

Quad low side driver

Features

- Wide operating supply voltage range from 4.5 V up to 32 V for transient 45 V
- Very low stand-by quiescent current < 2 µA</p>
- Input to output signal transfer function programmable
- High signal range from -0.3 V up to 32 V for all inputs
- TTL and CMOS compatible inputs
- Defined output off state for open inputs
- Four open drain DMOS outputs, with $R_{DSon} = 1.5 \Omega$ for $V_S > 6 V$ at 25 °C
- Output current limitation
- Controlled output slope for low EMI
- Over temperature protection for each channel
- Integrated output clamping for fast inductive recirculation V_{FB} > 45 V
- Status monitoring for
 - Over temperature
 - Disconnected ground or supply voltage

Description

The L9339 is a monolithic integrated quad low side driver. It is intended to drive lines, lamps or relays in automotive or industrial applications.

Table 1. Device summary

Order code	Package	Packing
L9339	SO20	Tube
L9339DIE1	DIE	Bare die
L9339MD ⁽¹⁾	SO20	Tube

^{1.} Obsolete order code.

Contents L9339

Contents

1	Block diagram	5
2	Pins description	6
3	Electrical specifications	7
	3.1 Absolute maximum ratings	7
	3.2 Thermal data	7
	3.3 Electrical characteristics	8
4	Functional description 1	10
5	Package information	12
6	Revision history	1 2

L9339 List of figures

List of figures

Figure 1.	Block diagram	. 5
Figure 2.	Pins connection (top view)	. 6
Figure 3.	Timing characteristics	. 9
Figure 4.	Application for inverting transfer polarity	11
Figure 5.	Application for non inverting transfer polarity	11
Figure 6.	SO20 mechanical data and package dimensions	12

List of tables L9339

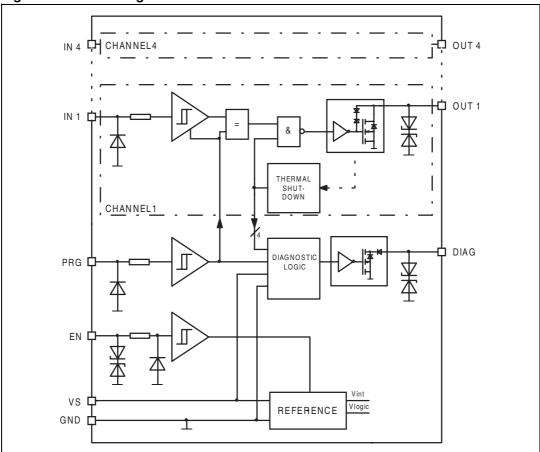

List of tables

Table 1.	Device summary	1
Table 2.	Pins function	6
Table 3.	Absolute maximum ratings	7
Table 4.	Thermal data	7
Table 5.	Electrical characteristics	8
Table 6.	Diagnostic	(
Table 7.	Document revision history	3

L9339 Block diagram

1 Block diagram

Figure 1. Block diagram

Pins description L9339

2 Pins description

Figure 2. Pins connection (top view)

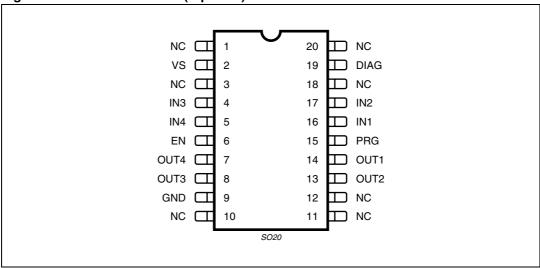


Table 2. Pins function

Pins #	Pin Name	Description
2	VS	Supply Voltage
9	GND	Ground
6	EN	Enable
15	PRG	Programing
19	DIAG	Diagnostic
16	IN 1	Input 1
17	IN 2	Input 2
4	IN 3	Input 3
5	IN 4	Input 4
14	OUT 1	OUTPUT 1
13	OUT 2	OUTPUT 2
8	OUT 3	OUTPUT 3
7	OUT4	OUTPUT4
1,3,10,11,12,18,20	NC	Not Connected

3 Electrical specifications

3.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit	
Vs	Supply voltage DC Pulse (T ≤ 400 ms)		-0.3 to 32 -0.3 to 45	V
dV _S /dt	Supply voltage transient	<u> </u>	-10 to +10	V/µs
V _{IN} , V _{PRG}			-0.3 to 32 -0.3 to 45	V
I _{IN}	Negative input current		-10	mA
V _{EN}	Enable voltage DC Enable voltage Pulse (T ≤400ms)		-24 to 32 -24 to 45	V
V _{OUT}	Output voltage		-0.3 to 45 ⁽¹⁾	V
I _{OUT}	Negative output current Positive output current		-1 internal limited	Α
V _{DIAG}	Diagnostic output voltage Diagnostic output voltage	DC Pulse (T ≤ 400ms)	-0.3 to 32 -0.3 to 45	V

In flyback phase the output voltage can reach 60 V. ESD according to MIL 883C; tested at 2 kV; corresponds to maximum energy dissipation 0.2 mJ.

3.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Min.	Тур.	Max.	Unit.
T _{JSDon}	Temperature shutdown switch-on-threshold	160		200	°C
T _{JSDoff}	Temperature shutdown switch-off-threshold	140		180	°C
R _{th j-amb}	Thermal resistance junction to ambient (1))			97	°C/W

^{1.} Mounted on SMPCB2 board

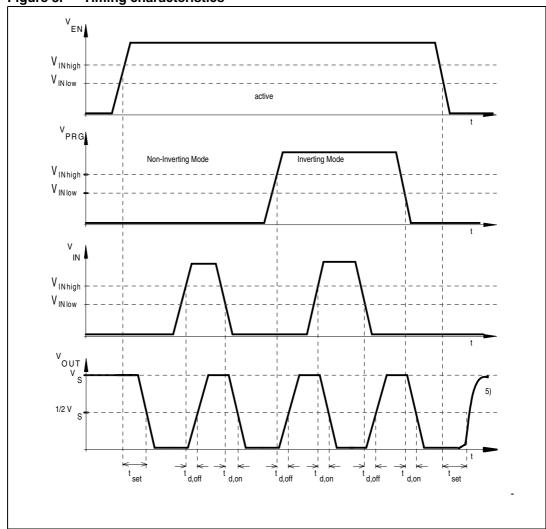
3.3 Electrical characteristics

The electrical characteristics are valid within the below defined operating conditions, unless otherwise specified. The function is guaranteed by design until T_{JSDon} switch-on-threshold.

 V_S = 4.5 to 32 V; T_j = -40 to 150 °C; T_{amb} = -40 to 125 °C; Ambient test temperature = -40 to 125 °C.

Table 5. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
Supply						
		$-0.3 \text{ V} \le \text{V}_{\text{EN}} \le 0.5 \text{ V}; \text{ V}_{\text{S}} = 14 \text{ V};$ $\text{T}_{\text{a}} \le 125 \text{ °C}$		< 2	10	μΑ
IQ	Quiescent current	$-0.3 \text{ V} \le \text{V}_{\text{EN}} \le 0.5 \text{ V}; \text{ V}_{\text{S}} = 14 \text{ V};$ $\text{T}_{\text{a}} \le 150 ^{\circ}\text{C}$			50	μΑ
		$V_{EN} \ge 3.2 \text{ V}; V_{S} \le 14 \text{ V}$		1.5	2	mA
Inputs, IN	I1 - IN4; Programming, PRG					
V _{INIow}	Input voltage low		-0.3		2.0	V
V _{INhigh}	Input voltage high		2.8		32	V
I _{IN}	Input current	V _{IN} = 0 to 32V	-15		25	μΑ
Enable E	N					
V _{ENIow}	Input voltage low		-24		1	V
V _{ENhigh}	Input voltage high		3.2		Vs	V
R _{EN}	Input impedance	-24 V < V _{IN} < 2.5 V	10			kΩ
I _{EN}	Input current	$2.5 \text{ V} \le \text{V}_{\text{IN}} \le 32 \text{ V}$		20	80	μΑ
Outputs	OUT1- OUT4					
R _{DSon}	Output ON-resistor	$V_S \ge 6 \text{ V}, I_O = 0.3 \text{ A}$		1.7	3.8	Ω
	Leakage current	$V_{O} = V_{S} = 14 \text{ V}; T_{a} \le 125 \text{ °C}$		<u>≤</u> 1	5	μΑ
l _{OLeak}	Leakage current	$V_O = V_S = 14 \text{ V}; T_a \le 150 \text{ °C}$			25	μΑ
V _{OClamp}	Output voltage during clamping	time < 200 μ s 10 mA \leq I _O \leq 0.3 A	45	52	60	V
lass	Short-circuit current	$4.5V \le V_S \le 6 V$	0.3		1	Α
l _{osc}	Short-circuit current	V _S > 6 V	0.4	0.7	1	Α
Co	internal output capacities	V _O ≥ 4.5 V			100	pF
Diagnost	Diagnostic output DIAG					
V _{Dlow}	Output voltage LOW	I _{DL} ≤ 0.6 mA			1.3	V
I _{Dmax}	Maximum output current	internal current limitation $V_D = 14 \ V$	1	5	15	mA


Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
,	Leakage current	$V_D = V_S = 14 \text{ V}; T_a \le 125 \text{ °C}$		<u><</u> 0.1	1	μΑ
^I DLeak	Leakage current	$V_D = V_S = 14 \text{ V}; T_a \le 150 \text{ °C}$			5	μΑ
Timing cl	Timing characteristics ⁽¹⁾					
t _{d,on}	On delay time			2	3.5	μs
t _{d,off}	Off delay time	V 44V 0 0 5		3	4.5	μs
t _{set}	Enable settling time	$V_S = 14 \text{ V, } C_{ext} = 0 \text{ pF}$ 10 mA \leq I _O \leq 200 mA			10	μs
t _{d,DIAG}	ON or OFF diagnostic delay time	10 1111 12 10 2 200 1111			10	μs
S _{out}	Output voltage slopes (2)		2.5	9	16	V/µs

^{1.} See also Figure 3 timing characteristics.

All parameters are measured at T_{amb} = 125 °C.

Figure 3. Timing characteristics

^{2.} Output voltage slope not controlled for enable low.

4 Functional description

The L9339 is a quad low side driver for lines, lamps or inductive loads in automotive and industrial applications.

The logic input levels are TTL and CMOS compatible. This allows the device to be driven directly by a microcontroller. For the noise immunity, all input thresholds has a hysteresis of typ. 100 mV. At each input (IN and PRG) voltages from -0.3 V to 32 V can be applied, EN can withstand voltages from -25 V to 3 2 V. The device is activated with a 'high' signal on ENable. ENable 'low' switches the device into the sleep mode. In this mode the quiescent current is less than 10 μA . A high signal on PRoGramming input changes the signal transfer polarity from non inverting into the inverting mode. This pin can be connected to V_S or GND. The forced status of the PRG and EN pin is low, if these pins are not connected. This forced condition leads to a mode change if the PRG pin was high before the interruption. Independent of the PRoGramming input, the OUTput switches off, if the signal INput pin is not connected.

Each output driver has a current limitation of min 0.4 A and a independent thermal shutdown. The thermal shut-down deactivates that output, which exceeds temperature switch off level. When the junction temperature decreases 20 K below this temperature threshold the output will be activated again (hysteresis of the thermal shutdown function). The slew rate of the output voltage is limited to max. 14 $V/\mu s$, to reduce the electromagnetic radiation of the loads and its wiring. For inductive loads a output voltage clamp of typically 52 V is implemented.

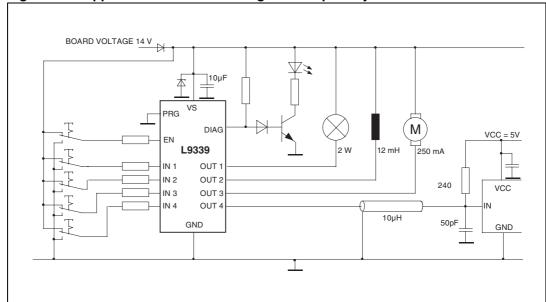
The DIAGnostic is an open drain output with an additional series diode. The logic status depends on the PRoGramming pin. If the PRG pin is 'low' the DIAG output becomes low, if the device works correctly. At thermal shut-down of one channel the DIAGnostic output becomes high. If the PRG pin is 'high' this output is switched off at normal function and switched on at over temperature.

Table 6. Diagnostic

Pins	EN	PRG	IN	OUT	DIAG
	Н	L	L	L (on)	L (on)
	Н	L	Н	H (off)	L (on)
Correct function	Н	Н	L	H (off)	H (off)
	Н	Н	Н	L (on)	H (off)
	L	Х	Х	H (off)	H (off)
Over temperature or supply voltage	Н	L	Х	H (off) ⁽¹⁾	H (off)
Over temperature	Н	Н	Х	H (off) ⁽¹⁾	L (on)

^{1.} Selective for each channel at over temperature

X = not relevant

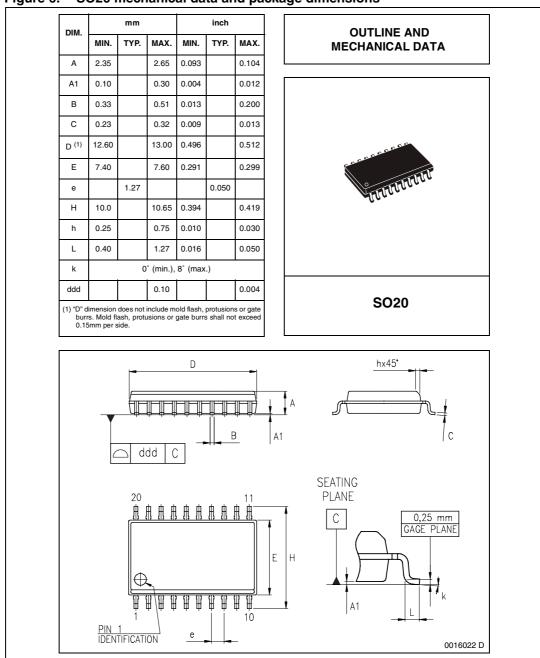

H = high

L = low

BOARD VOLTAGE 14 V ____10μF VCC INT PRG MICROCONTROLLER M DIAG A 0:8 L9339 250 mA 12 mH D 0 OUT : IN 1 D 1 IN 2 OUT 2 D 2 IN 3 OUT 3 D 3 IN 4 OUT 4 10µH 50 kHz GND GND GND 50pF l

Figure 4. Application for inverting transfer polarity

1. We recommend to use the device for driving inductive loads with flyback energy $E_{FB} \le 2mJ$.


Package information L9339

5 Package information

In order to meet environmental requirements, ST (also) offers these devices in ECOPACK[®] packages. ECOPACK[®] packages are lead-free. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label.

ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 6. SO20 mechanical data and package dimensions

L9339 Revision history

6 Revision history

Table 7. Document revision history

Date	Revision	Changes	
20-Dec-1999	1	Initial release.	
24-Jun-2008	2	Document reformatted. Updated the <i>Table 1: Device summary</i> . Updated the <i>Figure 5</i> .	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2008 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

