

Multiple supply for engine control

Features

- Buck converter pre-regulated supply rated for a minimum of 2 A (RMS)
- Optional Boost converter for low battery conditions
- 5 V, 2% @ 1 A, V_{DD5} low dropout (LDO) regulator
- Programmable 3.3 V or 2.6 V, 2% @ 1 A, V_{DDL} LDO regulator with external pass transistor
- Programmable microcontroller core voltage LDO regulator, V_{CORE} 2% @ 1 A with external voltage divider and pass transistor
- Programmable 1 V or 1.5 V, 10% @ 10 mA, standby memory regulator (V_{KAM})
- Programmable 3.3 V or 2.6 V, 10% @ 10 mA alternate standby regulator (VSTBY)
- Four 5 V ± 7 mV @ 50 mA protected tracking regulators, one of them with selectable external voltage reference.
- Independent reset signals, RST5 and RSTL for the V_{DD5}, V_{DDL} supplies.
- Independent standby voltage monitor STANDBY_OK
- Two power supply enable signals for different voltage level signals

- Battery voltage thresholding IGN
- Logic level thresholding PSU_EN

Description

The L9758 is a multiple output voltage regulator utilizing linear, switchmode (buck and boost) and tracking regulators to support high end automotive microcontrollers used in powertrain applications.

The L9758 provides two standby power regulators as well as controllable LDO regulators.

The L9758 has power on reset functionality and controlled slew rate of the $V_{DD5},\,V_{DDL}$ and $V_{CORE}.$

Table 1. Device summary

Order code Temperature range		Package	Packing
L9758	-40 °C to +125 °C	PowerSO-36	Tube

Contents L9758

Contents

1	Pins	configuration	. 6
2	Func	tional block diagram	. 9
3	Oper	ating conditions	10
	3.1	Absolute maximum ratings	10
	3.2	Operating ranges	11
	3.3	Thermal data	11
4	Elect	rical characteristics	12
	4.1	General DC characteristics	12
	4.2	BUCK pre-regulator	13
	4.3	Boost pre-regulator	14
	4.4	VDD5 linear regulator	15
	4.5	VDDL linear regulator	15
	4.6	VCORE linear regulator	16
	4.7	VKAM linear regulator	17
	4.8	VSTBY linear regulator	17
	4.9	VSA, VSB, VSC, VSD tracking linear regulator	18
	4.10	RST5 and RSTL reset signals	18
	4.11	IGN and PSU_EN inputs	19
	4.12	STBY_OK signal	20
5	Func	tional description	21
	5.1	General function	21
	5.2	Switching pre-regulator	21
	5.3	VDD5, VDDL and VCORE linear regulators	21
	5.4	Tracking regulators	22
	5.5	VKAM and VSTBY linear regulators	22
	5.6	RESET monitors	23
	5.7	Thermal protection	23
	5.8	Reference current	23

L9758 Contents

6	Ope	rating modes
	6.1	Standby mode
	6.2	Run mode
		6.2.1 Entry into run mode
	6.3	Power down 25
	6.4	Low voltage operation
	6.5	High voltage operation
7	Pack	rage information
8	Revi	sion history

List of tables L9758

List of tables

Table 1.	Device summary	1
Table 2.	Pins description	
Table 3.	Control pins description	7
Table 4.	Absolute maximum ratings	10
Table 5.	Operating ranges	11
Table 6.	Thermal data	11
Table 7.	General DC characteristics	12
Table 8.	BUCK pre-regulator	13
Table 9.	Boost pre-regulator	14
Table 10.	VDD5 linear regulator	15
Table 11.	VDDL linear regulator	15
Table 12.	VCORE linear regulator	16
Table 13.	VKAM linear regulator	17
Table 14.	VSTBY linear regulator	17
Table 15.	VSA, VSB, VSC, VSD tracking linear regulator	
Table 16.	RST5 reset signals	18
Table 17.	RSTL reset signals	19
Table 18.	IGN and PSU_EN inputs	19
Table 19.	STBY_OK signal	20
Tahla 20	Document revision history	28

L9758 List of figures

List of figures

Figure 1.	Pins connection (top view)	. 6
Figure 2.	Functional block diagram	. 9
Figure 3.	Current reference generator	23
Figure 4.	Power up/down sequence	25
Figure 5.	PowerSO-36 mechanical data and package dimensions	27

Pins configuration L9758

1 Pins configuration

Figure 1. Pins connection (top view)

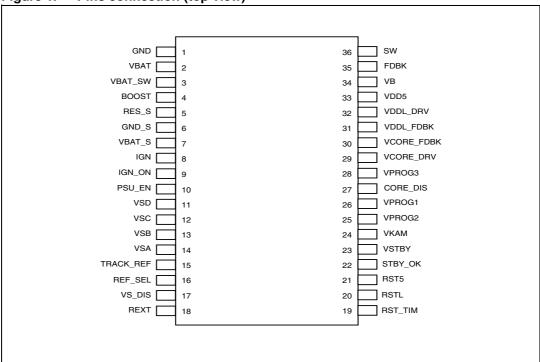


Table 2. Pins description

Pin #	Name	Description
1	GND	Power ground
2	VBAT	Battery power source
3	VBAT_SW	Switched battery power source
4	BOOST	External boost transistor predriver output
5	RES_S	Boost (+) current comparator input
6	GND_S	Boost (-) current comparator input
7	VBAT_S	Battery feedback for boost controller
8	IGN	Ignition switch
9	IGN_ON	Ignition state
10	PSU_EN	Power supply enable
11	VSD	Tracking regulator D
12	VSC	Tracking regulator C
13	VSB	Tracking regulator B
14	VSA	Tracking regulator A
15	TRACK_REF	Tracking A voltage reference

L9758 Pins configuration

Table 2. Pins description (continued)

Pin #	Name	Description	
16	REF_SEL	Tracking A voltage reference selection	
17	VS_DIS	Sensor supply disable	
18	REXT	External current reference resistance	
19	RST_TIM	Reset timer adjustment	
20	RSTL	VDDL regulator reset output	
21	RST5	VDD5 regulator reset output	
22	STBY_OK	Standby regulator monitor	
23	VSTBY	Standby regulator output	
24	VKAM	Standby memory regulator output	
25	VPROG2	Standby regulator voltage selection (VSTBY)	
26	VPROG1	Standby memory regulator voltage selection (VKAM)	
27	CORE_DIS	VDDL and VCORE disable	
28	VPROG3	VDDL voltage selection	
29	VCORE_DRV	VCORE external pass transistor predriver output	
30	VCORE_FDBK	VCORE feedback	
31	VDDL_FDBK	VDDL feedback	
32	VDDL_DRV	VDDL external pass transistor predriver output	
33	VDD5	VDD5 linear regulator output	
34	VB	Switching preregulator output	
35	FDBK	Switching voltage feedback	
36	SW	Buck regulator switch output	

Table 3. Control pins description

Pin name	Logic level	Description		
IGN	Low	ow Enter in Stand-by Mode if also PSU_EN is low		
IGN	High	Enter in Run Mode	down	
IGN ON	Low	IGN is high	Open	
IGN_ON	High	IGN is low	drain	
PSU EN	Low	Enter in Stand-by Mode if also IGN is low	Pull	
1 30_LIV	High	Enter in Run Mode	down	
		Enable VSB, VSC, VSD tracking regulators	Pull	
VS_DIS High		Disable VSB, VSC, VSD tracking regulators	down	
	Low	Voltage reference for VSA tracking regulator is VDD5	D. II	
Ref_Sel	High	Voltage reference for VSA tracking regulator is VTRACK_REF	- Pull down	

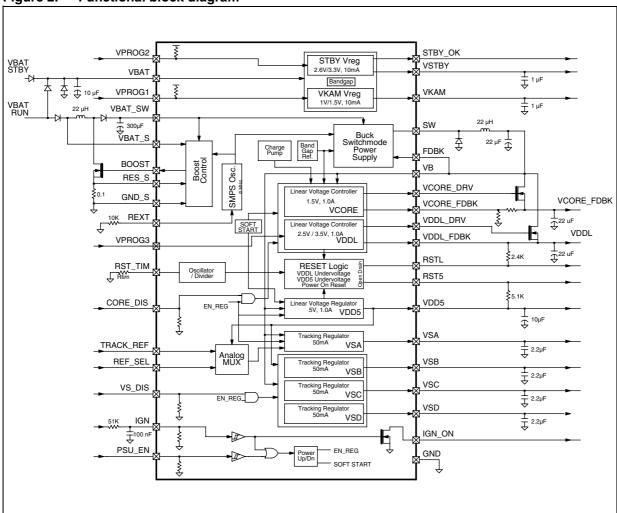

Pins configuration L9758

Table 3. Control pins description (continued)

Pin name	Logic level	Description		
Low VDDL output regulator out of range (under voltage)		VDDL output regulator out of range (under voltage)	Open	
RSTL	High	VDDL output regulator fully operational	collector	
RST5	Low	VDD5 output regulator out of range (under voltage)	Open	
noio	High	VDD5 output regulator fully operational	collector	
VPPOC1	Low	VKAM regulator output programmed to 1V	D. III	
VPROG1 High		VKAM regulator output programmed to 1.5V	- Pull up	
VPROG2	Low	VSTBY regulator output programmed to 2.6V	- Pull up	
VFNOG2	High	VSTBY regulator output programmed to 3.3V	Full up	
Low		VDLL regulator output programmed to 2.6V	- Pull up	
VPROG3 High		VDLL regulator output programmed to 3.3V	Full up	
Low		Enable VDLL and VCORE linear regulators	Pull	
CORE_DIS High		Disable VDLL and VCORE linear regulators	down	
CTDV OV	Low	VSTBY output regulator out of range (under voltage)	Open	
STBY_OK	High	VSTBY output regulator fully operational	drain	

2 Functional block diagram

Figure 2. Functional block diagram

Operating conditions L9758

3 Operating conditions

3.1 Absolute maximum ratings

This part may be irreparably damaged if taken outside the specified absolute maximum ratings. Operation above the absolute maximum ratings may also cause a decrease in reliability.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
VBAT,V _{BAT_SW}	Battery supply voltage	-0.3 to 40	V
V _{IGN}	Ignition input voltage (with at least 10K external resistance)	-2.0 to 40	V
V _{I-digital}	Digital input voltages (PSU_EN, VS_EN, VPROG1, VPROG2, VPROG3, VDDL/VCORE_EN, REF_SEL)	-0.3 to 7	V
V _{I-analog}	Analog input voltages (REXT, TRACK_REF, RST_TIM VDDL_FDBK, VCORE_FDBK)	-0.3 to 7	V
V _B	Linear regulator supply (VB)	-0.3 to 40	V
V _{FDBK}	Switching feedback (FDBK)	-0.3 to 40	V
V _{SW}	Buck regulator switch output (SW)	-2 to 40	٧
V _{O-digital}	Digital output voltages (IGN_ON, RSTL, RST5, BOOST, STBY_OK)	-0.3 to 7	V
V _{OR}	Regulator output voltages (VDD5, VSTBY, VKAM)	-0.3 to 7	V
V _{VSx}	Regulator output voltages (VSA, VSB, VSC, VSD)	-3 to 40	V
V _{CORE_DRV} , V _{DDL_DRV}	External regulator predriver output (VCORE_DRV, VDDL_DRV)	-0.3 to 15	V
I _{SMPS}	Switching preregulator current	0 to 4.2	Α
T _{op}	Operating temperature	-40 to 125	°C
T _{stg}	Storage temperature	-50 to 150	°C
T _j	Max junction temperature	150	°C
V _{ESD}	Max ESD (human body model)	±2	KV

Warning:

Exceeding these values might destroy this part. This part is not guaranteed to function properly at these ratings. The CMOS inputs and outputs should never go above 5V + 0.3V or below GND - 0.3V without protection (series resistance). If this occurs, the device might be destroyed by latch-up and/or the output levels might not be controlled by the inputs. Unused inputs must be connected to GND and unused outputs should be left open and programmed to a low state. Unused I/O pins should be programmed as outputs, left open, and programmed to a low state.

3.2 Operating ranges

Full specification parameters cannot be guaranteed outside the operating ranges. Once the condition is returned to within the specified operating ranges, the part will recover with no damage or degradation.

Table 5. Operating ranges

Symbol	Parameter	Value	Unit
V V	Battery supply voltage	4 to 26.5	
V _{BAT} , V _{BAT_SW} , V _{BAT_S}		4 to 40 (t < 400ms)	V
V _{IGN}	Ignition input voltage (with at least 10K external resistance)	4 to 26.5	٧
V _{I-digita} I	Digital input voltages (PSU_EN,VS_EN,VPROG1, VPROG2, VPROG3, VDDL/VCORE_EN, REF_SEL)	-0.3 to 5.3	V
V _{I-analog}	Analog input voltages (REXT, TRACK_REF, RST_TIM VDDL_FDBK, VCORE_FDBK)	-0.3 to 5.3	V
I _{AVE}	Switching preregulator average current	0 to 2.5	Α
T _{op}	Operating temperature	-40 to 125	°C
T _j	Junction temperature	-40 to 150	°C

3.3 Thermal data

Table 6. Thermal data

Symbol	Parameter	Value	Unit
R _{th(j-case)}	Thermal resistance junction-to-case	2	°C/W

Electrical characteristics L9758

4 Electrical characteristics

All voltage values are, if not otherwise stated, relative to ground. Current flow into a pin is positive. If not otherwise stated, all rise times are between 10% and 90%, fall times between 90% and 10% and delay times at 50% of the relevant steps.

4.1 General DC characteristics

 T_{amb} = -40 °C to 125 °C, V_{BAT} = V_{BAT_SW} = 5.5 to 26.5 V, unless otherwise specified.

Table 7. General DC characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
I _{BAT_SW_SB}	Quiescent current at pin BAT_SW	V _{BAT} = 0 V; V _{BAT_SW} = 12 V				
I _{Q_OFF}	Supply current in OFF state	I _{VBAT_SW} + I _{VBAT}	-	-	120	μΑ
V _{LVI_LOW}	Low voltage inhibit Low threshold	-	3.5	-	3.9	V
V _{LVI_HIGH}	Low voltage inhibit High threshold	-	4.0	-	4.5	V
V _{LVI_HYS}	Low voltage inhibit hysteresis	-	0.3	-	1	V
V _{ST}	Linear Start-up voltage	-	3.8	-	4.8	V
V _{REXT}	Rext Voltage	-	1.18	-	1.24	V
V _{TH_VSEN}	VS_EN input threshold	-	0.8	-	2	V
V _{VDDL/VCORE_EN}	VDDL/VCORE_EN input threshold	-	0.8	-	2	V
V _{PROG1_LOW}	PROG1 input Low Voltage	-	-	-	0.8	V
V _{PROG2_LOW}	PROG2 input Low Voltage	-	-	-	0.8	V
V _{PROG3_LOW}	PROG3 input Low Voltage	-	-	-	0.8	V
V _{DDL_ENUP}	Vddl Power-up enable	-	1	-	2	V

4.2 BUCK pre-regulator

 $\rm T_{amb}$ = -40 °C to 125 °C, $\rm V_{BAT}$ = $\rm V_{BAT_SW}$ = 5.5 to 26.5 V; unless otherwise specified.

Table 8. BUCK pre-regulator

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
F _{SW}	Operating frequency	R _{ext} = 10.0 kOhm ±1% V _{BAT_SW} = 13.5 V	300	-	450	kHz
R _{dsON}	High side switch ON resistance	V _{BAT_SW} = 6.0V	-	-	0.25	Ω
I _{ST_MAX}	Average current during start-up	V _B = 3.0V	0.3	-	0.7	Α
V _{BREG}	Output voltage	7.0V < V _{BAT_SW} < 18V 0.25A < I _{VBAT} <2.0A	5.5	-	6.1	V
Vb100	100% Duty Cycle operation threshold	Voltage canced at VPAT_SW pin	6.2	-	7.8	V
Vb100h	100% Duty Cycle operation threshold hysteresis	Voltage sensed at VBAT_SW pin	0.05	-	0.8	V
∆Vpre	Load regulation	$\Delta I_{VB} = 0.1A - 2A V_{BAT_SW} = 13.5V$	-	-	400	mV
Vrpre	Voltage ripple, p-p	L = 22μH, C = 22μF X7R V _{BAT_SW} = 13.5V	-	-	300	mV
Ts	Start time	L = 22µH, C = 22µF X7R	-	-	1.4	ms
DCmin	Minimum duty cycle	-	10	-	18	%
EFF	Efficiency	$V_{BAT_SW} = 13.5 \text{ V } I_{VB} = 0.5 \text{A}$ $V_{BAT_SW} = 13.5 \text{V } I_{VB} = 2 \text{A}$	70 70	-	-	%
L Rs	Output Inductance	-	15	22	30 75	μH mΩ
C ESR	Output capacitance	-	10 0	-	100 160	μF mΩ
Ov	Power-up overvoltage	V _{BAT_SW} < 26.5V 0.25Ā < I _{VBAT} <2.0A	15	-	200	mV
Tr_sw Tf_sw	SW rising and falling time	7.0V < V _{BAT_SW} < 18V I _{VBAT} <2.0A (20%, 80%)	10	-	150	μs

Electrical characteristics L9758

4.3 Boost pre-regulator

 $\rm T_{amb}$ = -40 °C to 125 °C, $\rm V_{BAT}$ = $\rm V_{BAT_SW}$ = 5.5 to 26.5 V, unless otherwise specified.

Table 9. Boost pre-regulator

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
FSW	Operating frequency	R _{ext} = 10.0 kOhm ±1% V _{BAT_SW} = 13.5 V	300	-	450	kHz
V_{B_REG}	Output voltage	4.0 V < V _{BAT_S} < 7 V, 0.25 A < I _{VB} < 2.0 A	8.5	-	10	V
BoostONth	Boost enable threshold	Voltage conced at VRAT S nin	7.0	-	8.3	V
BoostOFFth	Boost disable threshold	Voltage sensed at VBAT_S pin	7.0	-	8.3	V
V _{BOOST_HY}	Boost operation threshold hysteresis	Voltage sensed at VBAT_S pin	0.05	-	0.9	V
ΔV _{BOOST}	Load regulation	$\Delta I_{VB} = 0.1 \text{ A2 A } V_{BAT_S} = 4 \text{ V}$	-	-	600	mV
V _{R_VBOOST}	Voltage ripple, p-p	L = 22 μH, C = 300 μF X7RX7R V _{BAT_S} = 4 V	-	-	600	mV
V _{OLB}	Boost predriver low level voltage	I _{sink} = 1 mA	-	-	0.2	V
V _{OHB}	Boost predriver low level voltage	I _{source} = 200 μA	4.8	-	-	V
T _{RB}	Boost predriver rise time	CI = 1 nF	50	-	180	ns
T _{FB}	Boost predriver fall time	CI = 1 nF	20	-	100	ns
L Rs	Output inductance	-	15	22	30 75	μH mΩ
C ESR	Output capacitance	-	100 10	300	900 200	μF mΩ
R _{SENSE}	Sensing resistor	-	40	50	-	mΩ

4.4 VDD5 linear regulator

 T_{amb} = -40 °C to 125 °C, V_{BAT} = V_{BAT_SW} = 5.5 to 26.5 V, unless otherwise specified.

Table 10. VDD5 linear regulator

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{DD5}	Output voltage	5 mA < I _{DD5} < 1 A V _{BAT_SW} => 5.7 V 5 mA < I _{DD5} < 800 mA V _{BAT_SW} = 5.5 V	4.9	-	5.1	V
		$5 \text{ mA} < I_{DD5} < 1 \text{ A } V_{BAT_SW} \ge 4 \text{ V}$	3.3		4.0	
I _{DD5_LIM}	Current limit	V _{DD5} = 4.75 V	1200	-	2500	mA
C _{DD5} ESR	Output capacitor	Ceramic or Tantalum C = 4.7μF	4.7 0	-	100 160	μF mΩ
R _{RDD5}	Ripple rejection	F = 375 kHz	26	-	-	dB
V _{DD5_MAX}	Maximum overshoot	$\Delta VB/\Delta t < 70 \text{ V/ms}$ $V_{BAT_SW} = 4V \Rightarrow 8 \text{ V}$	-	-	5.5	V
$\Delta V_{DD5}/\Delta t$	Output voltage slew rate at power-up	5 mA < I _{DD5} < 1 A V _{BAT_SW} = 13.5 V	10	-	20	V/ms
I _{DD5}	Load current	-	5	-	1000	mA
V _{DD5} lineR	Line regulation	6.0 V < V _B < 7 V	-25	-	+25	mV
V _{DD5} loadR	Load regulation	5 mA < I _{DD5} < 1 A	-25	-	+25	mV
V _{DD5} -V _{ddl}	Start up	V _{DD5} -V _{ddl} during start up	0.5	-	3.1	mV

4.5 VDDL linear regulator

 $\rm T_{amb}$ = -40 °C to 125 °C, $\rm V_{BAT} = V_{BAT_SW}$ = 5.5 to 26.5 V, unless otherwise specified.

Table 11. VDDL linear regulator

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{DDL}	Output voltage	$5 \text{ mA} < I_{DDL} < 1 \text{ A}, V_{PROG3} = \text{Open}$ $4.0 \text{ V} < V_{BAT_SW} < 18 \text{ V}$ $5 \text{ mA} < I_{DDL} < 1 \text{ A}, V_{PROG3} = \text{Low}$ $4.0 \text{ V} < V_{BAT_SW} < 18 \text{ V}$	3.23 2.55	-	3.37 2.65	V
C _{DDL} ESR	Output capacitor	Ceramic or Tantalum	4.7 0	-	100 160	μF mΩ
RR _{DDL}	Ripple rejection	F= 375 kHz	26	-	-	dB

Electrical characteristics L9758

Table 11. VDDL linear regulator (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{DDL_MAX}	Maximum overshoot	$5 \text{ mA} < I_{DDL} < 1 \text{ A, } V_{PROG3} = \text{Open}$ $4.0 \text{ V} < V_{BAT_SW} < 18 \text{ V}$ $\Delta VB/\Delta t < 70 \text{ V/ms}$ $5 \text{ mA} < I_{DDL} < 1 \text{ A, } V_{PROG3} = \text{Low}$ $4.0 \text{ V} < V_{BAT_SW} < 18 \text{ V}$ $\Delta VB/\Delta t < 70 \text{ V/ms}$	-	-	3.75	V
$\Delta V_{DDL}/\Delta t$	Output voltage slew rate at power-up	5 mA <i<sub>DDL < 1 A V_{BAT_SW} =13.5 V</i<sub>	5	-	25	V/ms
I _{DDL}	Load current		5	-	1000	mA
V _{DDL} lineR	Line regulation	5.5 V < V _{BAT_SW} < 7 V	-8	-	+8	mV
V _{DDL} loadR	Load regulation	5 mA < I _{DDL} < 1 A	-8	-	+8	mV

4.6 VCORE linear regulator

 $\rm T_{amb}$ = -40 °C to 125 °C, $\rm V_{BAT} = \rm V_{BAT_SW}$ = 5.5 to 26.5 V, unless otherwise specified.

Table 12. VCORE linear regulator

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{CORE}	Output voltage	5mA < I _{CORE} < 1A 4.0V < V _{BAT_SW} < 18V	1.47	-	1.53	V
CddL ESR	Output capacitor	Ceramic or Tantalum	4.70 0	-	100 160	μF mΩ
RRddL	Ripple rejection	F= 375 kHz	26	-	-	dB
V _{CORE_M}	Maximum overshoot	5 mA < I _{CORE} < 1 A 4.0 V < V _{BAT_SW} < 18 V	-	-	1.7	V
ΔV _{CORE} /Δt	Output voltage slew rate at power-up	5 mA < I _{CORE} < 1 A V _{BAT_SW} =13.5 V	5	-	25	V/ms
I _{CORE}	Load current	-	5	-	1000	mA
V _{CORE_PROG}	Range of programmability	Using external resistor divider	1.05	1.5	2.8	V
V _{CORE_FBK}	Feedback voltage	-	0.98	-	1.02	٧
V _{CORE} lineR	Line regulation	5.5 V < V _{BAT_SW} < 7 V	-25	-	+25	mV
V _{CORE} loadR	Load regulation	5 mA < I _{CORE} < 1 A	-25	-	+25	mV

4.7 VKAM linear regulator

 T_{amb} = -40 °C to 125 °C, V_{BAT} = V_{BAT_SW} = 5.5 to 26.5 V, unless otherwise specified.

Table 13. VKAM linear regulator

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{KAM}	Output voltage	0.1mA < I _{VKAM} < 10mA, V _{PROG1} = Low 4.0V < V _{BAT} < 18V 0.1mA < I _{VKAM} < 10mA, V _{PROG1} = Open 4.0V < V _{BAT} < 18V	0.9 1.37	-	1.1	٧
C _{VKAM} ESR	Output capacitor	Ceramic	0.1 0	-	4.7 20	μF mΩ
RR _{VKAM}	Ripple rejection	F=375 kHz	26	-		dB
V _{KAM_M}	Maximum overshoot (absolute value relative to GND)	$0.1 \text{ mA} < I_{VKAM} < 10 \text{ mA}, V_{PROG1} = Low$ $4 \text{ V} < V_{BAT} < 18 \text{ V}$ $0.1 \text{ mA} < I_{VKAM} < 10 \text{ mA}, V_{PROG1} = Open$ $4 \text{ V} < V_{BAT} < 18 \text{ V}$	-	-	1.2	>
Iddkamsh	Current limit	V _{KAM} = 0.5 V	11	-	50	mA
I _{KAM}	Load current	-	0.1	-	10	mA
V _{KAM} lineR	Line regulation	6 V < V _{BAT} < 18 V	-25	-	+25	mV
V _{KAM} loadR	Load regulation	0.1 mA < I _{KAM} < 10 mA	-25	-	+25	mV

4.8 VSTBY linear regulator

 T_{amb} = -40 °C to 125 °C, V_{BAT} = V_{BAT_SW} = 5.5 to 26.5 V, unless otherwise specified.

Table 14. VSTBY linear regulator

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{STBY}	Output voltage	$0.1 \text{ mA} < I_{\text{STBY}} < 10 \text{ mA}, V_{\text{PROG2}} = \text{Low}$ $4 \text{ V} < V_{\text{BAT}} < 18 \text{ V}$ $0.1 \text{ mA} < I_{\text{STBY}} < 10 \text{ mA}, V_{\text{PROG2}} = \text{Open}$ $4 \text{ V} < V_{\text{BAT}} < 18 \text{ V}$	2.47 3.13	-	2.73 3.47	V
C _{STBY} ESR	Output capacitor	Ceramic	0.1 0	-	10 20	μF mΩ
RR _{STBY}	Ripple rejection	F = 350 kHz	26	-	-	dB
V _{STBY_M}	Maximum overshoot (absolute value relative to GND)	$0.1 \text{ mA} < I_{STBY} < 10 \text{ mA}, V_{PROG2} = Low$ $4 \text{ V} < V_{BAT} < 18 \text{ V}$ $0.1 \text{ mA} < I_{STBY} < 10 \text{ mA}, V_{PROG2} = Open$ $4 \text{ V} < V_{BAT} < 18 \text{ V}$	-	-	3.05 3.75	V
I _{STBY} sh	Current limit	V _{STBY} = 0.5 V	11	-	50	mA
I _{STBY}	Load current	-	0.1	-	10	mA
V _{STBY} lineR	Line regulation	6 V < V _{BAT} <18 V	-25	-	+25	mV
V _{STBY} loadR	Load regulation	0.1 mA < I _{STBY} < 10 mA	-25	-	+25	mV

Electrical characteristics L9758

4.9 VSA, VSB, VSC, VSD tracking linear regulator

Table 15. VSA, VSB, VSC, VSD tracking linear regulator

 T_{amb} = -40 °C to 125 °C, V_{BAT} = V_{BAT_SW} = 5.5 to 26.5 V, unless otherwise specified.

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
ΔV _{TRK}	Output voltage tracking accuracy	$\begin{array}{l} 1 \text{ mA} < I_{t1} < 50 \text{ mA, 6 V} < V_{BAT_SW} < 18 \text{ V} \\ 1 \text{ mA} < I_{t1} < 5 \text{ 0mA, 4 V} < V_{BAT_SW} < 6 \text{ V} \end{array}$	-7 -50	-	10 50	mV
I _{TRK} sh	Current limit	V _{tck} = 4.75 V	51	-	100	mA
C _{TRK} ESR	Output load capacitor	Ceramic or Tantalum	1 0	-	16 3	μF mΩ
Ctckmin ESRmin	Minimum output capacitor for stability	Ceramic or Tantalum	1 0	-	3	μF Ω
RR _{TRK}	Ripple rejection	F= 375 kHz	26	-	-	dB
Vdrop	Dropout voltage	I _{load} = 50mA	-	-	300	mV
T _{TSD}	Thermal shutdown	Vtck = 4.75V (current limitation)	165	-	185	°C
T _{HYST}	Thermal hysteresis	Vtck = 4.75V (current limitation)	5	-	15	°C
I _{TRK}	Load current	-	1	-	50	mA

4.10 RST5 and RSTL reset signals

 T_{amb} = -40 °C to 125 °C, V_{BAT} = V_{BAT_SW} = 5.5 to 26.5 V, unless otherwise specified.

Table 16. RST5 reset signals

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
I _{RST5_H}	Reset "high" leakage current	V _{RST5} = 5.15 V	-3.0	-	-	μΑ
V _{RST5_L}	Reset "low" output voltage	V _{DD5} = 4.5 V Ire = 5 mA V _{DD5} = 1.0 V Ire = 1 mA	-	-	0.4 0.4	V
V _{FTH_RST5}	Reset threshold decreasing	$\Delta V_{DD5}/\Delta_{t} < 0$	4.5	-	V _{DD5} - 0.2	V
V _{RTH_RST5}	Reset threshold increasing	$\Delta V_{DD5}/\Delta_t > 0$	4.5	-	V _{DD5} - 0.07	V
V _{HY_RST5}	Reset threshold hysteresis	-	50	-	-	mV
t _{ACT_RST5}	Reset activation out of tolerance duration	-	15	-	25	μs
t _{DEL_RST5}	Reset delay	$4.7 \text{ k}\Omega < \text{R}_{\text{ext}} < 47 \text{ k}\Omega$	1	-	10	ms
t _{ERR_RST5}	Reset delay accuracy	R _{ext} ±1%	-15	-	+15	%

Table 17. RSTL reset signals

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
I _{RSTL_H}	Reset "high" leakage current	V _{DDL} = 5.15 V	-3.0	-	-	μΑ
V _{RSTL_L}	Reset "low" output voltage	V _{DDL} =5.0V Ire=5mA V _{DDL} =1.0V Ire=1mA	-	-	0.4 0.4	V
V _{FTH_RSTL}	Reset threshold decreasing	$\Delta V_{DDL}/\Delta t < 0, V_{PROG3}=Low$	2.375	-	V _{DDL} – 0.05	V
V _{RTH_RSTL}	Reset threshold increasing	$\Delta V_{DDL}/\Delta t < 0$, V_{PROG3} =Low	2.375	-	V _{DDL} - 0.02	V
V _{FTH_RSTL_O}	Reset threshold decreasing	$\Delta V_{DDL}/\Delta t < 0, V_{PROG3}=Open$	3.13	-	V _{DDL} – 0.05	V
V _{RTH_RSTL_O}	Reset threshold increasing	$\Delta V_{DDL}/\Delta t < 0, V_{PROG3}=Open$	3.13	-	V _{DDL} – 0.02	V
V _{HY_RSTL}	Reset threshold hysteresis	-	40	-	-	mV
t _{ACT_RSTL}	Reset activation out of tolerance duration	-	15	-	25	μS
t _{DEL_RSTL}	Reset delay	$1nF < C_{EXT} < 10nF$; $4.7k\Omega < R_{ext} < 47k\Omega$	1	-	10	ms
t _{ERR_RSTL}	Reset delay accuracy	R _{ext} ±1%	-15	-	+15	%

4.11 IGN and PSU_EN inputs

 $\rm T_{amb}$ = -40 °C to 125 °C, $\rm V_{BAT}$ = $\rm V_{BAT_SW}$ = 5.5 to 26.5 V, unless otherwise specified.

Table 18. IGN and PSU_EN inputs

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{TH_IGN}	IGN input threshold	threshold @ IGN pin	2	-	3.6	V
V _{HYS_IGN}	IGN input threshold hysteresis	-	0.2	-	1.4	V
R _{PD_IGN}	IGN pull-down resistor	-	300	ı	1100	kΩ
V _{TH_PSUEN}	PSU_EN input threshold	-	0.9	-	0.55* V _{STBY}	V
V _{HYS_PSUEN}	PSU_EN input threshold hysteresis	-	0.2	-	0.8	V
R _{PD_PSUEN}	PSU pull-down resistor	-	50	ı	230	kΩ
V _{OL_IGNON}	IGN_ON "low" output voltage	Iol=1mA			0.4	V
R _{IGN_EXT}	IGN external input resistance		10		50	kΩ

Electrical characteristics L9758

4.12 STBY_OK signal

Table 19. STBY_OK signal

 T_{amb} = -40°C to 125°C, V_{BAT} = V_{BAT_SW} = 5.5 to 26.5V, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Max	Units
T _{h_stbyok}	VstanbyOK threshold	$\Delta V_{STBY}/\Delta t < 0$	-8,5	-3,5	%
T _{stbydly}	STBY_OK filter time		15	25	μs
T _{stbyok}	STBY_OK delay accuracy		10	60	μs
V _{ol_stbyok}	STBY_OK low output voltage	V _{STBY} =1V I _{stbyok} =1mA		0.4	V

5 Functional description

5.1 General function

The L9758 is equipped with 9 linear voltage regulator. A buck boost switch mode power supply as pre regulator for the 7 main regulators is used to reduce the power consumption in the system.

Two standby regulators can be used to bias the system on off-mode. This to regulator's are equipped with a independent bandgap voltage reference. The current consumption of these two linear regulators is specified with less than 120 μA in OFF state. I these standby function is not used the current consumption on the battery can be reduced by not connecting the VBAT. Under this condition the device enters immediately in the run mode, the pin PSU_REN will lost his function. The quiescent current on the VBAT_SW can be reduced to maximum 10 μA with 12 V battery voltage in off mode. The main regulators can be activated with the IGN input. With a external resistor higher than 10 kohm in series to the IGN pin a battery compliant signal can be used. In the function block diagram a resistor value of 51 kohm is mention and a 100 nF capacitor for noise robustness on IGN.

5.2 Switching pre-regulator

The switching pre-regulator is a buck or a buck-boost current control mode regulator. The optional boost operation for low battery conditions can be selected connecting external logic level low side NCH FET and an external diode in series to the inductor.

The external parts required to complete the switching regulator are an inductor, recirculation diode and input and output filtering capacitor. The compensation network is inside the device.

With a constant switching frequency of 350 kHz, the pre-regulator controls the output voltage (the voltage at the VB and FDBK pins) to the limits stated in the electrical characteristics table varying the duty cycle. The 350 kHz are related to R_{EXT} = 10 k Ω (see Section 5.8).

At low battery voltages, in buck configuration, the pre-regulator runs with the duty cycle up to 100%. In buck-boost configuration normally it runs at 350 kHz but for a limited range of input voltage it could enter in pulse skipping mode to control the output voltage.

A soft start function is implemented reducing the current limitation during the power-up phase.

5.3 VDD5, VDDL and VCORE linear regulators

The VDD5 output is a fully integrated low drop out regulator. The V_{DDL} and V_{CORE} supplies will be implemented via an external N-channel pass MOS, with the control being internal to the IC. If the pass MOS is not used, two low current (max 30mA) regulator are available connecting directly VDDL_FDBK to VDDL_DRV and VCORE_FDBK to VCORE_DRV with a resistor divider. The output of the pre-regulator is used as the source of these supplies.

 V_{DD5} is a fixed 5V nominal output, while V_{DDL} and V_{CORE} are programmable.

The V_{DDL} voltage is selectable with the VPROG3 pin: 2.5V if connected to GND and 3.3V if is left open (an internal pull-up is present). V_{CORE} voltage is programmable connecting an external resistor divider at the feedback pin (VCORE_FDBK).

Once programmed to a value at power-up, this value cannot change during the power cycle. It is the intent that the system run at a single fixed value for V_{DDL} and V_{CORE} for the life of the product.

All the linear regulators start with a controlled slew rate when the pre-regulated voltage reaches V_{DDL_ENUP} threshold as indicated in the electrical characteristics table. All the linear regulator are short circuit protected with a limited current.

5.4 Tracking regulators

Four low drop-out tracking regulators (VSA, VSB, VSC and VSD) are supplied by the output of the switching pre-regulator. They track the output voltage of the VDD5 linear regulator with the accuracy as specified in the electrical characteristic table.

The VSA regulator also tracks an external voltage reference (TRACK_REF pin) and the tracking voltage is selected by the REF_SEL pin.

If REF_SEL is tied High (5V) then V_{TRK_REF} is tracked. If REF_SEL is left open then V_{DD5} is tracked. There is an internal pull-down on REF_SEL.

The tracking supplies are intended to drive loads that are external to the ECU so they are short circuit protected with the current limited. The outputs of the tracking regulators also withstand short circuit to the battery.

A short circuit to GND, continuous or intermittent on one tracking supply will not affect any other supply, including the preregulator output voltage V_B . In addition to these requirements, all sensor supplies shall be capable of operating with up to a 15 μ F load on the supply line. This load may be present during initial startup, or be applied after the supply has been powered up. In either case, the application of this load shall not cause the tracking regulators to be permanently disabled.

VSB, VSC and VSD regulators can be disabled with VS_EN pin.

5.5 VKAM and VSTBY linear regulators

These two outputs are fully integrated low quiescent current low drop out regulators. The input VBAT is used as the source of these supplies. These outputs are operational during both standby and run mode; these are the only outputs operational during standby (V_{BAT} not present).

The VKAM regulator has two programmable levels: 1.0V (VPROG1 pin connected to GND) or 1.5V (if this pin is left open, an internal pull-up is present).

The V_{STBY} regulator has two programmable levels: 2.6V (VPROG2 pin connected to GND) or 3.3V (if this pin is left open, an internal pull-up is present).

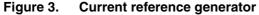
The STBY_OK pin indicates when the V_{STBY} is out of range (voltage below the threshold indicated in the electrical characteristic table). Once driven low it should stay low for a minimal amount of time allowing external circuitry to latch.

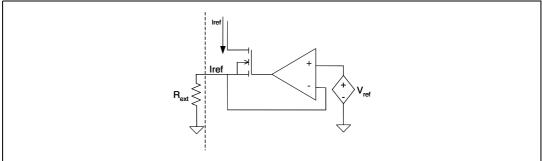
5.6 RESET monitors

RST5 is the reset signal tied to the V_{DD5} supply. This is an open collector active low signal that pulls low when V_{DD5} is out of range.

RSTL is the reset signal for the V_{DDL} supply. This is an open collector active low signal that pulls low when V_{DDL} is out of range. RST5 and RSTL are also driven low when STBY_OK pin is driven low, regardless of the status of V_{DD5} and V_{DD1} .

Reset Delay is the time duration from when the output (V_{DD5} or V_{DDL}) is within range to when the reset pin (RST5 or RSTL) is released. RST5 and RSTL use separate timers. This delay is programmable via an external resistor connected to RST_TIM pin. A value of 4.7 k Ω corresponds to 1 ms and 47 k Ω to 10 ms. All values in between are linear approximated. The timer delay is common however the attack and release times are only dependant on the condition of the respective supplies (V_{DD5} or V_{DDL}).


5.7 Thermal protection


The tracking regulators incorporate thermal limit with shutdown. When the junction temperature reaches the shutdown threshold, if there is a tracking regulator in current limitation, it switches off and all the other regulators stay on. When the temperature decrease the regulator restarts. The over temperature shutdown has an hysteresis to avoid thermal pumping.

5.8 Reference current

The L9758 provides a DC voltage at the REXT pin. An external resistor to ground creates a reference current which is mirrored internally for use in the device.

The reference current is used to supply all the analog blocks and to charge and discharge an integrated capacitor to generate a 5 MHz clock for the switching functionality.

The circuit is designed for a 10 k Ω resistor. For all affected parameters, this resistor value is mentioned in the electrical characteristics section.

Operating modes L9758

6 Operating modes

There are two modes of operation of the power supply: standby and run mode. However during RUN mode, there are three input voltage regions: low voltage, normal voltage and high voltage. A brief definition and description of each of these operating regions is described below.

6.1 Standby mode

STANDBY mode is defined by the following conditions:

- VBAT is within the required voltage range
- VBAT SW may or may not be present
- IGN is in the OFF state
- PSU_EN is not asserted by the microprocessor

During standby mode, all functions are shutdown except the two standby supplies, VKAM and VSTBY, and the circuitry monitoring IGN and PSU_EN. During standby mode, current consumption is minimized. The standby functions are powered from VBAT.

There is no currents drawn from VBAT_SW or any other input except those required to perform the standby functions. Outputs, other than IGN_ON are disabled, sourcing nor sinking current.

6.2 Run mode

RUN mode is defined by the following conditions:

- VBAT is within the required range
- VBAT_SW is within the required range
- Either IGN is in the Run state and/or PSU EN is in the active state

During RUN mode, all functions can be enabled. All functions listed above, with the exception of the standby functions, are powered by VBAT_SW.

If VBAT is not present, the circuit is fully running with the exception of PSU_EN and the standby functions (VKAM and VSTBY). In this condition the entry into the RUN MODE can only be performed by the IGN pin and the circuit is kept running until IGN pin is in pulled low.

6.2.1 Entry into run mode

RUN mode is entered when at least one of the two signals IGN_SW or PSU_EN goes in the active state. These two signals may be applied in any order or simultaneously.

When the IGN input is valid, the active low IGN_ON signal is asserted.

The design of VDD5, VDDL and VCORE regulators limits the slew rate of the output voltages during the start-up as indicated in the electrical characteristic table and ensures that V_{DD5} is always greater than V_{DDL} and V_{CORE} .

As indicated in *Figure 4*, the switching regulator starts first with soft start control or reduced current limitation. When the VB voltage reaches the VDDL_ENUP threshold all the linear regulator start with controlled slew-rate. The slew-rate control is done controlling the slew

L9758 **Operating modes**

> rate of the common voltage reference so the slew is different for each regulator because all start together and reach the steady-state at the same time but with different voltage levels.

6.3 Power down

The power down sequence starts when both IGN and PSU_EN signal are low. In this phase there is no control of the linear regulator output voltages. The falling slew-rate is defined from load currents and load capacitors. A voltage comparator controls VDDL voltage and ensures that the VDDL supply voltage will drop below 2V before initiating a new power-up sequence.

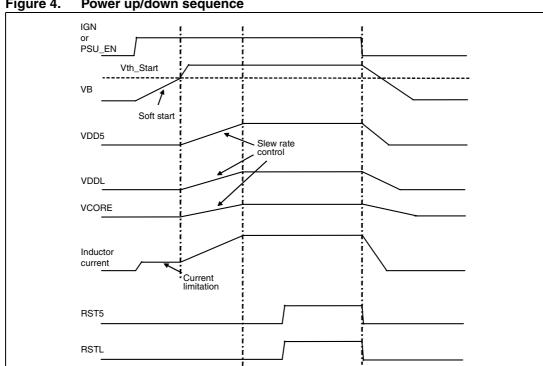


Figure 4. Power up/down sequence

6.4 Low voltage operation

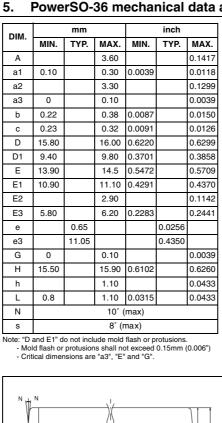
When L9758 is up and running it is fully operational with the VBAT and VBAT_SW pin voltages down to $V_{\text{LVI_LOW}}$. When L9758 is up and running and the supply voltages are less than 5.5V and are greater or equal to V_{LVI LOW} if the boost option is used the device is fully operational. If only the buck regulator is used the L9758 operates as follow:

- Switching regulator runs at 100% duty cycle
- VKAM and VSTBY regulators are fully operational
- VDDL fully operational
- VCORE fully operational
- VDD5 out of range with output voltage no less than 3.2V
- Tracking regulators out of range with output voltages no less than 3.2V
- Reset monitor RST5 and RSTL fully operational, with reset at RST5 pin in allowed

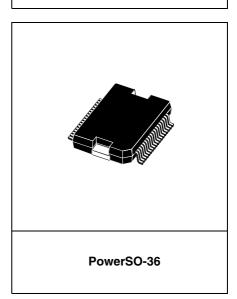
Operating modes L9758

6.5 High voltage operation

The L9758 is fully operational during jump start when the battery is temporarily replaced with a higher voltage source to aid starting the engine (26.5V for 1 minute). The L9758 is fully operational during positive battery transient such as load dump (40V maximum voltage with durations of up to 400ms).


L9758 Package information

7 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>.

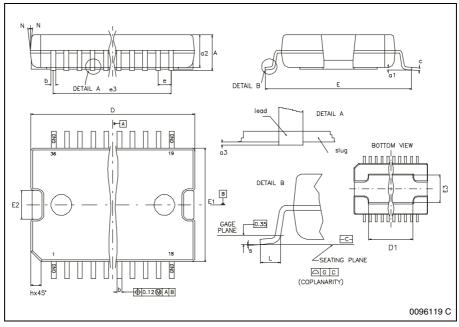

 $\mathsf{ECOPACK}^{\mathbb{R}}$ is an ST trademark.

Figure 5. PowerSO-36 mechanical data and package dimensions

OUTLINE AND MECHANICAL DATA

Revision history L9758

8 Revision history

Table 20. Document revision history

Date	Revision	Changes	
12-Dec-2007	1	Initial release.	
17-Nov-2010	2	Updated Section 1: Pins configuration. Updated Figure 2: Functional block diagram. Updated Section 3: Operating conditions. Updated Table 7: General DC characteristics and Table 12: VCORE linear regulator. Added Section 5.1: General function. Updated Section 5.2: Switching pre-regulator, Section 5.6: RESET monitors and Section 5.8: Reference current. Updated Section 5.3: VDD5, VDDL and VCORE linear regulators on page 21.	
23-Nov-2010	3	Update Table 10, Table 11, Table 12, Table 13 and Table 14.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2010 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

