

Integrated valve driver

Datasheet - production data

Features

- Excitation switch $S_1 = 60 \text{ m}\Omega$
- Recirculation switch S₂ = 60 mΩ
- CMOS compatible inputs
- Load current up to 14 A
- · Integrated clamp structure
 - Switch S₁ clamp voltage = 45 V (minimum)
- Current sense amplifier with internal sense resistor
- S₁ switch PWM operation above 10 KHz
- I²C standard interface for mode control and enhanced diagnostic
- Diagnostic output:
 - Open drain fault detection
 - Flag of clamp activation at the end of injection cycle
- · Input for voltage monitoring and feedback
- Thermal shutdown and warning
- Overcurrent shutdown and diagnostic
- Undervoltage and overvoltage detection
- Open-load detection

Description

The L99SD01-E is a device intended for driving inductive loads.

The inputs are CMOS-compatible. The diagnostic outputs CLAMP_FLAG and FAULT provide an indication of demagnetization mode and fault conditions, respectively.

The integrated standard serial interface (I²C) allows to digitally set peak and hold current values and other injection parameters. It also provides detailed diagnostic information. The device should work with pre-programmed peak and hold current values when values are not set by external micro. All injection parameters can be changed during operating conditions and taken into account at the first injection rising edge after the end of communication. Diagnostic information is available in case of overcurrent, overtemperature, overvoltage and open-load.

Table 1. Device summary

Package	Order codes			
rackage	Tube	Tape and reel		
PowerSSO-36	L99SD01-E	L99SD01TR-E		

Contents L99SD01-E

Contents

1	Bloc	ck diagram and pin description	6
2	Injed	ction cycle description	9
	2.1	Phase 1	10
	2.2	Phase 2	10
	2.3	Phase 3	10
	2.4	Phase 4	10
	2.5	Phase 5	
3	Diag	gnostic	14
4	Ι ² C μ	protocol description	17
	4.1	SDA and SCL signals	17
	4.2	Data validity	17
	4.3	START and STOP conditions	18
	4.4	Byte format	18
	4.5	Acknowledge (ACK) and Not Acknowledge (NACK)	19
	4.6	Device addressing	19
	4.7	Write operation	20
	4.8	Read operation	21
	4.9	Registers Addresses and Fault register	22
5	Regi	ister description	24
	5.1	Register A	24
	5.2	Register B	24
	5.3	Register C	24
	5.4	Register D	25
	5.5	Register E	25
	5.6	Register F	26
	5.7	Register G	26
	5.8	Register H	26
	5.9	Fault register	27

L99SD01-E Contents

6	Elect	rical specification	28
	6.1	Absolute maximum rating	28
	6.2	Thermal data	29
	6.3	Electrical characteristics	29
7	ОТР	(One Time Programmable Memory)	38
8	Appli	cation schematic	39
9	Pack	age and PCB thermal data	40
	9.1	PowerSSO-36 thermal data	40
10	Pack	age and packing Information	43
	10.1	ECOPACK® packages	43
	10.2	PowerSSO-36 package information	43
11	Revis	sion history	45

List of tables L99SD01-E

List of tables

l able 1.	Device summary	1
Table 2.	Pin description	7
Table 3.	Diagnostic fault	. 14
Table 4.	Registers addresses	. 22
Table 5.	Absolute maximum rating	. 28
Table 6.	Thermal data	
Table 7.	V _{BATT} supply	
Table 8.	Power switches $S_1 - S_2$. 29
Table 9.	S ₁ switching (excitation path)	. 30
Table 10.	Switching (recirculating path)	. 30
Table 11.	V _{DDL} undervoltage detection	. 30
Table 12.	Enable	
Table 13.	Input: SYNC_INJ	. 31
Table 14.	Input: PWM	
Table 15.	Inputs: E0, E1, E2	
Table 16.	IN_SIGNAL VOLTAGE MONITOR, CHECK_SIGNAL	
Table 17.	Differential current sense amplifier	
Table 18.	Current sense comparator	
Table 19.	8-bit digital to analog converter	
Table 20.	S ₁ protections and diagnostic	
Table 21.	Application registers range	
Table 22.	IPEAK, IHOLD (-40 °C < T_j < 150 °C, unless otherwise specified)	
Table 23.	Charge pump	
Table 24.	I ² C-bus SDA, SCL I/O stages	
Table 25.	I ² C-bus SDA, SCL bus lines characteristics	
Table 26.	Electrical transient requirements (part 1)	
Table 27.	Electrical transient requirements (part 2)	
Table 28.	Electrical transient requirements (part 3)	
Table 29.	16 bit OTP modules	
Table 30.	Thermal parameters	
Table 31.	PowerSSO-36 mechanical data	
Table 32.	Document revision history	. 45

L99SD01-E List of figures

List of figures

Figure 1.	Block diagram	. 6
Figure 2.	Waveforms	. 9
Figure 3.	Load configuration	. 9
Figure 4.	Registers (default values)	12
Figure 5.	FSM (state machine)	13
Figure 6.	Thermal protection	15
Figure 7.	Short to battery protection	15
Figure 8.	Soft short to battery protection	16
Figure 9.	Open-load diagnostic	
Figure 10.	Connection of I ² C-devices to I ² C-bus	
Figure 11.	Bit transfer on the I ² C-bus	
Figure 12.	START and STOP conditions	18
Figure 13.	Data transfer on the I ² C-bus	19
Figure 14.	Complete data transfer	19
Figure 15.	The first byte after the START procedure	20
Figure 16.	WRITE command	20
Figure 17.	Current READ command	21
Figure 18.	Random READ command	
Figure 19.	Fault Register	
Figure 20.	Definition of timing on the I ² C-bus	
Figure 21.	Application schematic	
Figure 22.	PowerSSO-36 PC board	
Figure 23.	Rthj-amb vs PCB copper area in open box free air condition	41
Figure 24.	PowerSSO-36 thermal impedance junction ambient	41
Figure 25.	Thermal fitting model of a HSD in PowerSSO-36	42
Figure 26.	PowerSSO-36 package dimensions	43

1 Block diagram and pin description

Figure 1. Block diagram S 売中 KSENSE CHARGE PUMP CLAMP REF_OC=FS_DAC_REF ____CMD_S2__ § 0 VDDL(5V) FSM-REGISTERS-OTP ANALOG CONTROL F D POR_ ENABLE TERMICA MAINT_IPK SCL COND SCL COND SCL COND SCL COND SCL COND SCR COND SC PWM IN_SIGNAL CHECK_SIGNAL

Table 2. Pin description

	Table 2. Fill description				
Pin number	Pin name	Description			
1	OTP_15V	Power supply for OTP test purposes. Not connected.			
2 IN_SIGNAL		This pin is used to acquire (through an external resistor) the signal coming from the Main ECU			
3	CHECK_SIGNAL	The voltage on the "IN_SIGNAL" pin is compared with V _{BATT} /2: IF IN_SIGNAL > Vbatt/2 then CHECK_SIGNAL = H IF IN_SIGNAL <= Vbatt/2 then CHECK_SIGNAL = L			
4	MAINT_IPK	Diagnostic pin going high when device is regulating Ipeak current value			
5	CLAMP_FLAG	Reporting the CLAMP intervention and the end of injection cycle			
6	SDA	I ² C serial interface data line			
7	SCL	I ² C serial interface clock line (100 kHz)			
8	FAULT	The FAULT pin is pulled low whenever a fault condition is detected.			
9	PWM	External PWM clock			
10	SYNC_INJ	It is used for injection synchronization and to set the single injection duration.			
11 ENABLE		This pin is used to enable/disable the device. When low, device enters standby low consumption mode			
12 TEST		Test activation. Not connected.			
13	TEST_OUT3	Pin for test purposes. Not connected			
14	SGND	Signal ground pin. Do not connect to ground module. Use for local capacitor connection			
15-18	PGND	Power ground pin			
19-22	REC	Recirculation path – the external recirculation diode is connected between this pin and battery.			
23	TEST_OUT2	Pin for test purposes. Not connected			
24	TEST_OUT1	Pin for test purposes. Not connected			
25	BATT	Power supply voltage			
26	CPUMP1	Charge pump pin for external capacitor connection			
27	CPUMP2	Charge pump pin for external capacitor connection			
28	CTANK	Supply voltage for high side driver			
29	VDDL	5 V external supply voltage			
30	C3V3	3.3 V supply pin for external capacitor connection			
31	SGND	Signal ground pin. Do not connect to ground module. Use for local capacitor connection			
32	E0	Address pin externally hard wired to ground or VDDL to address till 8 devices in parallel			
33	E1	Address pin externally hard wired to ground or VDDL to address till 8 devices in parallel			

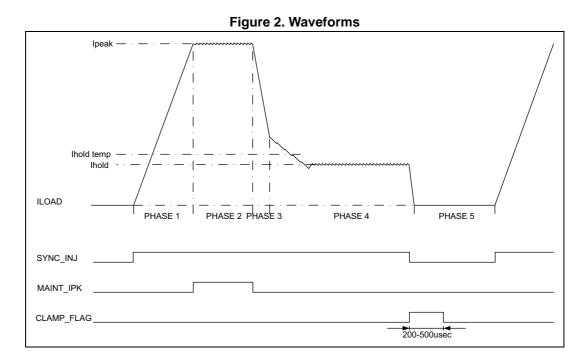


Table 2. Pin description (continued)

Pin number	Pin name	Description				
34	E2	Address pin externally hard wired to ground or VDDL to address till 8 devices in parallel				
35 SGND		Signal ground pin. Do not connect to ground module. Use for local capacitor connection				
36	OTP_0V	Power ground for OTP test purposes. Not connect				
Tab	OUT	Excitation path – the injector is connected between battery and this pin				

2 Injection cycle description

Figure 2 includes the main waveforms showing a typical injection cycle while *Figure 3* shows typical load connection and recirculation diode.

REC

FLOATING DRIVER

CLAMP

C

Figure 3. Load configuration

2.1 Phase 1

Injection phase starts by closing S_1 switch when there is a rising edge of SYNC_INJ signal. During this phase current on injector rises till an I_{PEAK} value set in the register A. If current doesn't reach I_{PEAK} value within a maximum time fixed in register H, the device status switches from phase 1 to phase 2.

2.2 Phase 2

If current hasn't still reached I_{PEAK} value S_1 switch continues to be ON and current continues to flow through load during all phase 2 whose length is set in register B. As soon as current reaches I_{PEAK} value it will be regulated in PWM mode at this value. PWM frequency is fixed by external clock via PWM pin.

Current is controlled by shutting-down S_1 when current reaches I_{PEAK} value. During the remaining period injector current is re-circulating through S_2 switch which should be always closed during phase 1 and phase 2. We speak about slow-recirculation during this phase.

Pin MAINT_IPK should be kept high (5 V) when current has reached and is regulated around I_{PFAK} value.

2.3 Phase 3

This is the temporary phase to go from I_{PEAK} to I_{HOLD} value. During this phase S_1 is open. Register C sets the time length of this phase. Register D sets the recirculation mode:

- Slow recirculation: S₂ closed.
- Fast recirculation: S₂ open and clamp on S₁ activated.

A particular case is when at the end of phase 2 current has not reached I_{PEAK} value yet. In this case device will go to phase 3 in slow recirculation mode whatever the value set in register D.

2.4 Phase 4

During this phase current is controlled to I_{HOLD} value. During this phase S_2 is always closed. Register E sets I_{HOLD} current value. Current is controlled by shutting-down S_1 when current reaches I_{HOLD} value. Recirculation is slow because S_2 is closed during this phase.

PWM clock signal is given externally on pin PWM.

This phase starts at the end of phase 3 when current on injector has slowed down but not below the holding value. For this reason at the beginning of this phase PWM duty cycle will be fixed by the minimum turn-on time of regulation loop, till the current reaches I_{HOLD} value.

This phase lasts till the end of injection given by the falling edge of SYNC_INJ signal. Shutting of injector is done by turning off S_1 and S_2 . Fast recirculation happens through S_1 by clamp activation. CLAMP_FLAG is set to high value (5 V) during 350 µsec minimum. To minimize the current ripple during the passage from phase 3 to phase 4, a temporary hold value could be used for some PWM cycles. Register F sets this temporary hold current value, whilst Register G sets time length.

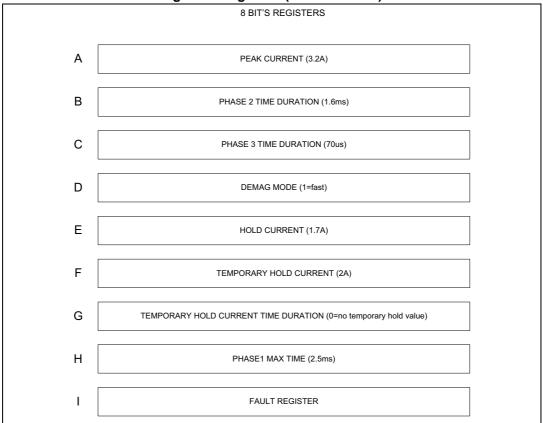
2.5 Phase 5

System is waiting for next injection cycle. No current is flowing through injector. Switches S_1 and S_2 are open.

End of injection cycle could happen everywhere during injection cycle. So device should sustain fast recirculation even during phase 2 with high current values.

If the time duration of one phase is set to zero then the corresponding phase should be skipped and device must enter the following phase.

All registers have pre-programmed values hard coded in the device. So device can operate as it is without needing of a first programming phase (for typical application). In all other applications first register writing is done automatically at the beginning of communication. All registers could be modified during the operating phase. Modified values are activated at the beginning of the first injection cycle following the end of the serial communication. Synchronization event is the rising edge of SYNC_INJ signal. In reset state all registers are cleared.


Enable pin allows device to enter standby mode with very low current consumption. Enable signal can be supplied directly by microcontroller.

Typical applications include 4 to 8 injectors which are driven via a microcontroller through a serial interface (I²C). Each device is recognizable by a unique hard wired address code. Three pins are devoted to code up to 8 device addresses.

Each communication between microcontroller and each device is closed by an acknowledgment message. If this message does not arrive it means that something is not working in communication between microcontroller and L99SD01-E.

Figure 4. Registers (default values)

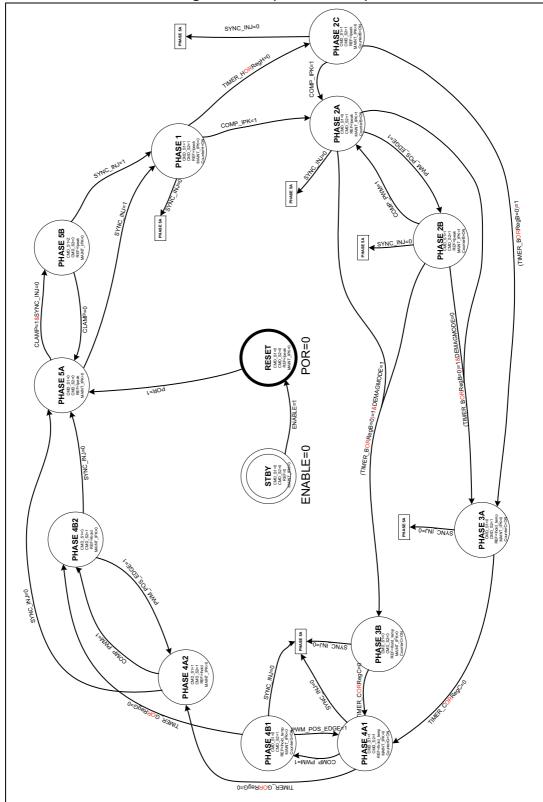


Figure 5. FSM (state machine)

Diagnostic L99SD01-E

3 Diagnostic

Device is auto-protected against some failures and is able to send the information fault to microcontroller via FAULT pin and serial communication line. The following table resumes all the fault conditions detected by the device and the corresponding device behavior.

Table 3. Diagnostic fault

Fault condition	Device behavior		
THERMAL	Shutdown S ₁ with slow recirculation (S ₂ on). Fault pin low and fault register set.		
SHUTDOWN	Device restarts when temperature slows down the reset value. Fault register reset by microcontroller.		
THERMAL WARNING	Normal mode. Fault register set. Fault register reset by microcontroller. No action on Fault pin.		
UNDERVOLTAGE	Normal mode. Fault pin low and fault register set. Fault register reset by microcontroller.		
OVERVOLTAGE	Normal mode. Fault pin low and fault register set. Fault register reset by microcontroller.		
OUTPUT SHORTED TO BATT ⁽¹⁾	Shut down immediately after minimum turn on time. Fault pin low and fault register set. To avoid false overcurrent detections, fault is latched in register only if happens during phase 1 or 2. In case of resistive short circuit, at the beginning of injection cycle current through load rises too fast and this will set as a short fault. Device couldn't restart until fault register is reset by microcontroller.		
OPEN LOAD ⁽²⁾	Normal mode. Fault pin low and fault register set. Fault register reset by microcontroller.		

^{1.} No internal current limiter. Response time of current limiter would be longer than shut-off time.

^{2.} CHECK during PHASE 1. If max duration time of phase1 is reached (register H value) Open-load detection signal is read by control logic and validated.

L99SD01-E Diagnostic

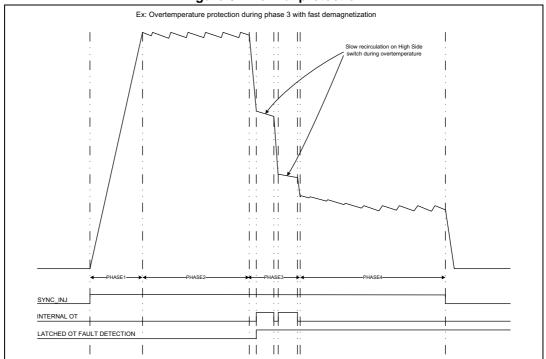
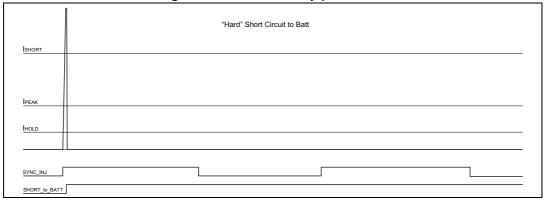



Figure 7. Short to battery protection

Diagnostic L99SD01-E

Figure 8. Soft short to battery protection

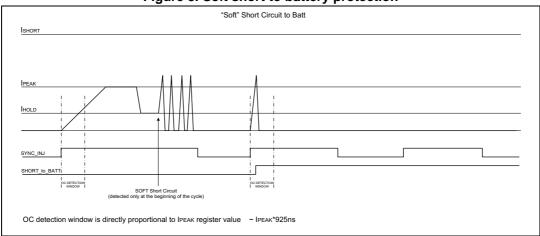
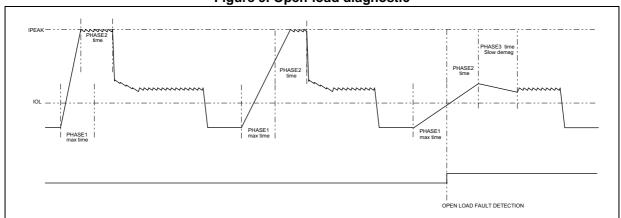



Figure 9. Open-load diagnostic

4 I²C protocol description

The L99SD01-E is compatible with the standard I²C serial bus. This is a two wire serial interface that uses a bi-directional data bus (SDA) and serial clock (SCL). Each device connected to the bus is recognized by a unique address (whether it is a microcontroller, memory or injector driver) and can operate as either a transmitter or receiver, depending on the function of the device. In addition to transmitters and receivers, devices can also be considered as masters or slaves when performing data transfers. A master is the device which initiates a data transfer on the bus and generates the clock signals to permit that transfer. At that time, any device addressed is considered a slave. L99SD01-E can only be a slave, transmitter or receiver, during communication.

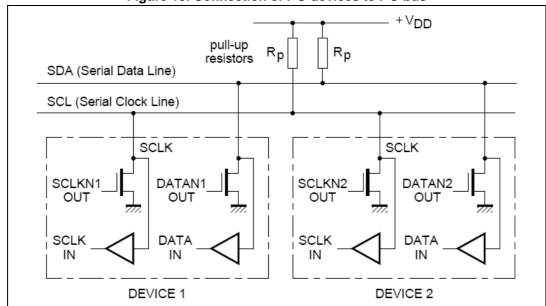


Figure 10. Connection of I²C-devices to I²C-bus

4.1 SDA and SCL signals

Both SDA and SCL are bidirectional lines, connected to a positive supply voltage via a current-source or pull-up resistor. When the bus is free, both lines are HIGH. The output stages of devices connected to the bus must have an open-drain or open-collector to perform the wired-AND function.

Data on the I²C bus can be transferred at rates up to 100 kbit/s in the standard-mode. The number of devices connected to the bus is limited by the max bus capacitance.

4.2 Data validity

The data on the SDA line must be stable during the HIGH period of the clock. The HIGH or LOW state of the data line can only change when the clock signal on the SCL line is LOW. One clock pulse is generated for each data bit transferred.

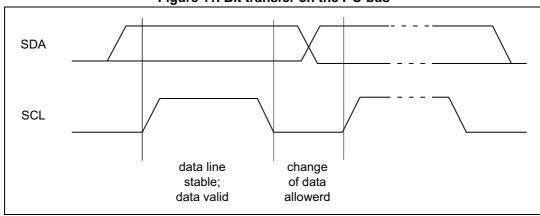


Figure 11. Bit transfer on the I²C-bus

4.3 START and STOP conditions

All transactions begin with a START (S) and can be terminated by a STOP (P).

A HIGH to LOW transition on the SDA line while SCL is HIGH defines a START condition. A LOW to HIGH transition on the SDA line while SCL is HIGH defines a STOP condition.

START and STOP conditions are always generated by the master. The bus is considered to be busy after the START condition. The bus is considered to be free again a certain time after a STOP condition.

The bus stays busy if a repeated START (Sr) is generated instead of a STOP signal. In this respect, the START (S) and repeated START (Sr) conditions are functionally identical.

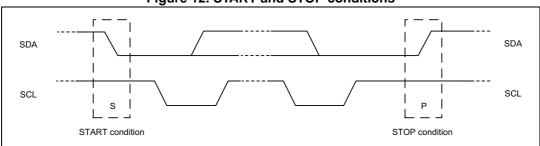


Figure 12. START and STOP conditions

4.4 Byte format

Every byte put on the SDA line must be 8 bits long. The number of bytes that can be transmitted per transfer is unrestricted. Each byte has to be followed by an Acknowledge bit. Data is transferred with the Most Significant Bit (MSB) first.

577

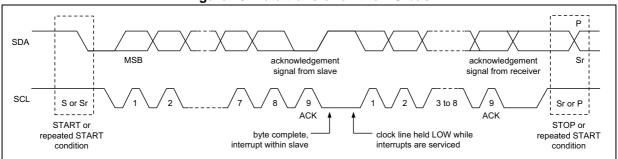


Figure 13. Data transfer on the I²C-bus

4.5 Acknowledge (ACK) and Not Acknowledge (NACK)

The acknowledge takes place after every byte. The acknowledge bit allows the receiver to signal the transmitter that the byte was successfully received and another byte may be sent. All clock pulses including the acknowledge 9th clock pulse are generated by the master.

The acknowledge signal is defined as follows: the transmitter releases the SDA line during the acknowledge clock pulse so the receiver can pull the SDA line LOW and it remains stable LOW during the HIGH period of this clock pulse. Setup and hold times must also be taken into account.

When the SDA remains HIGH during this 9th clock pulse, this is defined as the Not Acknowledge signal. The master can then generate either a STOP condition to abort the transfer, or a repeated START condition to start a new transfer.

4.6 **Device addressing**

Data transfers follow the format shown in fig.10. After the START condition (S), a slave address is sent. This address is 7 bits long followed by an eighth bit which is a data direction bit (R/W). A 'zero' indicates a transmission (WRITE), a 'one' indicates a request for data (READ). A data transfer is always terminated by a STOP condition (P) generated by the master. However, if a master still wishes to communicate on the bus, it can generate a repeated START condition (Sr) and address another slave without first generating a STOP condition. Various combinations of read/write formats are then possible within such a transfer.

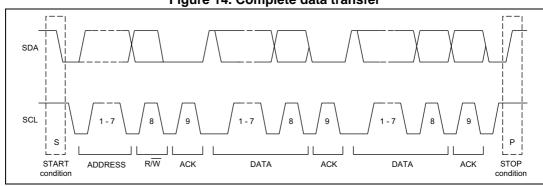
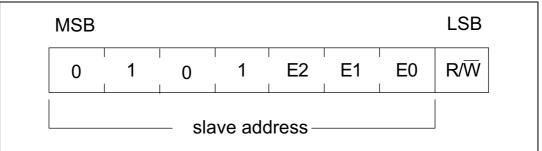



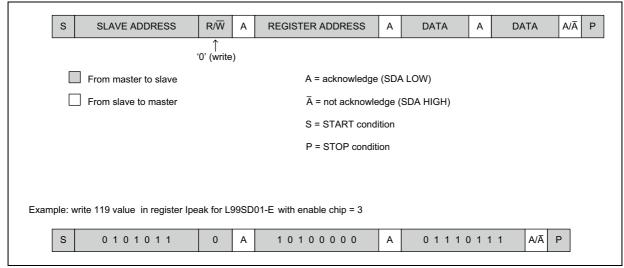
Figure 14. Complete data transfer

Figure 15. The first byte after the START procedure

4.7 Write operation

WRITE command in L99SD01-E is used to store data into volatile memory.

Master initiates a START condition (S) and then sends the first byte which is the slave address followed by the R/W= '0'. If L99SD01-E recognizes its address then it generates an ACK signal.


Each L99SD01-E has a different slave address. The first four bits of the address are the device type identifier and do not change for all L99SD01-E devices. The following three bits are used to address till 8 different L99SD01-E on the same bus.

Second byte sent by master in write mode is the register address where data must be written. After Acknowledge from slave, master starts to send the data, which can be one or more bytes. Eight different registers may be written in L99SD01-E. If more than eight data bytes are sent by the master, roll-over occurs.

The transfer finishes when master sends a STOP condition (P).

After the successful completion of write operations, the device internal address counter is incremented automatically, to point to the next byte address after the last one that was modified.

Figure 16. WRITE command

4.8 Read operation

READ command in L99SD01-E is used to read data contained into volatile memory. There are essentially two different Read operation modes: Current Read and Random Read.

In Random READ mode a dummy write is first performed to load the address into the address counter, then without sending a STOP condition, the Master sends another START condition, and repeats the slave address, with the R/W bit set to '1' (READ). At this point slave acknowledges and starts sending data output from the addressed register. One or more bytes can be sent to master. L99SD01-E stops sending data when it receives a NACK signal from master. At this point master can decide to stop transmission by sending a STOP condition or to generate a repeated START condition to start communication with another slave. At the end of communication internal address counter is incremented automatically, to point to the next byte address after the last one that was read.

In Current READ mode, following a START condition, the master sends a slave address with a R/W bit set to '1'. At this point slave acknowledges and starts sending data output from the register addressed by the internal counter. One or more bytes can be sent to master. L99SD01-E stops sending data when it receives a NACK signal from master. At this point master can decide to stop transmission by sending a STOP condition or to generate a repeated START condition to start communication with another slave.

SLAVE ADDRESS R/W Ā S DATA Α Α DATA Р DATA '1' (read) From master to slave A = acknowledge (SDA LOW) From slave to master \bar{A} = not acknowledge (SDA HIGH) S = START condition P = STOP condition Example: Read two registers values for L99SD01-E with enable chip = 1. Internal register counter is pointing to register 7 (0:7) Ρ S 0 1 0 1 0 0 1 Ā Α Phase1 time max Α Ipeak current After read operation internal register counter is pointing to register 1

Figure 17. Current READ command

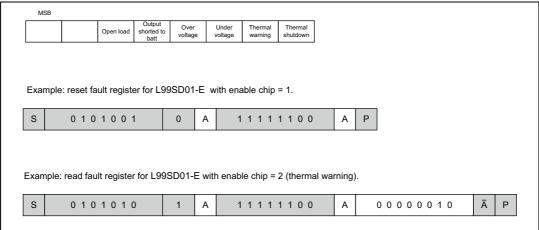
SLAVE ADDRESS R/W REGISTER ADDRESS SLAVE ADDRESS DATA DATA Ā '0' (write From master to slave A = acknowledge (SDA LOW) From slave to master Ā = not acknowledge (SDA HIGH) S = START condition P = STOP condition Example:Read Hold current and temporary hold current registers values for L99SD01-E with enable chip = 0. 0 1 0 1 0 0 0 After read operation internal register counter is pointing to register 6

Figure 18. Random READ command

Besides the eight parameter registers, there is another eight bit register which corresponds to the fault register. It can only be reset and read via dedicated commands.

4.9 Registers Addresses and Fault register

L99SD01-E does not need to be first configured via I²C-bus line. Default application parameters are hard-wired in the device. At first turn-on default application parameters are transferred inside registers which can be further modified by customer via I²C-bus if needed. In order to permit "real-time" parameter changes each register will have an equivalent temporary register to store the data until the first low-to-high transition on SYNC_INJ signal at the end of communication. At this time temporary registers are transferred into the actual parameter registers.


Each register can be read/written via serial interface. Fault register can be read and reset (fault cleared).

	Register address	Register content	Length	Access	Purpose
R0	1010 0000	I peak current	1 byte	R/W	Read/Store data
R1	1010 0001	Phase 2 duration	1 byte	R/W	Read/Store data
R2	1010 0010	Phase 3 duration	1 byte	R/W	Read/Store data
R3	1010 0011	Demag mod	1 byte	R/W	Read/Store data
R4	1010 0100	Hold Current	1 byte	R/W	Read/Store data
R5	1010 0101	Temporary hold current	1 byte	R/W	Read/Store data
R6	1010 0110	Temporary hold current time duration	1 byte	R/W	Read/Store data
R7	1010 0111	Phase 1 time max	1 byte	R/W	Read/Store data
R8	1111 1100	Fault Register	1 byte	W	Clear Fault
110	1111 1100	r adit register	1 byte	R	Read Fault

Table 4. Registers addresses

Figure 19. Fault Register

Register description L99SD01-E

5 Register description

5.1 Register A

MSB							LSB
7	6	5	4	3	2	1	0
IPK[7]	IPK[6]	IPK[5]	IPK[4]	IPK[3]	IPK[2]	IPK[1]	IPK[0]

Address: 0xA0

Type: R/W

Reset: 0010 1000b

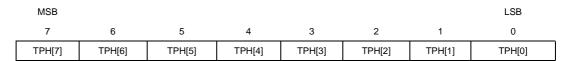
Description: IPK[7...0]: I_{PEAK} current value.

 $I_{\mbox{\scriptsize PEAK}}$ current in ampere can be computed as IPK[7...0] * 20.55 / 255. Value are only

guaranteed between 2 A and 14 A.

5.2 Register B

Address: 0xA1


Type: R/W

Reset: 0101 0010b

Description: TPK[7...0]: Phase 2 (I_{PEAK} current) duration.

Phase 2 duration in ms can be computed as TPK[7...0] * 5 / 255.

5.3 Register C

Address: 0xA2 Type: R/W

Reset: 0010 0100b

Description: TPH[7...0]: t_{PEAK_TO_HOLD} (Phase 3) duration.

If DEMAG_MODE bit is 0, $t_{PEAK_TO_HOLD}$ in microseconds can be computed as

TPH[7...0] * 500 / 255.

If DEMAG_MODE bit is set to 1, $t_{PEAK_TO_HOLD}$ in milliseconds can be computed as TPH[7...0] * 10 / 255.

5.4 Register D

Address: 0xA3

Type: R/W

Reset: 0000 0001b

Description: DEMAG_MODE: demagnatization during phase 3 is fast if this bit is set to 1 or slow

otherwise.

Note: If at the end of phase 2 the current has not reached I_{PEAK} value, slow demagnatization

mode will be applied during phase 3 whatever the value of DEMAG_MODE bit.

5.5 Register E

MSB LSB 7 0 6 5 4 3 2 IH[7] IH[6] IH[5] IH[4] IH[3] IH[2] IH[1] IH[0]

Address: 0xA4

Type: R/W

Reset: 0110 1001b

Description: IH[7...0]: I_{HOLD} current value.

 $I_{\mbox{\scriptsize HOLD}}$ current value in ampere can be computed as IH[7...0] * 4.11 / 255. Value are

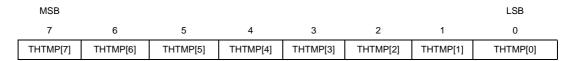
only guaranteed between 0.5 A and 3 A.

Register description L99SD01-E

5.6 Register F

MSB							LSB
7	6	5	4	3	2	1	0
IHTMP[7]	IHTMP[6]	IHTMP[5]	IHTMP[4]	IHTMP[3]	IHTMP[2]	IHTMP[1]	IHTMP[0]

Address: 0xA5 Type: R/W

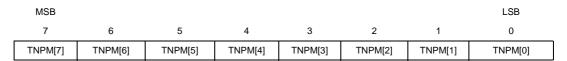

Reset: 0111 1100b

Description: IHTMP[7...0]: I_{HOLD TEMP} current value (reference current during Phase 4).

The current value in ampere can be computed as IHTMP[7...0] * 4.11 / 255. Value

are only guaranteed between 0.5 A and 3.5 A.

5.7 Register G


Address: 0xA6 Type: R/W

Reset: 0000 0000b

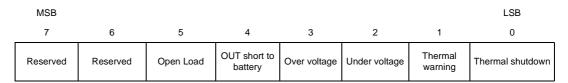
Description: THTMP[7..0]: I_{HOLD TEMP} duration inside Phase 4.

Phase3 duration in ms can be computed as THTMP[7...0] * 5 / 255.

5.8 Register H

Address: 0xA7

Type: R/W


Reset: 0100 0000b

Description: TNPKM[7...0]: $t_{NO_PEAK_MAX}$ value.

During phase 1, if I_{PEAK} value is not reached within $t_{NO_PEAK_MAX}$, the device switches into Phase 2. $t_{NO_PEAK_MAX}$ in millisecond can be computed as

TNPKM[7...0] * 10 / 255.

5.9 Fault register

Address: 0xFC

Type: R/W. Any write action will result in a register clear.

Reset: 0000 0000b

Bit [4] Output shorted to battery flag.

Bit is set by HW when an over current is detected on the output at the beginning of the injection cycle (phases 1 and 2). Write the register to clear this bit.

Bit [3] Over voltage flag.

Bit is set by HW when an over voltage is detected on the battery voltage, write the register to clear this bit.

Bit [2] Under voltage flag.

Bit is set by HW when an under voltage is detected on the battery voltage, write the register to clear this bit.

Bit [1] Thermal warning flag.

Bit is set by HW when the die temperature exceeds T_{TW} threshold, write the register to clear this bit.

Bit [0] Thermal shutdown flag.

Bit is set by HW when the die temperature exceeds T_{TSD} threshold, a register writing clears this bit only if the die temperature is lower than T_{TR} .

6 Electrical specification

6.1 Absolute maximum rating

Table 5. Absolute maximum rating

Symbol	abol Parameter Value		Unit
V _{BATT}	Maximum DC supply voltage	40	V
V _{BATT_REV}	Reverse DC supply voltage	-0.3	V
V_{LOAD}	Maximum DC load voltage	Internally limited	V
I _{LOAD}	Maximum DC load current	Internally limited to I _{SHORT}	А
I _{R(LOAD)}	Maximum reverse output current, $T_C = 25$ °C; $t = 5$ ms.	-20	А
E _{AS}	Single pulse energy S1 switch; V_{BATT} = 13.5 V; T_j = 150°C; L = 6 mH; R_L = 0 Ω , typical clamp voltage	88	mJ
E _{REP1}	Repetitive energy S1 switch. V_{BATT} = 13.5 V; T_{j} = 125°C; L = 6 mH; R_{L} = 0 Ω , typical clamp voltage	38.6	mJ
E _{REP2}	Repetitive energy S1 switch. V_{BATT} = 13.5 V; T_{j} = -40°C; L = 6 mH; R_{L} = 0 Ω , typical clamp voltage	70	mJ
V _{C3V3}	3.3 V logic supply voltage range	-0.3 to 3.6	V
V _{VDDL}	5 V external supply voltage	5.5	V
VSYNC_INJ VE0 VE1 VE2 VCHECK_SIGNAL VSCL VSDA VMAINT_IPK VPWM VCLAMP_FLAG VFAULT VENABLE	Logic input / output voltage range	-0.3 to V _{DDL} +0.3	V
V _{IN_SIGNAL} V _{REC}	HV signal pins	-0.3 to V _{BATT}	V
V _{OUT}	Output pin	55	V
V _{CTANK}	Maximum charge pump output voltage	V _{BATT} + 15V	V
V _{CPUMP1} V _{CPUMP2}	Maximum charge pump pins voltage	V _{BATT}	V
V _{ESD}	Electrostatic discharge (R = 1.5kW, C = 100pF, all pins)	+/-2000	V
T _j	Junction operating temperature	-40 to 150	°C
T _{STG}	Storage temperature	-55 to 150	°C

6.2 Thermal data

Table 6. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-amb}	Thermal resistance junction-ambient	See Figure 23	°C/W

6.3 Electrical characteristics

6 V < V_{BATT} < 28 V; -40°C < T_j < 150°C; unless otherwise specified

Table 7. V_{BATT} supply

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{BATT}	Operating supply voltage		6		28	V
I _{SON}	V _{BATT} DC supply current	V _{BATT} = 13 V; V _{DDL} = 5 V; V _{ENABLE} = 5 V; Output floating		2		mA
I _{STBY}	V _{BATT +} V _{VDDL} quiescent supply current	V_{BATT} = 13V; V_{DDL} = 5V; V_{ENABLE} = 0V ; Output floating -40°C < T _j < 85°C			10	μΑ
I _{DDL}	V _{DDL} DC supply current	V _{BATT} = 13 V; V _{DDL} = 5 V; V _{ENABLE} = 5 V		8	10	mA
V _{OV}	Overvoltage threshold		34		40	V
V _{UV}	Undervoltage threshold				6	٧
V _{UV_hyst}	Undervoltage threshold hysteresis		0.4	0.6		V

Table 8. Power switches $S_1 - S_2$

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
		I _{LOAD} = 5 A; S ₁ = ON; V _{BATT} = 13 V; T _j = 25°C	1		0.060	Ω
RON1	On state resistance (excitation path)	$I_{LOAD} = 5 \text{ A}; S_1 = ON;$ $V_{BATT} = 13 \text{ V}$	l	l	0.120	Ω
		$I_{LOAD} = 5 \text{ A}; S_1 = ON;$ $V_{BATT} = 6 \text{ V}$	l		0.150	Ω
		I _{LOAD} = 5 A; S ₂ = ON; V _{BATT} = 13 V; T _j = 25°C			0.060	Ω
RON2	On state resistance Recirculation Path	$I_{LOAD} = 5 \text{ A}; S_2 = ON;$ $V_{BATT} = 13 \text{ V}$			0.120	Ω
		$I_{LOAD} = 5 \text{ A}; S_2 = ON;$ $V_{BATT} = 6 \text{ V}$			0.150	Ω

Table 9. S₁ switching (excitation path)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
TD _{ON_S1}	Turn-on delay time	V _{BATT} = 13.5 V;	100	180	300	ns
T _{R_S1}	Rise time of output voltage			500	900	ns
TD _{OFF_S1}	Turn-off delay time		600	1400	2000	ns
T _{F_S1}	Fall time of output voltage			600	1000	ns
V _{CLAMP_S1}	Switch S ₁ clamp voltage	$I_{LOAD} = 0.5/14 \text{ A}; S_1 = \text{off}; S_2 = \text{off}$	44		55	V

Table 10. Switching (recirculating path)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
TD _{ON_S2}	Turn-on delay time	$V_{BATT} = 13.5 \text{ V};$ $R_{LOAD} = 2.5\Omega$		280	600	ns
T _{R_S2}	Rise time of output voltage			1500	3000	ns
TD _{OFF_S2}	Turn-off delay time		_	150	600	ns
T _{F_S2}	Fall time of output voltage		1	200	800	ns

Table 11. V_{DDL} undervoltage detection

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{POR_OFF}	power-on-reset threshold	V _{DDL} increasing	3.8	4	4.2	V
V _{POR_ON}	power-on-reset threshold	V _{DDL} decreasing	3.2	3.4	3.6	٧
V _{POR_hyst}	power-on-reset hysteresis	V _{POR_OFF} - V _{POR_ON}	0.3			V

Table 12. Enable

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{ENABLE H}	Enable voltage threshold	V _{BATT} = 13 V	1	1.8	2.3	V
V _{ENABLE_L}	Enable voltage reset	V _{BATT} = 13 V	0.8	1.5	1.9	V
V _{ENABLE_HYST}	Enable voltage hysteresis	V _{BATT} = 13 V	0.1	0.3		V
I _{ENABLE}	Enable pull down current	V _{ENABLE} = 5 V	20	50	100	μΑ

Table 13. Input: SYNC_INJ

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{SYNC_L}	Input low level voltage	V _{DDL} = 5 V			1.08	V
V _{SYNC_H}	Input high level voltage	V _{DDL} = 5 V	2.1			V
V _{SYNC_HYST}	Input hysteresis voltage	V _{DDL} = 5 V	0.15			V
I _{SYNC_INJ}	pull down current at SYNC_INJ input	V _{SYNC_INJ} = 1.5 V	20	50	80	μΑ

Table 14. Input: PWM

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{PWM_L}	Input low level voltage	V _{DDL} = 5 V			1.08	V
V _{PWM_H}	Input high level voltage	V _{DDL} = 5 V	2.1			V
V _{PWM_HYST}	Input hysteresis voltage	V _{DDL} = 5 V	0.15			V
I _{PWM}	Pull down current at PWM input	V _{PWM} = 1.5 V	20	50	80	μΑ

Table 15. Inputs: E0, E1, E2

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V_{Ex_L}	Input low level voltage	V _{DDL} = 5V			1.08	V
V _{Ex_H}	Input high level voltage	V _{DDL} = 5V	2.1			V
V _{Ex_HYST}	Input hysteresis voltage	V _{DDL} = 5V	0.15			V
I _{Ex_IN}	Pull down current at Ex input	V _{Ex} = 1.5V	20	50	80	μΑ

Table 16. IN_SIGNAL VOLTAGE MONITOR, CHECK_SIGNAL

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{IN_SIGNAL_L}	Input low level voltage threshold		0.4 V _{BATT}	0.45 V _{BATT}	0.5 V _{BATT}	V
V _{IN_SIGNAL_} H	Input high level voltage threshold		0.5 V _{BATT}	0.55 V _{BATT}	0.6 V _{BATT}	V
V _{IN_SIGNAL_HYST}	Input hysteresis voltage			0.1 V _{BATT}		V
V _{CHECK_} SIGNAL	Check_signal output voltage	V _{IN_SIGNAL} = 0 V; I _{CHECK_SIGNAL} = 1 mA			0.9	V

Table 17. Differential current sense amplifier

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{ICM_AMP}	Input voltage range – common mode		0		0.8	V

Table 17. Differential current sense amplifier (continued)

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V	Input voltage range	Gain = 20; V _{DDL} = 5 V	10		80	mV
V _{IDIFF_AMP}	- differential mode	Gain = 4; V _{DDL} = 5 V	20		400	mV
V _{IOFF_AMP}	Input offset voltage	V _{DDL} = 5 V	-500		500	μV
Gain	Opamp gain	I _{LOAD} = I _{HOLD}		20		
Gain _{AMP}	Орапір дапі	I _{LOAD} = I _{PEAK}		4		
CBW	Gain bandwidth	G = 20		2		MHz
GBW _{AMP}	product	G = 4		0.4		MHz
CMRR _{AMP}	Input common mode rejection	F = 1 KHz	60			dB
PSRR+ _{AMP}	3.3 V power supply rejection ratio			55		dB
PSRR- _{AMP}	GND power supply rejection ratio			40		dB
T _{SETTLING_R}	Rising settling time	$G = 20$; $(V_{RSP} - V_{RSN}) = 0 \text{ V to}$ 10 mV in 10 ns $G = 4$; $(V_{RSP} - V_{RSN}) = 0 \text{ V to}$ 20 mV in 10 ns			3.5	μs
T _{SETTLING_F}	Falling settling time	$G = 20$; $(V_{RSP} - V_{RSN}) = 10 \text{ mV}$ to 0 V in 10 ns $G = 4$; $(V_{RSP} - V_{RSN}) = 20 \text{ mV}$ to 0 V in 10 ns			3.5	μs

Table 18. Current sense comparator

Symbol Parameter		Test conditions	Min	Тур	Max	Unit
V _{ICM_PWMCOMP}	Input voltage range – common mode		0.05	_	2	V
V _{IOFF_PWMCOMP}	Input offset voltage	V _{DDL} = 5 V	-15	_	6	mV
TD _{PWMCOMP}	Input to output delay	V _{INPUT} from 200 mV to 1.7 V in 10 ns		_	200	ns

Table 19. 8-bit digital to analog converter

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
VLSB _{DAC}	Less significant bit voltage		1	4.851	1	mV

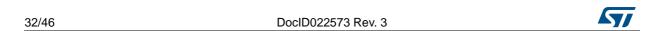


Table 20. S₁ protections and diagnostic

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
T _{TW}	Thermal warning threshold junction temperature	S ₁ = ON	130			°C
T _{TSD}	Thermal shutdown threshold junction temperature	S ₁ = ON	155	175		°C
T _{TR}	Thermal reset threshold junction temperature	S ₁ = ON	130			°C
I _{SHORT}	Over current detection	S ₁ = ON	15			Α
		S ₁ = ON; I _{PEAK} = 3.2 A	0.2 * (I _{PEAK} /4)	I _{PEAK} /4	1.2 * (I _{PEAK} /4)	Α
I _{OL}	Open-load detection	S ₁ = ON; I _{PEAK} = 5 A	0.4 * (I _{PEAK} /4)	I _{PEAK} /4	1.2 * (I _{PEAK} /4)	Α
		S ₁ = ON; I _{PEAK} ≥ 8 A	0.7 * (I _{PEAK} /4)	I _{PEAK} /4	1.3 * (I _{PEAK} /4)	Α
V _{FAULT_} OUT	Status output voltage	Diagnostic output active (low); I _{FAULT} = 1 mA			0.9	V
	Clamp diagnostic	I _{CLAMPFLAG} = 100 μA			0.1	V
V _{CLAMPFLAG_OUT}	pin output voltage	I _{CLAMPFLAG} = -100μA	V _{DDL} - 0.1			V
	MAINT_IPK	I _{MAINTIPK} = 100 μA			0.1	V
V _{MAINTIPK} OUT	diagnostic pin voltage	I _{MAINTIPK} = -100 μA	V _{DDL} - 0.1			V

Table 21. Application registers range

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
I _{PEAK}	Register A	Application useful range = 2 → 14 A	0	3.2	20.55	Α
I _{HOLD}	Register E	Application useful range = $0.5 \rightarrow 3 \text{ A}$			4.11	Α
I _{HOLD_TEMP}	Register F	Application useful range = $0.5 \rightarrow 3.5 \text{ A}$	0	2	4.11	Α
t _{PEAK}	Register B		0	1.6	5	ms
t _{HOLD_TEMP}	Register G		0	0	5	ms
t _{NO_PEAK_MAX}	Register H		0	2.5	10	ms
t	Register C	DEMAG MODE = 0 (slow)	0		10	ms
^t PEAK_TO_HOLD	register 0	DEMAG MODE = 1 (fast)	0	70	500	μs

Table 22. IPEAK, IHOLD (-40 $^{\circ}$ C < T $_{\rm j}$ < 150 $^{\circ}$ C, unless otherwise specified)

Symbol	Parameter	Test conditions ⁽¹⁾	Min	Тур	Max	Unit
		RegisterA = IDEFAULT	2.72	3.2	3.7	Α
		RegisterA = 2 A	1.60	2	2.40	Α
		T = 125°C; RegisterA = 2 A	1.70	2	2.30	Α
I _{PEAK}	Peak current	RegisterA = 5 A	4.25	5	5.75	Α
		RegisterA = 8 A	6.8	8	9.2	Α
		T = 125°C; RegisterA = 14 A	12.6	14	15.4	Α
		RegisterA = 14 A	11.9	14	16.1	Α
		RegisterE = IDEFAULT	1.445	1.7	1.955	Α
		T = 125°C; RegisterE = 0.5 A	0.325	0.5	0.6	Α
I _{HOLD}	Hold current	T = 125°C; RegisterE = 1 A	0.9	1	1.1	Α
		RegisterE = 1 A	0.85	1	1.15	Α
		RegisterE = 3 A	2.55	3	3.45	Α
F _{PWM}	PWM frequency	Design guaranteed	10	20		KHz
D _{CYCLE}	PWM duty cycle	F _{PWM} = 20 KHz	0.15			-

^{1.} V_{BATT} > 8 V

Table 23. Charge pump

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{CP}	Charge pump output voltage ⁽¹⁾	I _{CP} = 200 μA	V _{BATT} + 7	V _{BATT} + 9	V _{BATT} + 13	٧
C _{PUMP1}	External charge pump capacitor			4.7		nF
C _{PUMP2}	External charge pump capacitor			4.7		nF
C _{TANK}	External charge pump capacitor for S ₂ driver peak current			100		nF
I _{CP1}	Charge pump output current positive	V _{BATT} + 7 V < V _{CTAK} < V _{BATT} + 13 V test mode	15	27	34	mA
I _{CP2}	Charge pump output current negative	V _{BATT} + 7 V < V _{CTAK} < V _{BATT} + 13 V test mode	-140	-100	-55	mA

Guaranteed by design using suggested external network: C_{PUMP1}, C_{PUMP2}: 4.7 nF - 50 V ceramic capacitors; C_{TANK}: 100 nF - 50 V ceramic capacitor; Charge pump diodes: BAT41 type

34/46 DocID022573 Rev. 3

Table 24. I²C-bus SDA, SCL I/O stages

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
V _{IL}	Low level input voltage			_	0.3 * VC3V3	V
V _{IH}	High level input voltage		0.7 * VC3V3	_		V
V _{HYS}	Hysteresis of Schmitt trigger inputs		0.05 * VC3V3	_		V
V _{OL}	Low level output voltage	I _{SINK} = 3 mA		_	0.4	V
I _{OL}	Low level output current	V _{OL} = 0.4 V	3	_		mA
t _{OFF}	Output fall time from V _{IHmim} to V _{ILmax}			_	250	ns
t _{SP}	Pulse width of spikes that must be suppressed by the input filter			_	50	ns
Ii	Input current	0.1 * V _{DDL} < V _I < 0.9 * V _{DDL}	-10	_	10	μΑ
C _i	I/O pin capacitance			_	10	pF

Table 25. I²C-bus SDA, SCL bus lines characteristics ⁽¹⁾

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
f _{SCL}	SCL clock frequency			_	100	kHz
t _{HD;STA}	Hold time (repeated) START condition	After this period the first clock pulse is generated	4.0			μs
t _{LOW}	LOW period of the SCL clock		4.7	_		μs
t _{HIGH}	HIGH period of the SCL clock		4.0	_		μs
t _{SU;STA}	Set-up time for a repeated START condition		4.7	_		μs
t _{HD;DAT}	Data hold time ⁽²⁾		300 ⁽³⁾	—	(4)	ns
t _{SU;DAT}	Data set-up time		250	_		ns
t _r	Rise time of both SDA and SCL signals				1000	ns
t _f	Fall time of both SDA and SCL signals			_	300	ns
t _{SU;STO}	Set-up time for a STOP condition		4.0	_		μs
t _{BUF}	Bus free time between a STOP and START condition		4.7			μs
Cb	Capacitive load for each bus line			_	400	pF

Table 25. I ² C-bus SDA, SCL b	us lines characteristics (1)
---	------------------------------

Symbol	Parameter	Test conditions	Min	Тур	Max	Unit
t _{VD;DAT}	Data valid time ⁽⁵⁾				3.45 ⁽⁴⁾	μs
t _{VD;ACK}	Data valid acknowledge time ⁽⁶⁾			_	3.45 ⁽⁴⁾	μs
V _{nL}	Noise margin at the LOW level	For each connected device (including hysteresis)	0.1 * V _{DDL}	_		V
V _{nH}	Noise margin at the HIGH level	For each connected device (including hysteresis)	0.2 * V _{DDL}	_		V

- 1. See Figure 16. All values are referred to $V_{IH(min)}$ (0.3 * V_{DDL}) and $V_{IL(max)}$ (0.7 * V_{DDL})
- 2. t_{HD:DAT} is the data hold time that is measured from the falling edge of SCL, applies to data in transmission and the acknowledge.
- A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the V_{IH(min)} of the SCL signal) to bridge the undefined region of the falling edge of SCL.
- 4. The maximum $t_{\text{HD;DAT}}$ could be 3.45 us, but must be less than the maximum of $t_{\text{VD;DAT}}$ or $t_{\text{VD;ACK}}$ by a transition time.
- t_{VD:DAT} = time for data signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse)
- 6. $t_{VD;ACK}$ = time for acknowledgment signal from SCL LOW to SDA output (HIGH or LOW, depending on which one is worse)

Figure 20. Definition of timing on the I²C-bus tf tsu;DAT 70 % 70 % SDA cont. 30 % tHD:DAT TVD:DAT 70 % 70 % SCL 30 % 30 % 30 % 30 % tHD;STA tLOW 9th clock 1 / fscL 1st clock cycle ... SDA tVD:ACK tsu;stA tsp tsu;sto 70 % 30 % · SCL 9th clock $V_{IL} = 0.3V_{DD}$ $V_{IH} = 0.7 V_{DD}$

Table 26. Electrical transient requirements (part 1)

ISO 7637-2:	Test levels ⁽¹⁾		Number of	Burst cy	cle/pulse	Delays and impedance	
2004(E) Test Pulse	III	IV	test times repetition				
1	-75 V	-100 V	5000 pulses	0.5 s	5 s	2 ms, 10 Ω	
2a	+37 V	+50 V	5000 pulses	0.2 s	5 s	50 μs, 2 Ω	
3a	-100 V	-150 V	1h	90 ms	100 ms	0.1 μs, 50 Ω	
3b	+75 V	+100 V	1h	90 ms	100 ms	0.1 μs, 50 Ω	
4	-6 V	-7 V	1 pulse			100 ms, 0.01 Ω	
5b ⁽²⁾	+65 V	+87 V	1 pulse			400 ms, 2 Ω	

- 1. The above test levels must be considered referred to V_{CC} = 13.5V except for pulse 5b.
- 2. Valid in case of external load dump clamp: 40V maximum referred to OUT.

Table 27. Electrical transient requirements (part 2)

ISO 7637-2: 2004(E) test pulse		results ⁽¹⁾
	III	IV
1	С	Е
2a	С	С
3a	С	С
3b	С	С
4	С	С
5b ⁽²⁾	С	С

- 1. The above test levels must be considered referred to $V_{\rm CC}$ = 13.5 V except for pulse 5b.
- 2. Valid in case of external load dump clamp: 40V maximum referred to OUT.

Table 28. Electrical transient requirements (part 3)

Class	Contents			
С	All functions of the device are performed as designed after exposure to disturbance.			
E	One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the			

7 OTP (One Time Programmable Memory)

L99SD01-E provides two 16 bit OTP modules for internal parameter trimming. Default application parameters are hard coded into the device. OTP use is reserved to ST and other access will be hardware forbidden.

Table 29. 16 bit OTP modules

	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
OTP_0				Osc trimming			Curi	rent reference trimming			ning	Bandgap trimming				
OTP_1				Refer slo	rence pe			В	Blankin	g		IHOLI	D curre	ent trin	nming	

8 Application schematic

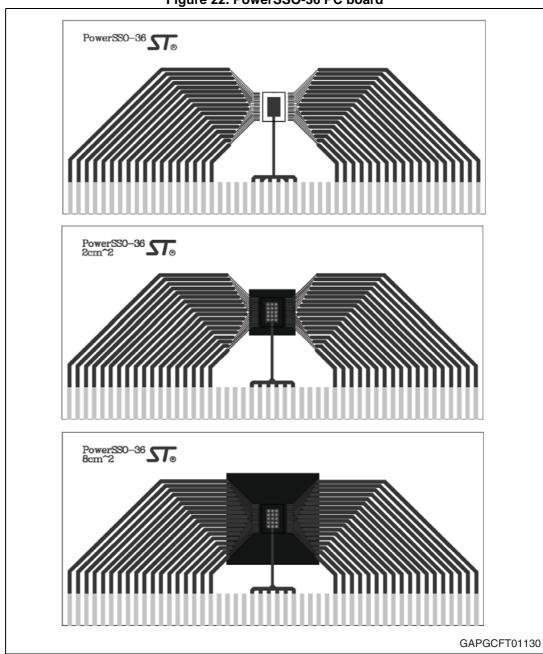

OUT PGND REC REC PGND - REC PGND REC PGND TEST_OUT2 SGND TEST_OUT1 TEST_OUT3 BATT TEST 🔲 Module Battery CPUMP1 ENABLE 100nF 4.7nF CPUMP2 SYNC_INJ 5V 5V 5V ↑ ↑ ↑ * * * 10uF CTANK PWM VDDL FAULT 5V**←** C3V3 SCL +xxuF To mC SGND SDA SGND/VDDL ← E0 CLAMP_FLAG E1 MAINT_IPK SGND/VDDL ← SGND/VDDL ← E2 CHECK_SIGNAL IN_SIGNAL SGND OTP_0V OTP_15V

Figure 21. Application schematic

9 Package and PCB thermal data

9.1 PowerSSO-36 thermal data

Figure 22. PowerSSO-36 PC board

Board finish thickness 1.6 mm +/- 10%; Board double layer; Board dimension 129 mm x 60 mm; Board Material FR4; Cu thickness 0.070 mm; Thermal vias separation 1.2 mm; Thermal via diameter 0.3 mm +/-0.08 mm; Cu thickness on vias 0.025 mm; Footprint dimension 4.1 mm x 6.5 mm.

57/

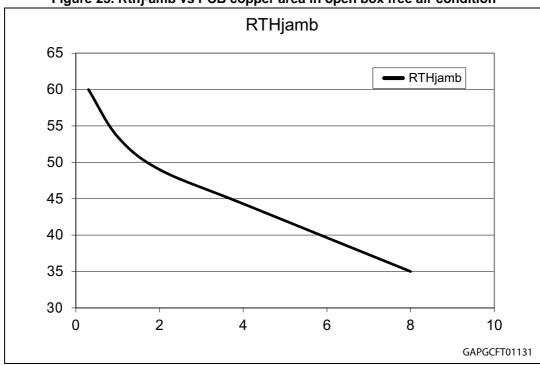


Figure 23. Rthj-amb vs PCB copper area in open box free air condition

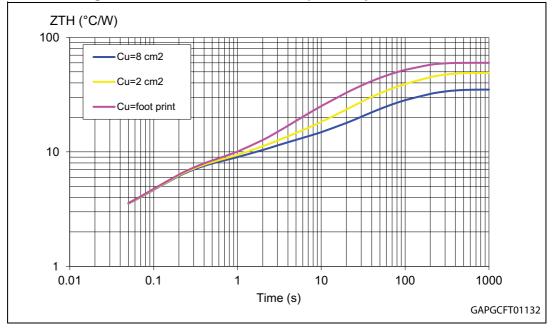


Figure 25. Thermal fitting model of a HSD in PowerSSO-36

Table 30. Thermal parameters

Area/island (cm ²)	FP	2	8
R1 = R7 (°C/W)	0.8		
R2 = R8 (°C/W)	1.2		
R3 (°C/W)	5		
R4 (°C/W)	8		
R5 (°C/W)	18	15	10
R6 (°C/W)	27	23	14
C1 = C7 (W·s/°C)	0.0005		
C2 = C8 (W·s/°C)	0.002		
C3 (W·s/°C)	0.03		
C4 (W·s/°C)	0.5		
C5 (W·s/°C)	1	1.5	3
C6 (W·s/°C)	3	5	9

10 Package and packing Information

10.1 ECOPACK® packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

ECOPACK® is an ST trademark.

10.2 PowerSSO-36 package information

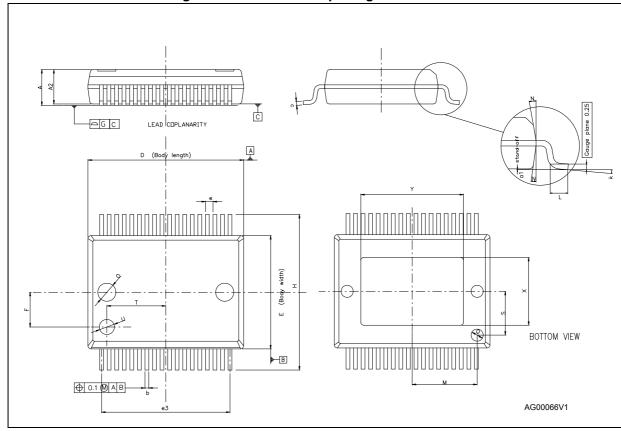


Figure 26. PowerSSO-36 package dimensions

Table 31. PowerSSO-36 mechanical data

Symbol	Millimeters							
	Min	Тур.	Мах					
А	2.15		2.47					
A2	2.15		2.40					
a1	0		0.1					
b	0.18		0.36					

Table 31. PowerSSO-36 mechanical data

	Millimeters						
Symbol —	Min	Тур.	Мах				
С	0.23		0.32				
D ⁽¹⁾	10.10		10.50				
E	7.4		7.6				
е		0.5					
e3		8.5					
F		2.3					
G			0.1				
G1			0.06				
Н	10.1		10.5				
h			0.4				
k	0°		8°				
L	0.55		0.90				
М		4.3					
N			10°				
0		1.2					
Q		0.8					
S		2.9					
Т		3.65					
U		1					
Х	4.1		4.7				
Υ	6.5		7.1				

^{1. &}quot;D" and "E" do not include mold Flash or protrusions. Mold Flash or protrusion shall not exceed 0.15 mm per side (0.006").

L99SD01-E Revision history

11 Revision history

Table 32. Document revision history

Date	Revision	Changes
05-Dec-2011	1	Initial release
12-Sep-2013	2	Table 2: Pin description: — SCL: updated description Updated Section 4.1: SDA and SCL signals Added Chapter 5: Register description Table 5: Absolute maximum rating: — I _{LOAD} , I _{R(LOAD)} : updated value — EC: deleted rows — E _{AS} , E _{REP1} , E _{REP2} : added rows Updated Table 6: Thermal data Table 18: Current sense comparator: — V _{IOFF_PWMCOMP} : updated min value Table 20: S₁ protections and diagnostic: — I _{OL} : added test condition and values Table 22: IPEAK, IHOLD (-40 °C < T₁ < 150 °C, unless otherwise specified): — I _{PEAK} , I _{HOLD} : added test condition and values Table 23: Charge pump: — added note — I _{CP1} , I _{CP2} : added rows Table 24: I²C-bus SDA, SCL I/O stages: — I _{OL} : removed test condition — t _{OFF} : updated parameter, removed test condition and min value Table 25: I²C-bus SDA, SCL bus lines characteristics: — f _{SCL} , t _{HD} ;STA, t _{LOW} , t _{HIGH} , t _{SU} ;STA, t _{HD} ;DAT, t _P , t _P , t _{SU} ;STO, t _{BUF} , Cb, t _{VD} ;DAT, t _{VD} ;ACK: updated values Added Table 26: Electrical transient requirements (part 1), Table 27: Electrical transient requirements (part 2) and Table 28: Electrical transient requirements (part 3) Added Chapter 9: Package and PCB thermal data
18-Sep-2013	3	Updated disclaimer.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

