
Qwiic Quad Relay Hookup Guide




Introduction
SparkFun’s Qwiic Quad Relay is a product designed for switching not one but four high powered devices from
your Arduino or other low powered microcontroller using I C. It has four relays rated up to 5 Amps per channel at
250VAC or 30VDC that are controlled by an ATtiny84A. Each channel has its own blue stat LED, silk for easy
identification, and screw terminals for easy connection. The product is Qwiic enabled allowing you to easily
integrate the Quad Relay with other products in the Qwiic environment, which means no solder neccessary!

2

SparkFun Qwiic Quad Relay
 COM-15102

Product Showcase: SparkFun Qwiic Single and Quad Relay BoarProduct Showcase: SparkFun Qwiic Single and Quad Relay BoarProduct Showcase: SparkFun Qwiic Single and Quad Relay Boar………

https://www.sparkfun.com/
https://www.sparkfun.com/products/15102
https://www.sparkfun.com/products/100
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/products/15102
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/15102
https://www.youtube.com/watch?v=XL7Gu8KlnPI
https://www.youtube.com/channel/UCKPLvnWhN1Qo51IDDZsmq1g

⚡ Before we begin! There are a number of safety precautions included in the product, but that can not
account for human inexperience and error. This product and the example below interacts with HIGH AC
voltage and so is intended for people experienced around, and knowledgeable about HIGH AC voltage. If
that's not quite your jam, then take a look at our IoT Power Relay! It's not I C but the IoT Power Relay
contains shielding to prevent accidental shock.

Required Materials

For the example under Hardware Assembly, I used the following materials to control a load (i.e. a lamp). You may
not need everything though depending on what you have. Add it to your cart, read through the guide, and adjust
the cart as necessary.

2

USB micro-B Cable - 6 Foot
 CAB-10215

Jumper Wires - Connected 6" (M/M, 20 pack)
 PRT-12795

Wall Adapter Power Supply - 5V DC 2A (Barrel
Jack)
 TOL-12889

Tactile Button Assortment
 COM-10302

https://www.sparkfun.com/products/14236
https://www.sparkfun.com/products/10215
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/10215
https://www.sparkfun.com/products/12795
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12795
https://www.sparkfun.com/products/12889
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12889
https://www.sparkfun.com/products/10302
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/10302

Additional Options

You could also use our 9 volt wall adapter if that suits your fancy and we have a number of Qwiic cable sizes to fit
your needs.

SparkFun BlackBoard
 SPX-14669

Qwiic Cable - 100mm
 PRT-14427

Breadboard - Mini Modular (Red)
 PRT-12044

Wall Adapter Power Supply - 9VDC 650mA
 TOL-00298

Qwiic Cable - 100mm
 PRT-14427

https://www.sparkfun.com/products/14669
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14669
https://www.sparkfun.com/products/14427
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14427
https://www.sparkfun.com/products/12044
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12044
https://www.sparkfun.com/products/298
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/298
https://www.sparkfun.com/products/14427
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14427

Tools

You will need a flush cutter and wire stripper to remove the sheath and insulation from a cable. A Phillips head
screwdriver will be required to connect the load's to a screw terminal.

Qwiic Cable - 500mm
 PRT-14429

Qwiic Cable - 200mm
 PRT-14428

Qwiic Cable - 50mm
 PRT-14426

Self-Adjusting Wire Strippers
 TOL-14872

Flush Cutters - Xcelite
 TOL-14782

https://www.sparkfun.com/products/14429
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14429
https://www.sparkfun.com/products/14428
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14428
https://www.sparkfun.com/products/14426
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14426
https://www.sparkfun.com/products/14872
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14872
https://www.sparkfun.com/products/14782
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14782
https://www.sparkfun.com/products/9146

Suggested Reading

If you aren’t familiar with the Qwiic system, we recommend reading here for an overview.

Qwiic Connect System

We would also recommend taking a look at the following tutorials if you aren’t familiar with them.

Hardware Overview

Power

There are two separate power systems on the Quad Relay: a 5V system that powers the relays and a 3.3V system
that powers the on board ATtiny84A and interfaces with a microcontroller through the four pin header or Qwiic
connector.

The on board barrel jack takes a power source in a range of 7-15V. It regulates the voltage and supplies power to
the 5V power system of the relays. If your wall adapter or power source is at 5 volts like our 5V/2A Wall adapter
then you can close the jumper on the underside of the product labeled 5V Wall Adapter (see Jumpers section
below), and this will allow you to sidestep the on board regulator to power the 5V system directly. If you decide to
go with a higher voltage wall adapter, be cognizant that the voltage regulator will start to heat up. With all the relay
channels turned on the Quad Relay will pull ~250mA of current and at 9 Volts, that’s 2.25 Watts of power
(mathematical!). Over time the regulator will get hot, but will remain functional. I suggest that if you expect to have
all relay channels on for extended periods of time, that you go with a 5V power supply.

SparkFun Mini Screwdriver
 TOL-09146

Serial Communication
Asynchronous serial communication concepts: packets,
signal levels, baud rates, UARTs and more!

I2C
An introduction to I2C, one of the main embedded
communications protocols in use today.

https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/qwiic
https://www.sparkfun.com/products/12889
https://www.sparkfun.com/products/9146
https://learn.sparkfun.com/static/bubbles/
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/i2c

To provide 3.3V to the on board ATtiny84A you can use the plated through hole labeled 3V3 on the four pin
header. Alternatively, you can plug a Qwiic connector into one of the two Qwiic connectors.

Relays

There are four single pole, double throw JZC-11F relays on the Qwiic Quad Relay. Each relay is capable of 5
Amps at 250VAC or 30VDC. These relays have an associated blue screw pin terminals that are aligned in order
from left to right.

LEDs

There is a red power LED labeled PWR that indicates power from the barrel jack. There is also a blue stat LED for
each relay labeled with their respective number 1-4. Whenever a relay is activated (i.e. when COM is connected to
NO), the respective LED will light up.

https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/Barrel_Jack_nw.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/3.3V_Supply_nw.jpg
https://www.sparkfun.com/products/100
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/Relays_nw.jpg

Jumpers

There are two jumpers on the underside of the Qwiic Quad Relay. The first is the address jumper that changes the
default I C address from 0x6D to 0x6C. The second is the jumper labeled 5V Wall Adapter Jumper. If you intend
to use a wall adapter or other power source that is below 7-15V than you can close this jumper to side step the on
board voltage regulator, and provide 5V directly to the 5V power system.

Qwiic Connectors

The Qwiic connectors allow you to integrate easily into our Qwiic environment and allows you to prototype without
the need for soldering! The 3.3V provided by the Qwiic connector will power the on board ATtiny84A. If you do not
power the 3.3V power system this way, you can still provide power through the four pin header.

Safety Considerations

This product is designed to switch high power AC or DC and so has some inherent dangers. We’ve done our best
to implement safety features directly into the design. To begin, the copper ground pour for the ATtiny84A circuitry
is restricted to an area apart from the relays. In regards to the microcontroller, there are opto-isolators that isolate
the 3.3V power system that it utilizes from the 5V power system of the relays. Next, the common pin of the relays
have an air gap surrounding the pin on three sides to prevent any high voltage arcing. Finally, the traces on the
relays are extra wide to handle the high amperage carrying potential of the relays.

2

https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/LEDs_nw.jpg
https://learn.sparkfun.com/tutorials/how-to-work-with-jumper-pads-and-pcb-traces
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/Jumpers_nw.jpg
https://learn.sparkfun.com/tutorials/www.sparkfun.com/qwiic
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/Qwiic_connectors_nw.jpg

Hardware Assembly

Introduction to Relays

Let’s walk through how to setup the relay to switch on a lamp or other device, but let’s begin with a short
introduction into relays. A relay is a switch. However, unlike most switches, within the relay’s housing there is also
a switching mechanism that is isolated from the switch. This is the relay’s defining feature because this separation
between switching mechanism and switch, as well as the switching mechanism’s low-power requirements, allows
for low-power microcontrollers to activate the switching mechanism without interfacing with whatever is getting
“switched”. Shmow-zow!

We have three channels per relay broken out to blue screw pin terminals. The channels are labeled for their
function. One is considered normally open or NO, the next channel is common or COM, and the final is normally
closed or NC. The names explain the state of the channel with relation to the switch at rest. The normally closed
channel is where the switch sits before the switching mechanism has been activated and conversely the normally
open channel is where the switch would sit after. The common channel is, as the name implies, what the other two
channels have in common. This is known as a single pole, double throw switch (SPDT). The image below helps to
illustrate this characteristic of our particular relay.

When the switching mechanism is activated the thicker bar in the image above that connects normally closed to
common flips over to connect normally open and common.

Assembly

Onto the assembly. First, I’m using a BlackBoard for it’s Qwiic capabilities and it’s powered via micro-USB. I have
a button plugged into a breadboard, straddling the gap in the center, and jumper wires connecting it to pin 2 and
GND on the blackboard.

https://learn.sparkfun.com/tutorials/switch-basics
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/single_pole_double_throw_with_text.jpg
https://www.sparkfun.com/products/14669
https://www.sparkfun.com/qwiic
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/Quad_Relay_Hookup_Guide-03.jpg

On the tail end is a Qwiic connector leading to the Quad Relay.

⚡ Warning! Make sure the lamp is not plugged into the wall as you cut into the wire in the following section.

Let’s take a quick look at the lamp wire, before we look at the Quad Relay. Our goal here is to sever one of the two
lamp wires, and plug the two ends of the cut wire into the relay which will reconnect the wire when we activate the
switching mechanism. First, I’ve cut one of the two wires as shown to create a break in the connection.

I then peeled the wire apart and stripped the two ends.

We’ll put one end of our wire in the COM channel, and the other we’ll have to decide upon. For this project we
want our switch to act intuitively: when you activate the switching mechanism, the light switches on. There could
be a case where you want the switching mechanism activated as its “rest” state. Since we’re going with a more
normal approach we’ll cut our wire and place one end in common and the other in the normally open channel. Now
when we activate the switching mechanism, the severed wire will be reconnected when the switch flips to the
normally open channel connecting it and the common channel.

For the quad relay, I’m powering the 5V system (the relays), with a 5V Wall Adapter, and the 5V Wall Adapter
jumper closed underneath. The Qwiic cable from the black board is providing power to the 3.3V system as seen at
the top of the picture below, and we have the lamp cable plugged into and the screw terminals tightened down on
channels COM and NO.

https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/cutting_wires.jpg
https://learn.sparkfun.com/tutorials/working-with-wire#stranded-vs-solid
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/cut_wires.jpg
https://www.sparkfun.com/products/12889

⚡ Warning! Make sure that your wires connecting to the wall outlet are secure and are rated to handle the
current! Please be careful when handling the contacts when the cable is plugged into a wall outlet. Touching
the contacts while powered could result in injury.

Looking for information about safety and insulation? Check out the notes about Safety and Insulation from
our Beefcake Relay Control Kit.

Now that our hardware is all set up, let’s take a look at the code that turns the lamp on. Remember to not touch the
relay's contacts when the system is powered.

Example Code

Note: This example assumes you are using the latest version of the Arduino IDE on your desktop. If this is
your first time using Arduino, please review our tutorial on installing the Arduino IDE.

Let’s take a look at some example code fort the Qwiic Quad Relay. You can download all example codes from the
GitHub repo by clicking the link below.

QWIIC QUAD RELAY EXAMPLE CODE (ZIP)

Example 1 - Relay Control

This is the code used for the lamp example above. Unzip and open up example one under … >
Qwiic_Quad_Relay-master > Example Code > Example1_Relay_Control to follow along. At the top, let’s break
down the defines that are provided. While all of them might not be necessary for your project and they weren’t for
the lamp example, they are still displayed here to elucidate the functionality of the Quad Relay. First the default
address 0x6D is included and it’s followed by the second I C address 0x6C, which is commented out. If you’d
rather use the latter then close the jumper on the underside of the product labeled ADDR.

#include <Wire.h>

#define RELAY_ADDR 0x6D // Default address - open jumper.
//#define RELAY_ADDR 0x6C // Address when jumper is closed.

2

https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/relay_wires.jpg
https://learn.sparkfun.com/tutorials/beefcake-relay-control-hookup-guide/saftey-and-insulation
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://github.com/sparkfun/Qwiic_Quad_Relay
https://github.com/sparkfun/Qwiic_Quad_Relay/archive/master.zip

The rest of the defines list all of the possible I C commands possible. You can toggle each individual relay, toggle
them all, turn them all on, or turn them all off. There is also a list of commands to check the state of each relay;
whether the relay is on or off represented numerically by zero and 15 respectively.

// Here are the commands to turn on and off individual relays.
#define TOGGLE_RELAY_ONE 0x01
#define TOGGLE_RELAY_TWO 0x02
#define TOGGLE_RELAY_THREE 0x03
#define TOGGLE_RELAY_FOUR 0x04

// Here are the commands to turn them all off or on.
#define TURN_ALL_ON 0xB
#define TURN_ALL_OFF 0xA

//Here is the command to toggle every relay.
#define TOGGLE_ALL 0xC

// Here are the commands to check on the 'status' of the relay i.e. whether the
// relay is on or off.
#define RELAY_ONE_STATUS 0x05

#define RELAY_TWO_STATUS 0x06
#define RELAY_THREE_STATUS 0x07
#define RELAY_FOUR_STATUS 0x08

//Four buttons
const uint8_t yellow_btn = 2;
const uint8_t blue_btn = 3;
const uint8_t red_btn = 4;
const uint8_t green_btn = 5;

Let’s move on. In the following code, we define four buttons that when pressed, will send an I C command to the
associated relay. We have a small delay for debounce of 400 milliseconds associated with each button press. In
the setup is a call to a function that gets the status of the relays: On or Off represented by zero and 15
respectively. This is detailed more extensively just after the next code block.

2

2

void setup()
{
 Wire.begin();
 Serial.begin(115200);

 //Use internal resitors to keep them in a known high state.
 pinMode(yellow_btn, INPUT_PULLUP);
 pinMode(blue_btn, INPUT_PULLUP);
 pinMode(red_btn, INPUT_PULLUP);
 pinMode(green_btn, INPUT_PULLUP);

 get_relays_status();
}

void loop()
{
 // Since we'll only ever want the relay to be on or off,
 // the logic is handled by the product. Here we're just pressing buttons and
 // putting a small 400 ms debounce.

 //button one, relay one!
 if(digitalRead(yellow_btn) == LOW){
 Serial.println("Yellow Button");

 Wire.beginTransmission(RELAY_ADDR);
 Wire.write(TOGGLE_RELAY_ONE);
 Wire.endTransmission();
 delay(400);
 }

 //button two, relay two!
 if(digitalRead(blue_btn) == LOW){
 Serial.println("Blue Button");
 Wire.beginTransmission(RELAY_ADDR);
 Wire.write(TOGGLE_RELAY_TWO);
 Wire.endTransmission();
 delay(400);
 }

 //button three, toggle every relay: on -> off and off -> on.
 if(digitalRead(red_btn) == LOW){
 Serial.println("Red Button");
 Wire.beginTransmission(RELAY_ADDR);
 Wire.write(TOGGLE_ALL);
 Wire.endTransmission();
 delay(400);
 }

 //button four, turn off all the relays!
 if(digitalRead(green_btn) == LOW){
 Serial.println("Green Button");
 Wire.beginTransmission(RELAY_ADDR);
 Wire.write(TURN_ALL_OFF);
 Wire.endTransmission();

 delay(400);
 }
}

The get_relays_status function is of particular interest. Getting the status of the relays works like an I C buffer.
Depending on the number of bytes requested, you will get the status of that many relays. For example, if you
request the status of relay one and four bytes, then you’ll get the status of relay one plus the other three. If you
request relay one and two bytes, then you’ll get the status of relay one and two. If you request the status of relay
three and three bytes, then you’ll get the status of relay three, relay four, and relay one.

void get_relays_status(){
 int i = 1;
 Wire.beginTransmission(RELAY_ADDR);

 // Change the Wire.write statment below to the desired relay you want to check on.
 Wire.write(RELAY_ONE_STATUS);
 Wire.endTransmission();
 // We want the states of all the relays so we're requesting four bytes, i.e.
 // four relays. If you request 2 bytes, it will give you the state of two relays!
 Wire.requestFrom(RELAY_ADDR, 4);

 // Print it out, 0 == OFF and 15 == ON.
 while(Wire.available()){
 Serial.print("Relay ");
 Serial.print(i);
 Serial.print(": ");
 Serial.println(Wire.read());
 i++;
 }

}

Now let's upload some code via the Arudino IDE. Before uploading, be sure to remove power to the load when
uploading to safely handle the relay. Then connect the Arduino to your computer to upload. Select the board (in
this case the Arduino/Genuino Uno) and COM port that your Arduino has enumerated to. Click the upload button.
When the code has finished uploading, place the Arduino and relay on a non-conductive surface to test.
Remember to not touch the relay’s contacts when the system is powered.

Let There Be Light!
After we load up the code, and press the button we should see the relay one LED light up.

2

https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/relay_wires_on.jpg

If your relay LED is on and the lamp doesn’t turn on, make sure you have the lamp turned on. We’ll let the relay
handle turning it off and on from now on. Now if all is correctly assembled:

Algebraic!!

Note: Did you notice that there were more examples in the Example Code folder? If you need, there is an
example using interupts (i.e. Example2_Relay_Using_Interrupts) if you need your Arduino to stop whatever
it is processing to toggle the relays. Or if you need to control more than one Qwiic quad relay on the same
bus? Check out the third example (i.e. Example3_ChangeI2CAddress) to adjust an I C address.

Heads up! The circuit used in this tutorial is a temporary connection so you will need to secure the circuit and
place the relay in an enclosure. For more ideas, check out some of the projects in resources and going
further.

Resources and Going Further
Now that you’ve successfully got your SparkFun Qwiic Quad Relay up and running, it’s time to incorporate it into
your own project!

For more information, check out the resources below:

Schematic (PDF)
Eagle Files (ZIP)
Datasheet (PDF)
Default Firmware
Example Code (ZIP)
GitHub Repo
SFE Product Showcase

Need some inspiration for your next project? Check out some of these other awesome related tutorials using
relays. Be sure to check your current rating when handling the Qwiic Single Relay when browsing some of the
other tutorials using relays.

2

https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/Quad_Relay.gif
https://learn.sparkfun.com/tutorials/processor-interrupts-with-arduino
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/Qwiic_Quad_Relay_Schematic.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/Qwiic_Quad_Relay_Files.zip
https://www.sparkfun.com/datasheets/Components/General/JZC-11F-05VDC-1Z%20EN.pdf
https://github.com/sparkfunX/Qwiic_Quad_Relay/tree/master/Firmware/Qwiic_Quad_Relay_Firmware
https://cdn.sparkfun.com/assets/learn_tutorials/8/3/9/Quad_Relay_Example_Code.zip
https://github.com/sparkfun/Qwiic_Quad_Relay
https://www.youtube.com/watch?v=XL7Gu8KlnPI
https://learn.sparkfun.com/tutorials/photon-remote-water-level-sensor
https://learn.sparkfun.com/tutorials/blynk-board-project-guide

Photon Remote Water Level Sensor
Learn how to build a remote water level sensor for a
water storage tank and how to automate a pump based
off the readings!

Blynk Board Project Guide
A series of Blynk projects you can set up on the Blynk
Board without ever re-programming it.

ESP8266 Powered Propane Poofer
Learn how Nick Poole built a WiFi controlled fire-
cannon using the ESP8266 Thing Dev Board!

Blynk Board Bridge Widget Demo
A Blynk project that demonstrates how to use the
Bridge widget to get two (or more) Blynk Boards to
communicate.

Beefcake Relay Control Hookup Guide
This is a guide for assembling and basic use of the
Beefcake Relay Control board

How to Build a Remote Kill Switch
Learn how to build a wireless controller to kill power
when things go... sentient.

IoT Power Relay Qwiic Single Relay Hookup Guide

New!

https://learn.sparkfun.com/tutorials/photon-remote-water-level-sensor
https://learn.sparkfun.com/tutorials/blynk-board-project-guide
https://learn.sparkfun.com/tutorials/esp8266-powered-propane-poofer
https://learn.sparkfun.com/tutorials/blynk-board-bridge-widget-demo
https://learn.sparkfun.com/tutorials/beefcake-relay-control-hookup-guide
https://learn.sparkfun.com/tutorials/how-to-build-a-remote-kill-switch
https://learn.sparkfun.com/tutorials/iot-power-relay
https://learn.sparkfun.com/tutorials/qwiic-single-relay-hookup-guide

Using the ESP32 to make a web-configured timed
relay.

Get started switching those higher power loads around
with the Qwiic Single Relay.

