
LumiDrive Hookup Guide




Introduction
LumiDrive is SparkFun’s foray into all things Python on microcontrollers. Leveraging Adafruit’s Circuit Python, we
have created a product made for driving a strand of APA102’s. We’ve broken out a few analog and digital pins
from the onboard SAMD21G-AU microcontroller so that you can implement external buttons, switches, and other
whizzbangs to interact with the LEDs.

SparkFun LumiDrive LED Driver
 DEV-14779

Product Showcase: SparkFun LumiDrive LED Driver & LuMini LEProduct Showcase: SparkFun LumiDrive LED Driver & LuMini LEProduct Showcase: SparkFun LumiDrive LED Driver & LuMini LE………

https://www.sparkfun.com/
https://www.sparkfun.com/products/14779
https://www.sparkfun.com/products/14015
https://www.sparkfun.com/products/14779
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14779
https://www.youtube.com/watch?v=WxBrUkzW4tA
https://www.youtube.com/channel/UCKPLvnWhN1Qo51IDDZsmq1g

Circuit Python

You can read the extensive documentation about Circuit Python here on Adafruit’s website, but let’s review a short
and sweet version. Circuit Python is Adafruit’s version of MicroPython. What pray tell, is MicroPython?
MicroPython is Python 3 for microcontrollers. MicroPython takes the power of the wildly popular Python interpreted
language that is easy to use, easy to read, and powerful and makes it usable for microcontrollers. It feels familiar
in the way you declare and use pins but unlike Arduino, you don’t have to compile or upload your code. This is
because your microcontroller acts like a USB drive when you plug it into your computer. The code simply lives as a
file that you modify directly and when it’s saved, it is automatically loaded. Algebraic! It’s also compatible with the
Python 3 you have on your computer so that you can develop seamlessly on your desktop! Why are we using
Circuit Python? Circuit Python has the advantage of having many libraries built in by default that are catered
toward entry-level hobbyists. In the case of the LumiDrive, we’ll be utilizing the DotStar library, Adafruit’s library for
APA102 LEDs.

Required Materials:

We have many portable options to power your LEDs:

LED RGB Strip - Addressable, 1m (APA102)
 COM-14015

USB 3.1 Cable A to C - 3 Foot
 CAB-14743

Lithium Ion Battery - 1Ah
 PRT-13813

Lithium Ion Battery - 2Ah
 PRT-13855

https://learn.adafruit.com/welcome-to-circuitpython/overview
https://micropython.org/
https://en.wikipedia.org/wiki/Interpreted_language
https://www.sparkfun.com/products/14015
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14015
https://www.sparkfun.com/products/14743
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14743
https://www.sparkfun.com/products/13813
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13813
https://www.sparkfun.com/products/13855
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13855

I found this connector to be very helpful because it kept me from plugging and unplugging different strands of
APA102’s directly into the poke-home connectors.

Suggested Reading

Lithium Ion Battery - 6Ah
 PRT-13856

LED Strip Pigtail Connector (4-pin)
 CAB-14576

Battery Technologies
The basics behind the batteries used in portable
electronic devices: LiPo, NiMH, coin cells, and alkaline.

Light-Emitting Diodes (LEDs)
Learn the basics about LEDs as well as some more
advanced topics to help you calculate requirements for
projects containing many LEDs.

New!

https://www.sparkfun.com/products/13856
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13856
https://www.sparkfun.com/products/14576
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14576
https://learn.sparkfun.com/tutorials/battery-technologies
https://learn.sparkfun.com/tutorials/light-emitting-diodes-leds
https://learn.sparkfun.com/tutorials/mean-well-led-switching-power-supply-hookup-guide
https://learn.sparkfun.com/tutorials/lumini-ring-hookup-guide

Hardware Overview

Power

There are three options for power on the product: USB-C, Lithium Ion Battery, or Input. You can provide power in
the range from 3.3V-6V.

USB-C

USB-C, aside from being reversible which is already awesome, has the capability of supplying more power than its
predecessor. I was able to pull 2 AMPs from my computer on a 3.1 USB plug. Be cautious - I did this so that you
don’t have to! Every computer is different and I strongly advise that you don’t do something so rash unless you are
absolutely confident. Also keep in mind that different USB ports (2.0, 3.0, and 3.1) supply different levels of power.
3.1 is easy to identify because it has a blue tongue when you look into the port.

Lithium Ion Battery

Mean Well LED Switching Power Supply
Hookup Guide
In this tutorial, we will be connecting a Mean Well LED
switching power supply to an addressable LED strip
controlled by an Arduino.

LuMini Ring Hookup Guide
The LuMini Rings (APA102-2020) are the highest
resolution LED rings available.

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/Power_Input_Labelled.jpg
https://learn.sparkfun.com/tutorials/mean-well-led-switching-power-supply-hookup-guide
https://learn.sparkfun.com/tutorials/lumini-ring-hookup-guide

We have many options in our catalog that will suit your various portable power needs. LumiDrive also comes with
a charging circuit so you can charge your LiPo battery.

Two Pin Input Headers

Last but not least is a 2 pin header labeled INPUT where you can supply your own power.

Current Draw

The table below lists the current draw for a strand of 55 LEDs at full white at half and full brightness. I’ve also
included current draw for the various included functions at varying LED amounts and brightness to help you make
more educated decisions when purchasing or using your LEDs.

 Please Note: The chart below was written for APA102 1m LED strip with the 5050 LEDs - if you are using
any of the APA102 line with 2020s we do not recommend running at full brightness. We've found that setting
the global brightness to 32 is good for testing; turning the brightness up all the way and leaving all LED's on
white will result in damage to your LEDs!

of LEDs (Half Brightness) Current Consumption (Amps)

1 0.070

2 0.095

3 0.120

5 0.139

10 0.289

20 0.536

30 0.755

35 0.883

40 1.102

50 1.311



https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/LiPoBattery.jpg

of LEDs (Full Brightness) Current Consumption (Amps)

10 0.520

15 0.737

25 1.328

27 1.426

29 1.523

31 1.618

40 2.018

Function at 55 LEDs Current Consumption (Amps)

Slice Rainbow (0.25 Brightness) 0.336

Slice Rainbow (0.50 Brightness) 0.600

Rainbow Cycle (0.25 Brightness) 0.281

Rainbow Cycle (0.50 Brightness) 0.500

Function at 85 LEDs Current Consumption (Amps)

Slice Rainbow (0.25 Brightness) 0.500

Slice Rainbow (0.50 Brightness) 0.890

Rainbow Cycle (0.25 Brightness) 0.425

Rainbow Cycle (0.50 Brightness) 0.727

Input Output

There are four input/output pins broken out to the side of the product. There are two digital pins and two analog
pins. These can be used to interact with your LED strand (or not) by attaching buttons, switches, light sensors, etc.

Buttons

There are two buttons on the product. The top button is a reset button which will reset the board on press. The
second is a button attached to digital pin D6. You can use this in place of attaching a button to the board.

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/DIgital_Analog_Pins.jpg

LEDs

There are two LEDs on board. The top LED in the picture is a yellow charge LED that indicates that a LiPo battery
is being charged. The second is a blue stat LED attached to pin D13.

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/Buttons.jpg

Poke-home Connectors

There are two Poke-home connectors at the bottom of the product.

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/LEDs.jpg

They are versatile and rather robust and allow you to plug in wire without the need for solder. They’re labeled with
the color of wire that is used in the strands of APA102 LEDs that we sell here at SparkFun but are not limited to
just those. Just below that silk you’ll notice the function of those lines are labeled as in the following chart.

Pin Description

RED VCC (3.3-5V)

BLU Clock

GRN Data

YELLOW Ground

Hardware Assembly
Hardware assembly is straight forward. Let’s start by plugging your LED strand into the poke-home connectors.
Finer control can be achieved by using a pair of tweezers or the tip of a pen to press in the flap on the topside of
the poke-home connector. Here we’ve opted for tweezers since that’s what we had handy.

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/PokeHome_Connectors.jpg

When you press onto the black flap on the top of the poke-home connector, two metal wedges move laterally - to
the sides of the product- inside the connector. Push your wire into the poke-home connector. When you release it,
the two wedges will clamp down onto the wire. Give them a slight tug to make sure the wires are in there solid.
You’re ready to rock!

Plug your LumiDrive into your computer with the USB-C connector. It should pop up automatically as a hard drive
called CIRCUITPY. If it doesn’t pop up automatically, unplug it and plug it back in. If that doesn’t work, navigate to
your files folder and look for CIRCUITPY on the left hand side and give it a click. At this point the blue stat LED on
the LumiDrive should be blinking. From here you can open up that CIRCUITPY by clicking on it.

Having a hard time seeing? Click the image for a closer look.

 Note! You may or may not be wondering what all these files are on the CIRCUITPY drive? I have hidden
files turned on on my computer. Files with preceding periods i.e. ".Trashes" or ".metadata_never_index" are
necessary for MAC users. The boot_out.txt file tells you what version of Circuit Python is loaded onto your
LumiDrive. Finally "Main.py" is where all the fun happens.

Let’s move onto the example code.



https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/Poke-home_clamp.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/Poke-home_push.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/Main.py_Drag_and_Drop.JPG

Example Code
Your LumiDrive should already come with the following code but in case something happens to it, than you can re-
download the example code here:

LUMIDRIVE MAIN.PY EXAMPLE CODE

You can upload Arduino code to the LumiDrive using the Arduino IDE. Just select SparkFun SAMD21 Dev
Breakout Board under the board menu. If you don’t have the SparkFun SAMD21 board definitions then check our
hookup guide here for detailed instructions. If you do want to go the Arduino route, you’ll need to install the
FastLED library. See our LuMini Ring Hookup Guide for installation details and example code.

 Please note that once you upload Arduino code, you'll lose your Circuity Python Firmware. Don't panic!
Just double tap the reset button on your LumiDrive and the board will pop up as LUMIBOOT. Now you can
drag and drop the firmware below and voila!

LUMIDRIVE DEFAULT FIRMWARE (ZIP)

Before we begin, let’s talk about the options for loading and updating this code on your LumiDrive. One option is to
move the file main.py onto your desktop and edit it with a text editor. When you’re done with it, you can simply
drag and drop it back into the CIRCUITPY drive. Circuit Python will recognize the change and automatically load
the new code. The other option is to edit the file directly in the CIRCUITPY drive. This option is much more
convenient and efficient, but requires a text editor that writes the file completely when it’s saved. On Windows not
all text editors exhibit the necessary behavior. Below is a list of good, not great, and not recommended text editors
for editing files directly on LumiDrive (or any Circuit Python board). If you’re using a Mac then you won’t be running
into any of these issues.

GOOD GOOD only with ADD-ONS NOT Recommended

MU PYCharm IDE Notepad/Notepad++

VIM Atom IDLE

EMACS Slick Edit Nano

Sublime Text

Visual Studio Code

My suggestion would be to use MU or Sublime Text. The first is more beginner friendly while the second is more
light weight with some really nice features. If you’re already familiar with VIM, EMACS, or Visual Studio Code then
use those instead.

If you’re attached to one of the not recommended editors then there is a way to get it to work. After you’ve made
changes to the main.py, if you eject the CIRCUITPY drive then it will force Windows to write the saves that you
made.



https://github.com/sparkfun/SparkFun_LumiDrive_Example_Code
https://learn.sparkfun.com/tutorials/samd21-minidev-breakout-hookup-guide/setting-up-arduino
https://learn.sparkfun.com/tutorials/lumini-ring-hookup-guide#software-installation
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/lumidrive_firmware.zip
https://en.wikipedia.org/wiki/List_of_text_editors
https://codewith.mu/
https://www.sublimetext.com/

Let’s quickly talk about which files Circuit Python monitors for saves. Circuit Python looks for the following four files
in this order and runs the first one it finds: code.txt, code.py, main.txt, and main.py. That’s all of it, now onto the
code.

At the top of the code we have a number of libraries that are necessary for our code.

import adafruit_dotstar # Our LED library
import digitalio
import board
import math
import time

Here’s where you can start to modify the code to your particular LED strip. The num_pixels variable should reflect
how many LEDs you have and brightness controls the brightness. We have 60 pixels in the example because it
reflects the number of LEDs of our 1m length of APA102s. Keep in mind as you set these that if you’re powering
through your computer, don’t add too many too quickly. Otherwise you could potentially harm your computer.
Below our two variables we create an instance of our library called pixels, and just below that we have some pre-
defined colors.

These two variables should be adjusted to reflect the number of LEDs you have
and how bright you want them.
num_pixels = 60
brightness = 0.25

This creates the instance of the DoTStar library.
pixels = adafruit_dotstar.DotStar(board.SCK, board.MOSI,
 num_pixels, brightness=brightness, auto_write=False)

Some standard colors.
BLACK = (0, 0, 0)
RED = (255, 0, 0)
YELLOW = (255, 150, 0)
ORANGE = (255, 40, 0)

GREEN = (0, 255, 0)
TEAL = (0, 255, 120)
CYAN = (0, 255, 255)
BLUE = (0, 0, 255)
PURPLE = (180, 0, 255)
MAGENTA = (255, 0, 20)
WHITE = (255, 255, 255)

A list of the ten colors. Use this if you want to cycle through the colors.
colorList = [RED, YELLOW, ORANGE, GREEN, TEAL, CYAN, BLUE, PURPLE, MAGENTA,
 WHITE]

We have a number of functions to handle different LED behaviors. Each function has a little explanation
commented just above it’s definition.

https://www.sparkfun.com/products/14015

The travel function takes a color and the time between updating the color. It
will start at LED one on the strand and fill it with the give color until it
reaches the maximum number of pixels that are defined as "num_pixels".
def travel(color, wait):
 num_pixels = len(pixels)
 for pos in range(num_pixels):
 pixels[pos] = color
 pixels.show()
 time.sleep(wait)

The travel_back function like the travel function takes a color and the time between
updating the color. However it unlike the travel function, it will start at
the last LED and works its way to LED. Fill the LED with the given color.
def travel_back(color, wait):
 num_pixels = len(pixels)
 for pos in range(num_pixels, 0, -1):
 pixels[pos] = color
 pixels.show()
 time.sleep(wait)

This function may give you an idea of other functions to create. Here we're
starting with green LEDs and then slowing filling the red color until we have
a yellow color.
def green_yellow_wheel(wait):
 for redColor in range(255):
 color = (redColor, 150, 0)
 pixels.fill(color)
 pixels.show()
 time.sleep(wait)

You can use this function to get a custom color value.
value much in the form of a tuple, like the colors above.
def wheel(pos):
 # Input a value 0 to 255 to get a color value.
 # The colours are a transition r - g - b - back to r.
 if pos < 0 or pos > 255:
 return (0, 0, 0)
 if pos < 85:
 return (255 - pos * 3, pos * 3, 0)
 if pos < 170:
 pos -= 85
 return (0, 255 - pos * 3, pos * 3)
 pos -= 170
 return (pos * 3, 0, 255 - pos * 3)

This function takes a color and a dely and fills the entire strand with that color.
The delay is given in the case you use multiple color fills in a row.
def color_fill(color, wait):
 pixels.fill(color)
 pixels.show()
 time.sleep(wait)

Fills the strand with two alternating colors and cycles through the 10 colors

def slice_alternating(wait):

 num_pixels = len(pixels)

 pixels[::2] = [RED] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [ORANGE] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[::2] = [YELLOW] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [GREEN] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[::2] = [TEAL] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [CYAN] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[::2] = [BLUE] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [PURPLE] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[::2] = [MAGENTA] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)
 pixels[1::2] = [WHITE] * (num_pixels // 2)
 pixels.show()
 time.sleep(wait)

This function divides the given number of pixels and fills them as evenly as
possible with a rainbow pattern (RED, ORANGE, YELLOW, GREEN, BLUE, PURPLE)
which repeats every 6 LEDs.
def slice_rainbow(wait):

 num_pixels = len(pixels)

 pixels[::6] = [RED] * math.ceil(num_pixels / 6)
 pixels.show()
 time.sleep(wait)
 pixels[1::6] = [ORANGE] * math.ceil((num_pixels - 1) / 6)
 pixels.show()
 time.sleep(wait)
 pixels[2::6] = [YELLOW] * math.ceil((num_pixels -2) / 6)
 pixels.show()
 time.sleep(wait)
 pixels[3::6] = [GREEN] * math.ceil((num_pixels-3) / 6)
 pixels.show()

 time.sleep(wait)
 pixels[4::6] = [BLUE] * math.ceil((num_pixels-4) / 6)
 pixels.show()
 time.sleep(wait)
 pixels[5::6] = [PURPLE] * math.ceil((num_pixels-5) / 6)
 pixels.show()
 time.sleep(wait)

This function makes a strand of LEDs look like a rainbow flag that travels
along the length of the strand. It is not infinitely contniuous and will stop
after any single LED has cycled through every color.
def rainbow_cycle(wait):
 num_pixels = len(pixels)
 for j in range(255):
 for i in range(num_pixels):
 rc_index = (i * 256 // num_pixels) + j
 pixels[i] = wheel(rc_index & 255)
 pixels.show()
 time.sleep(wait)

print("Clearing LEDs.")
color_fill(BLACK,0)

Finally we have a while loop that is akin to void loop in Arduino. Right now we have the loop blinking our blue
D13 stat LED.

#Ah trusty ol' blink.
while True:
 led.value = True
 time.sleep(.5)
 led.value = False
 time.sleep(.5)

Instead, let’s pick some functions from the functions above and type them in. I chose the following and gave the
function its' necessary parameter: a delay time.

while True:
 rainbow_cycle(0)

After you’ve modified the code, just hit save (assuming you have the correct text editor for saving directly on
LumiDrive) and the code will automatically run. If all is well you should see the following:

Algebraic!

Using the 3 inch LuMini ring, and a couple other functions.

 Reminder: This example sets the brightness at 25. If you are using any of the APA102 line with 2020s we
do not recommend running at full brightness. Turning the brightness up all the way and leaving all LED's on
white will result in damage to your LEDs!

 Heads up! Updating the APA102s gets slower the longer the strand or the amount of LEDs you're driving.
This is just the nature of working in Python instead of C. There's also some known efficiency issues with the
DotStar library.

Read-Evaluate-Print-Loop (REPL)
A note about the Read-Evaluate-Print-Loop, or the REPL. It’s a language shell that allows you to interact with the
LumiDrive in an Interactive Python environment. If you pull up your favorite serial program and open it to the COM
port of the LumiDrive you should see the following.





https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/Strand_dark.jpg
https://www.sparkfun.com/products/14965
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/LumiDrive_Demo.gif
https://github.com/adafruit/circuitpython/issues/884
https://learn.sparkfun.com/tutorials/terminal-basics

Having a hard time seeing? Click the image for a closer look.

Main.py will be running an infinite blink loop fresh out of the box. Simply press CTRL-C to interrupt the code. Here
you have an interactive python environment to play around in.! Here we can do some fun things like Math!

Having a hard time seeing? Click the image for a closer look.

More importantly we can see what libraries and pins are available to us in the version of Circuit Python that is
loaded on your LumiDrive, using the help(modules) and dir(board) commands respectively.

Having a hard time seeing? Click the image for a closer look.

If you look at the line that says dir(board) , just below are various pins that are available in Circuit Python but not
all of them are physically broken out on the board. When you’re done messing around in REPL and ready to run
the code that is on your LumiDrive, you can press CTRL-D and that will initiate a soft reboot.

Resources and Going Further
Hardware

Schematic
Eagle Files

Github Repo
Circuit Python
Circuit Python Example Code
Micro Python

Need more inspiration? Check out some of these tutorials:

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/REPL.JPG
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/REPL_MATH.JPG
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/REPL_USEFUL.JPG
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/LumiDrive.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/5/LumiDrive_Eagle_Files.zip
https://github.com/sparkfun/LumiDrive
https://learn.adafruit.com/welcome-to-circuitpython/overview
https://github.com/adafruit/Adafruit_Learning_System_Guides/tree/master/CircuitPython_Essentials
https://micropython.org/
https://learn.sparkfun.com/tutorials/sound-detector-hookup-guide
https://learn.sparkfun.com/tutorials/let-it-glow-holiday-cards

Sound Detector Hookup Guide
The Sound Detector is a microphone with a binary
output. This guide explains how it works and how you
can use it in your projects.

Let It Glow Holiday Cards
Craft a glowing card for friends and family this holiday
season with paper circuits - no soldering required!

The Great Big Guide to Paper Circuits
Let's take a look at different materials we can use to
combine paper crafting and electronics.

Button Pad Hookup Guide
An introduction to matrix scanning, using the SparkFun
4x4 Button Pad.

https://learn.sparkfun.com/tutorials/sound-detector-hookup-guide
https://learn.sparkfun.com/tutorials/let-it-glow-holiday-cards
https://learn.sparkfun.com/tutorials/the-great-big-guide-to-paper-circuits
https://learn.sparkfun.com/tutorials/button-pad-hookup-guide

