response (0→0.5A) Co=22uF. Cfb=1000pF

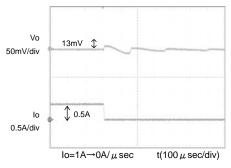
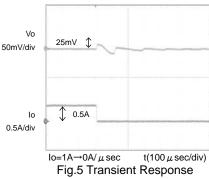



Fig.4 Transient Response $(0.5 \to 0A)$ Co=100uF. Cfb=1000pF

(0.5→0A) Co=47µF, Cfb=1000pF

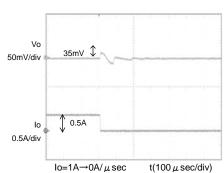
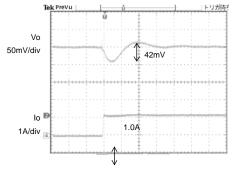
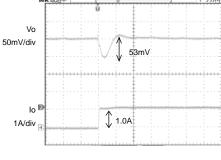




Fig.6 Transient Response $(0.5 \rightarrow 0A)$ Co=22µF, Cfb=1000pF

● Reference Data(BD3541NUV)

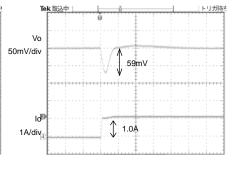


Fig.7 Transient Response (0→1.0A) Co=100µF, Cfb=1000pF

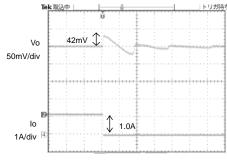


Fig.10 Transient Response (1.0→0A) Co=100µF, Cfb=1000pF

Fig.8 Transient Response (0→1.0A) Co=47µF, Cfb=1000pF

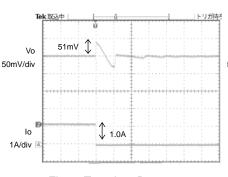
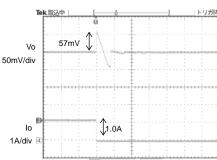
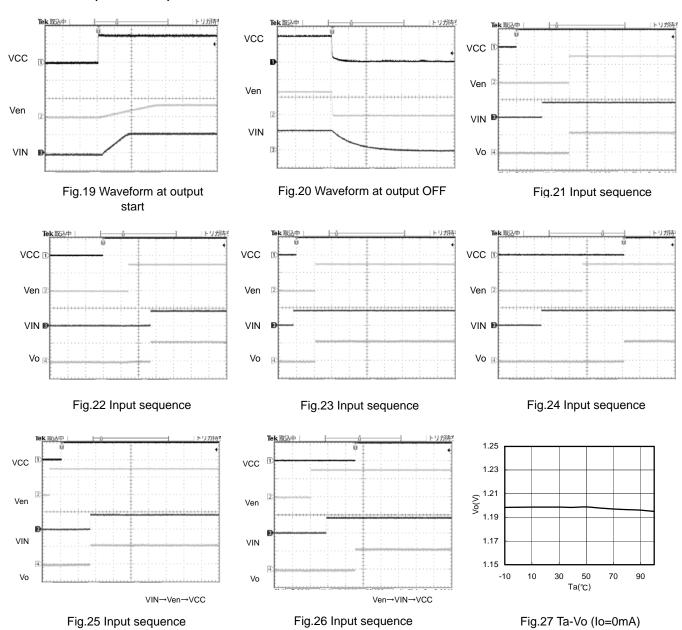
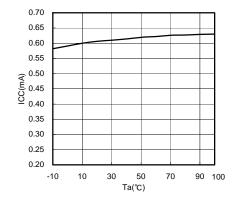
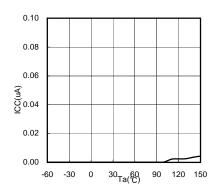


Fig.11 Transient Response (1.0→0A) Co=47µF, Cfb=1000pF

Fig.9 Transient Response (0→1.0A) Co=22µF, Cfb=1000pF


Fig.12 Transient Response $(1.0 \to 0A)$ Co=22µF, Cfb=1000pF

● Reference Data(BD3540NUV)

● Reference Data(BD3540NUV)

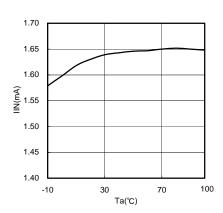
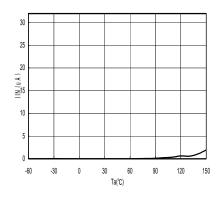
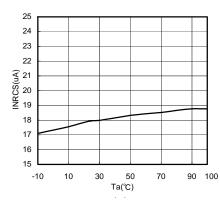




Fig.28 Ta-ICC

Fig.30 Ta-IIN

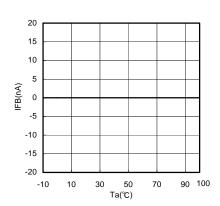
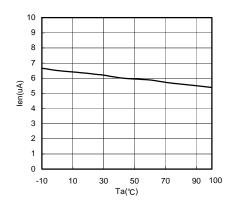
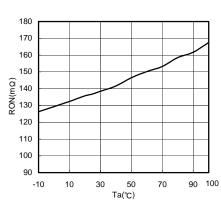




Fig.31 Ta-IINSTB

Fig.32 Ta-INRCS

Fig.33 Ta-IFB

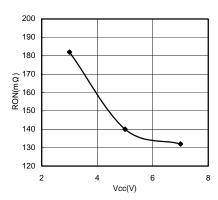
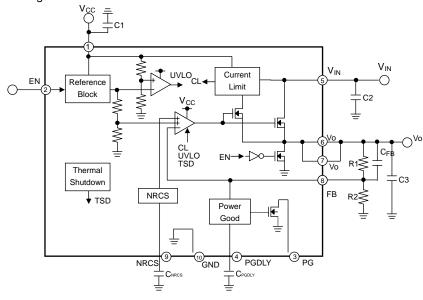
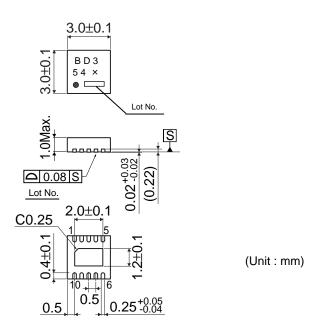



Fig.34 Ta-len

Fig.35 Ta-RON (VCC=5V/Vo=1.2V)

Fig.36 VCC-RON


●Block Diagram

●Pin Function Table

PIN No.	PIN name	PIN Function	
1	VCC	Power supply pin	
2	EN	Enable input pin	
3	PG	Power Good pin	
4	PGDLY	Power Good Delay capacitor connection pin	
5	VIN	Input voltage pin	
6	VO	Output voltage pin	
7	VO	Output voltage pin	
8	FB	Reference voltage feedback pin	
9	NRCS	In-rush current protection (NRCS) capacitor connection pin	
10	GND	Ground pin	

Operation of Each Block

AMP

This is an error amp that compares the reference voltage (0.65V) with Vo to drive the output Nch FET (Ron= $100m\Omega \sim 400m\Omega$). Frequency optimization helps to realize rapid transient response, and to support the use of ceramic capacitors on the output. AMP input voltage ranges from GND to 2.7V, while the AMP output ranges from GND to VCC. When EN is OFF, or when UVLO is active, output goes LOW and the output of the NchFET switches OFF.

• EN

The EN block controls the regulator's ON/OFF state via the EN logic input pin. In the OFF position, circuit voltage is maintained at $0\,\mu$ A, thus minimizing current consumption at standby. The FET is switched ON to enable discharge of the NRCS pin Vo, thereby draining the excess charge and preventing the IC on the load side from malfunctioning. Since no electrical connection is required (e.g., between the VCC pin and the ESD prevention Diode), module operation is independent of the input sequence.

UVLO

To prevent malfunctions that can occur during a momentary decrease in VCC, the UVLO circuit switches the output OFF, and (like the EN block) discharges NRCS and Vo. Once the UVLO threshold voltage (TYP2.5V) is reached, the power-on reset is triggered and output continues.

· CURRENT LIMIT

When output is ON, the current limit function monitors the internal IC output current against the parameter value (2.0A or more:BD3540NUV). When current exceeds this level, the current limit module lowers the output current to protect the load IC. When the overcurrent state is eliminated, output voltage is restored to the parameter value.

NRCS (Non Rush Current on Start-up)

The soft start function enabled by connecting an external capacitor between the NRCS pin and ground. Output ramp-up can be set for any period up to the time the NRCS pin reaches VFB (0.65V). During startup, the NRCS pin serves as a 20µA (TYP) constant current source to charge the external capacitor. Output start time is calculated via formula (1) below.

$$t = C \frac{0.65V}{20\mu A}$$
 • • • (1)

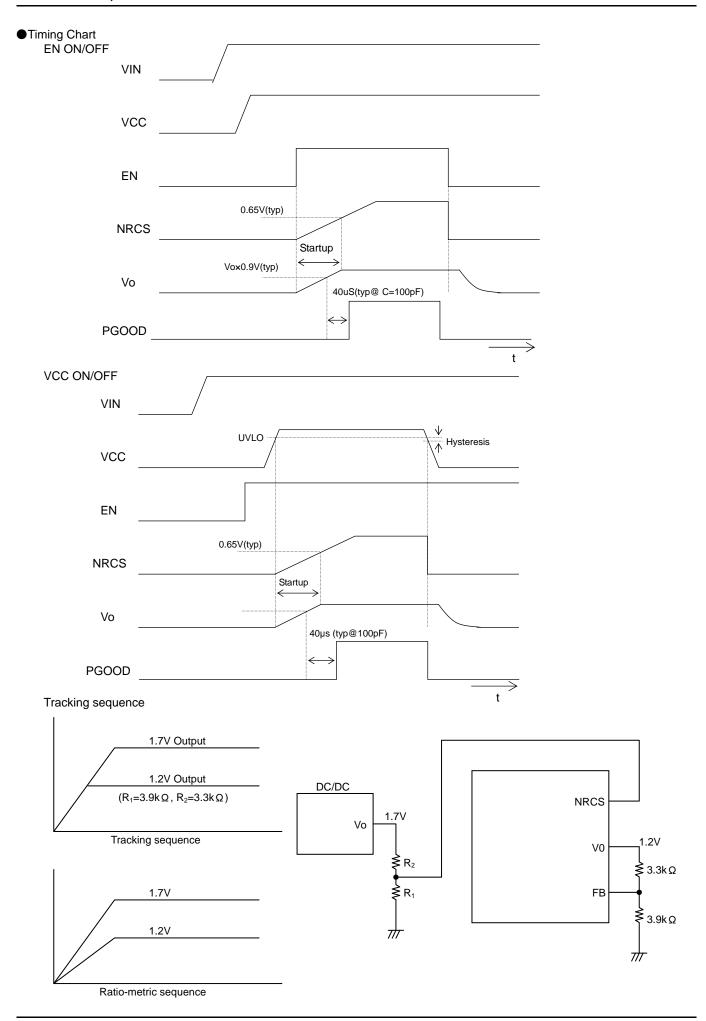
Tracking sequence is available by connecting the output voltage of external power supply instead of external capacitor. And then, ratio-metric sequence is also available by changing the resistor division ratio of external power supply output voltage. (See the next page)

TSD (Thermal Shut down)

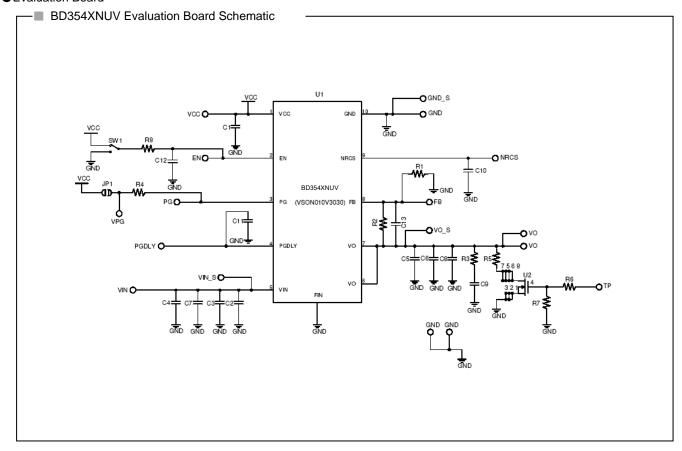
The shutdown (TSD) circuit automatically switches output OFF when the chip temperature gets too high, thus serving to protect the IC against "thermal runaway" and heat damage. Because the TSD circuit is provided to shut down the IC in the presence of extreme heat, in order to avoid potential problems with the TSD, it is crucial that the Tj (max) parameter not be exceeded in the thermal design.

VIN

The VIN line acts as the major current supply line, and is connected to the output NchFET drain. Since no electrical connection (such as between the VCC pin and the ESD protection Diode) is necessary, VIN operates independent of the input sequence. However, since an output NchFET body Diode exists between VIN and Vo, a VIN-Vo electric (Diode) connection is present. Note, therefore, that when output is switched ON or OFF, reverse current may flow to VIN from Vo.


PGOOD

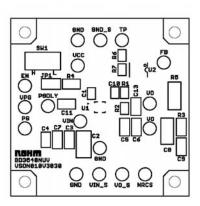
It outputs the output voltage (Vo). PGOOD pin (open drain) is used to pull up the $100k\Omega$ resistor. PGOOD will be judged HIGH between the FB voltage 0.585V(TYP) to 0.715V(TYP), and will be judged LOW if the voltage is out of range.


PGDLY

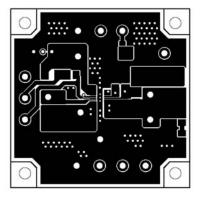
It is available to set PGOOD output delay. PGDLY pin should be connected to 100pF capacitor. PGOOD delay time id determined by the following formula.

$$t_{pgdly} = \frac{C(pF) \times 0.75}{I_{pgdly} (\mu A)}$$
 (µsec)

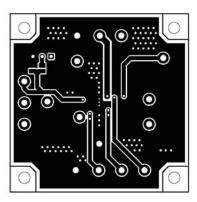
Evaluation Board

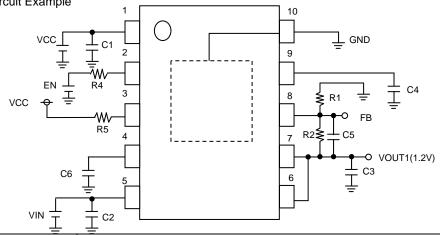

■ BD354XNUV Evaluation Board Standard Component List

Component	Rating	Manufacturer	Product Name
U1	-	ROHM	BD354XNUV
C1	1uF	MURATA	GRM188B11A105KD
C10	0.01uF	MURATA	GRM188B11H103KD
R8	0Ω	-	Jumper
C5	22uF	KYOCERA	CM32X5R226M10A

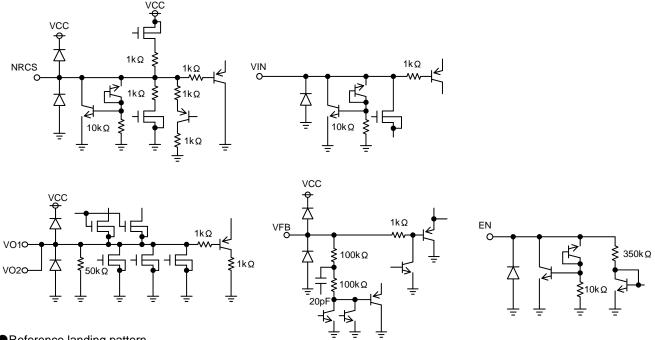

Component	Rating	Manufacturer	Product Name
C2	22uF	KYOCERA	CM32X5R226M10A
C13	1000pF	MURATA	GRM188B11H102KD
R1	3.9kΩ	ROHM	MCR03EZPF3301
R2	3.3kΩ	ROHM	MCR03EZPF3901
R4	100kΩ	ROHM	MCR03EZPF

■ BD354XNUV Evaluation Board Layout (2nd layer and 3rd layer are GND Line.)

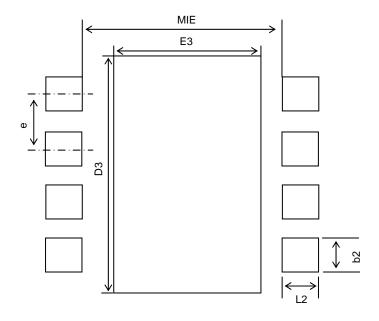



TOP Layer

Bottom Layer



● Recommended Circuit Example



	_ _	<u>-</u>
Component	Recommended Value	Programming Notes and Precautions
R1/R2	3.9k/3.3k	IC output voltage can be set with a configuration formula using the values for the internal reference output voltage (V_{FB})and the output voltage resistors (R1, R2). Select resistance values that will avoid the impact of the VREF current (± 100 nA). The recommended total resistance value is 10 K Ω .
C 3	22µF	To assure output voltage stability, please be certain the VOUT1 pins and the GND pins are connected. Output capacitors play a role in loop gain phase compensation and in mitigating output fluctuation during rapid changes in load level. Insufficient capacitance may cause oscillation, while high equivalent series reisistance (ESR) will exacerbate output voltage fluctuation under rapid load change conditions. While a 22µF ceramic capacitor is recomended, actual stability is highly dependent on temperature and load conditions. Also, note that connecting different types of capacitors in series may result in insufficient total phase compensation, thus causing oscillation. In light of this information, please confirm operation across a variety of temperature and load conditions.
C1	1µF	Input capacitors reduce the output impedance of the voltage supply source connected to the (VCC) input pins. If the impedance of this power supply were to increase, input voltage (VCC) could become unstable, leading to oscillation or lowered ripple rejection function. While a low-ESR 1µF capacitor with minimal susceptibility to temperature is recommended, stability is highly dependent on the input power supply characteristics and the substrate wiring pattern. In light of this information, please confirm operation across a variety of temperature and load conditions.
C2	22µF	Input capacitors reduce the output impedance of the voltage supply source connected to the (VIN) input pins. If the impedance of this power supply were to increase, input voltage (VIN) could become unstable, leading to oscillation or lowered ripple rejection function. While a low-ESR 22µF capacitor with minimal susceptibility to temperature is recommended, stability is highly dependent on the input power supply characteristics and the substrate wiring pattern. In light of this information, please confirm operation across a variety of temperature and load conditions.
C4	0.01μF	The Non Rush Current on Startup (NRCS) function is built into the IC to prevent rush current from going through the load (VIN to VO) and impacting output capacitors at power supply start-up. Constant current comes from the NRCS pin when EN is HIGH or the UVLO function is deactivated. The temporary reference voltage is proportionate to time, due to the current charge of the NRCS pin capacitor, and output voltage start-up is proportionate to this reference voltage. Capacitors with low susceptibility to temperature are recommended, in order to assure a stable soft-start time.
C5	-	This component is employed when the C3 capacitor causes, or may cause, oscillation. It provides more precise internal phase correction.
R5	100k	It is pull-up resistance of Open Drain pin. $100k\Omega$ is recommended.
R4	Several kΩ ~several 10kΩ	It is recommended that a resistance (several $k\Omega$ to several $10k\Omega$) be put in R4, in case negative voltage is applied in EN pin.

●Input-Output Equivalent Circuit Diagram

Reference landing pattern

(Unit: mm)

Lead pitch	Lead pitch	landing length	landing pitch
е	MIE	≧l2	b2
0.65	2.50	0.40	0.35
central pad length	central pad pitch		
D3	E3		
3.00	1.90		

^{*}It is recommended to design suitable for the actual application.

Notes for Use

1. Absolute maximum ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.

2. GND voltage

The potential of GND pin must be minimum potential in all operating conditions.

3. Thermal design

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.

4. Actions in strong electromagnetic field

Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.

5. ASO

When using the IC, set the output transistor so that it does not exceed absolute maximum ratings or ASO.

6. Thermal shutdown circuit

The IC incorporates a built-in thermal shutdown circuit (TSD circuit: Latch type). The thermal shutdown circuit (TSD circuit: Latch type) is designed only to shut the IC off to prevent thermal runaway. It is not designed to protect the IC or guarantee its operation.

Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit isassumed.

TSD ON temperature [°C](typ.)	Hysteresis temperature [°C] (typ.)
175	15

7. Ground Wiring Pattern

When using both small signal and large current GND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the ground potential of application so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern of any external components, either.

8. Output voltage resistance setting (R1, R2)

Output voltage resistance is adjusted with resistor R1 and R2. This IC is calculated as $V_{FB} \times (R1+R2) / R1$. Total $10k\Omega$ is recommended so that the output voltage is not affected by the V_{FB} bias current.

9. Output capacitors (C3)

To assure output voltage stability, please be certain the V_01 , V_02 , and V_03 pins and the GND pins are connected. Output capacitors play a role in loop gain phase compensation and in mitigating output fluctuation during rapid changes in load level. Insufficient capacitance may cause oscillation, while high equivalent series resistance (ESR) will exacerbate output voltage fluctuation under rapid load change conditions. While a 47uF ceramic capacitor is recommended, actual stability is highly dependent on temperature and load conditions. Also, note that connecting different types of capacitors in series may result in insufficient total phase compensation, thus causing oscillation. In light of this information, please confirm operation across a variety of temperature and load conditions.

10. Input capacitors setting (C1, C2)

Input capacitors reduce the impedance of the voltage supply source connected to the (VCC, VIN) input pins. If the impedance of this power supply were to increase, input voltage (VCC, VIN) could become unstable, leading to oscillation or lowered ripple rejection function. Stability highly depends on the input power supply characteristic and the substrate wiring pattern. Please confirm operation across a variety of temperature and load conditions.

11. NRCS pin capacitors setting (Cnrcs)

The Non Rush Current on Startup (NRCS) function is built in the IC to prevent rush current from going through the load (VIN to VO) and impacting output capacitors at power supply start-up. The constant current comes from the NRCS pin when EN is HIGH or the UVLO function is deactivated. The temporary reference voltage is proportionate to time, due to the current charge of the NRCS pin capacitor, and output voltage start-up is proportionate to this reference voltage. To obtain a stable NRCS delay time, capacitors with low susceptibility to temperature are recommended.

12. Input pins (Vcc, VIN, EN)

This IC's EN pin, VIN pin, and VCC pin are isolated, and the UVLO function is built in the VCC pin to prevent undervoltage lockout. It does not depend on the Input pin order. Output voltage starts up when VCC and EN reach the threshold voltage. However, note that when putting in VIN pin lastly, VO may result in overshooting.

13. Heat sink (FIN)

Since the heat sink (FIN) is connected to with the Sub, short it to the GND. It is possible to minimize the thermal resistance by soldering it to substrate. Please solder properly.

- 14. Please add a protection diode when a large inductance component is connected to the output terminal, and reverse-polarity power is possible at start-up or in output OFF condition.
- 15. Short-circuits between pins and mounting errors

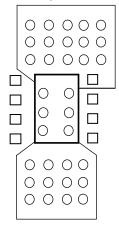
Please be sure to install the IC in correct position and orientation. Mounting errors, such as incorrect positioning or orientation, or connecting of the power supply in reverse polarity can also destroy the IC. Short-circuit between pins or pin and the power supply, or between ground may also damage to the IC.

Heat Loss

Thermal design should allow operation within the following conditions. Note that the temperatures listed are the allowed temperature limits, and thermal design should allow sufficient margin from the limits.

- 1. Ambient temperature Ta can be no higher than 100°C.
- 2. Chip junction temperature (Tj) can be no higher than 150°C.

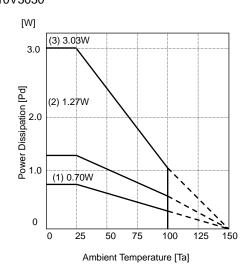
Chip junction temperature can be determined as follows:

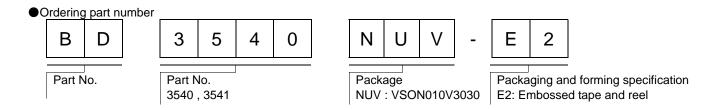

① Calculation based on ambient temperature (Ta)

Tj=Ta+ θ j-a × W

<Reference values>

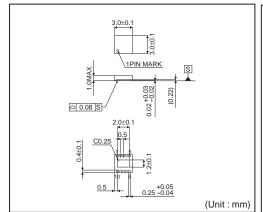
 θ j-a:VSON010V3030 178.6°C/W 1-layer substrate (copper foil density 0.2%) 98.4°C/W 1-layer substrate (copper foil density 7%) 41.3°C/W 2-layer substrate (copper foil density 65%) Substrate size: $70 \times 70 \times 1.6$ mm³ (substrate with thermal via)

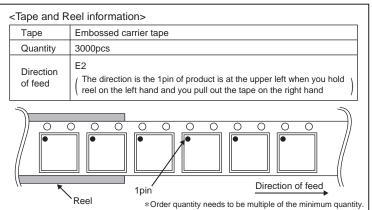

It is recommended to layout the VIA for heat radiation in the GND pattern of reverse (of IC) when there is the GND pattern in the inner layer (in using multiplayer substrate). This package is so small (size: $3.0 \text{mm} \times 3.0 \text{mm}$) that it is not available to layout the VIA in the bottom of IC. Spreading the pattern and being increased the number of VIA like the figure below). enable to get the superior heat radiation characteristic. (This figure is the image. It is recommended that the VIA size and the number is designed suitable for the actual situation.).


Most of the heat loss that occurs in the BD354XNUV is generated from the output Nch FET. Power loss is determined by the total VIN-Vo voltage and output current. Be sure to confirm the system input and output voltage and the output current conditions in relation to the heat dissipation characteristics of the VIN and Vo in the design. Bearing in mind that heat dissipation may vary substantially depending on the substrate employed (due to the power package incorporated in the BD354XNUV) make certain to factor conditions such as substrate size into the thermal design.

Power consumption (W) =
$$\left\{\text{Input voltage (VIN)- Output voltage (Vo) (Vo \rightleftharpoons VREF)}\right\} \times \text{Io(Ave)}$$

Example) Where VIN=1.7V, VO=1.2V, Io(Ave) = 1A,
Power consumption (W) = $\left\{1.7(\text{V})-1.2(\text{V})\right\} \times 1.0(\text{A})$
= 0.5(W)


Heat Dissipation Characteristics VSON010V3030



- (1) Substrate (copper foil density: 0.2%...1-layer) θ j-a=178.6°C/W
- (2) Substrate (copper foil density: 7%...1-layer) θ j-a=98.4°C/W
- (3) Substrate (copper foil density: 65%...1-layer) θ j-a=41.3°C/W

VSON010V3030

Notice

Precaution on using ROHM Products

Our Products are designed and manufactured for application in ordinary electronic equipments (such as AV equipment, OA equipment, telecommunication equipment, home electronic appliances, amusement equipment, etc.). If you intend to use our Products in devices requiring extremely high reliability (such as medical equipment (Note 1), transport equipment, traffic equipment, aircraft/spacecraft, nuclear power controllers, fuel controllers, car equipment including car accessories, safety devices, etc.) and whose malfunction or failure may cause loss of human life, bodily injury or serious damage to property ("Specific Applications"), please consult with the ROHM sales representative in advance. Unless otherwise agreed in writing by ROHM in advance, ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of any ROHM's Products for Specific Applications.

(Note1) Medical Equipment Classification of the Specific Applications

JÁPAN	USA	EU	CHINA
CLASSI	СГУССШ	CLASSIIb	СГУССШ
CLASSIV	CLASSII	CLASSIII	— CLASSⅢ

- 2. ROHM designs and manufactures its Products subject to strict quality control system. However, semiconductor products can fail or malfunction at a certain rate. Please be sure to implement, at your own responsibilities, adequate safety measures including but not limited to fail-safe design against the physical injury, damage to any property, which a failure or malfunction of our Products may cause. The following are examples of safety measures:
 - [a] Installation of protection circuits or other protective devices to improve system safety
 - [b] Installation of redundant circuits to reduce the impact of single or multiple circuit failure
- 3. Our Products are designed and manufactured for use under standard conditions and not under any special or extraordinary environments or conditions, as exemplified below. Accordingly, ROHM shall not be in any way responsible or liable for any damages, expenses or losses arising from the use of any ROHM's Products under any special or extraordinary environments or conditions. If you intend to use our Products under any special or extraordinary environments or conditions (as exemplified below), your independent verification and confirmation of product performance, reliability, etc, prior to use, must be necessary:
 - [a] Use of our Products in any types of liquid, including water, oils, chemicals, and organic solvents
 - [b] Use of our Products outdoors or in places where the Products are exposed to direct sunlight or dust
 - [c] Use of our Products in places where the Products are exposed to sea wind or corrosive gases, including Cl₂, H₂S, NH₃, SO₂, and NO₂
 - [d] Use of our Products in places where the Products are exposed to static electricity or electromagnetic waves
 - [e] Use of our Products in proximity to heat-producing components, plastic cords, or other flammable items
 - [f] Sealing or coating our Products with resin or other coating materials
 - [g] Use of our Products without cleaning residue of flux (even if you use no-clean type fluxes, cleaning residue of flux is recommended); or Washing our Products by using water or water-soluble cleaning agents for cleaning residue after soldering
 - [h] Use of the Products in places subject to dew condensation
- 4. The Products are not subject to radiation-proof design.
- 5. Please verify and confirm characteristics of the final or mounted products in using the Products.
- 6. In particular, if a transient load (a large amount of load applied in a short period of time, such as pulse. is applied, confirmation of performance characteristics after on-board mounting is strongly recommended. Avoid applying power exceeding normal rated power; exceeding the power rating under steady-state loading condition may negatively affect product performance and reliability.
- 7. De-rate Power Dissipation (Pd) depending on Ambient temperature (Ta). When used in sealed area, confirm the actual ambient temperature.
- 8. Confirm that operation temperature is within the specified range described in the product specification.
- 9. ROHM shall not be in any way responsible or liable for failure induced under deviant condition from what is defined in this document.

Precaution for Mounting / Circuit board design

- 1. When a highly active halogenous (chlorine, bromine, etc.) flux is used, the residue of flux may negatively affect product performance and reliability.
- 2. In principle, the reflow soldering method must be used; if flow soldering method is preferred, please consult with the ROHM representative in advance.

For details, please refer to ROHM Mounting specification

Precautions Regarding Application Examples and External Circuits

- If change is made to the constant of an external circuit, please allow a sufficient margin considering variations of the characteristics of the Products and external components, including transient characteristics, as well as static characteristics.
- You agree that application notes, reference designs, and associated data and information contained in this document are presented only as guidance for Products use. Therefore, in case you use such information, you are solely responsible for it and you must exercise your own independent verification and judgment in the use of such information contained in this document. ROHM shall not be in any way responsible or liable for any damages, expenses or losses incurred by you or third parties arising from the use of such information.

Precaution for Electrostatic

This Product is electrostatic sensitive product, which may be damaged due to electrostatic discharge. Please take proper caution in your manufacturing process and storage so that voltage exceeding the Products maximum rating will not be applied to Products. Please take special care under dry condition (e.g. Grounding of human body / equipment / solder iron, isolation from charged objects, setting of Ionizer, friction prevention and temperature / humidity control).

Precaution for Storage / Transportation

- 1. Product performance and soldered connections may deteriorate if the Products are stored in the places where:
 - [a] the Products are exposed to sea winds or corrosive gases, including Cl2, H2S, NH3, SO2, and NO2
 - [b] the temperature or humidity exceeds those recommended by ROHM
 - the Products are exposed to direct sunshine or condensation
 - [d] the Products are exposed to high Electrostatic
- 2. Even under ROHM recommended storage condition, solderability of products out of recommended storage time period may be degraded. It is strongly recommended to confirm solderability before using Products of which storage time is exceeding the recommended storage time period.
- 3. Store / transport cartons in the correct direction, which is indicated on a carton with a symbol. Otherwise bent leads may occur due to excessive stress applied when dropping of a carton.
- Use Products within the specified time after opening a humidity barrier bag. Baking is required before using Products of which storage time is exceeding the recommended storage time period.

Precaution for Product Label

QR code printed on ROHM Products label is for ROHM's internal use only.

Precaution for Disposition

When disposing Products please dispose them properly using an authorized industry waste company.

Precaution for Foreign Exchange and Foreign Trade act

Since our Products might fall under controlled goods prescribed by the applicable foreign exchange and foreign trade act, please consult with ROHM representative in case of export.

Precaution Regarding Intellectual Property Rights

- 1. All information and data including but not limited to application example contained in this document is for reference only. ROHM does not warrant that foregoing information or data will not infringe any intellectual property rights or any other rights of any third party regarding such information or data. ROHM shall not be in any way responsible or liable for infringement of any intellectual property rights or other damages arising from use of such information or data.:
- 2. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of ROHM or any third parties with respect to the information contained in this document.

Other Precaution

- 1. This document may not be reprinted or reproduced, in whole or in part, without prior written consent of ROHM.
- 2. The Products may not be disassembled, converted, modified, reproduced or otherwise changed without prior written consent of ROHM.
- 3. In no event shall you use in any way whatsoever the Products and the related technical information contained in the Products or this document for any military purposes, including but not limited to, the development of mass-destruction weapons.
- The proper names of companies or products described in this document are trademarks or registered trademarks of ROHM, its affiliated companies or third parties.

General Precaution

- 1. Before you use our Products, you are requested to care fully read this document and fully understand its contents. ROHM shall not be in an y way responsible or liable for failure, malfunction or accident arising from the use of a ny ROHM's Products against warning, caution or note contained in this document.
- 2. All information contained in this docume nt is current as of the issuing date and subject to change without any prior notice. Before purchasing or using ROHM's Products, please confirm the latest information with a ROHM sale s representative.
- 3. The information contained in this doc ument is provided on an "as is" basis and ROHM does not warrant that all information contained in this document is accurate an d/or error-free. ROHM shall not be in an y way responsible or liable for any damages, expenses or losses incurred by you or third parties resulting from inaccuracy or errors of or concerning such information.

Rev.001