

5V, 16 Kbit (2Kb x 8) ZEROPOWER® SRAM

FEATURES SUMMARY

- INTEGRATED, ULTRA LOW POWER SRAM, REAL TIME CLOCK, and POWER-FAIL CONTROL CIRCUIT
- UNLIMITED WRITE CYCLES
- READ CYCLE TIME EQUALS WRITE CYCLE TIME
- AUTOMATIC POWER-FAIL CHIP DESELECT and WRITE PROTECTION
- WRITE PROTECT VOLTAGES $(V_{PFD} = Power-fail Deselect Voltage)$:
 - $M48Z02: V_{CC} = 4.75 \text{ to } 5.5V;$ $4.5V \le V_{PFD} \le 4.75V$
 - $M48Z12: V_{CC} = 4.5 \text{ to } 5.5V;$ $4.2V \le V_{PFD} \le 4.5V$
- SELF-CONTAINED BATTERY IN THE CAPHAT™ DIP PACKAGE
- PIN and FUNCTION COMPATIBLE WITH JEDEC STANDARD 2K x 8 SRAMs

Figure 1. 24-pin CAPHAT, DIP Package

1/16 July 2001

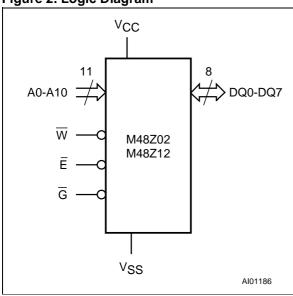
M48Z02, M48Z12

TABLE OF CONTENTS

SUMMARY DESCRIPTION	3
Logic Diagram (Figure 2.)	
DIP Connections (Figure 3.)	
Block Diagram (Figure 4.)	4
MAXIMUM RATING	4
Absolute Maximum Ratings (Table 2.)	4
DC AND AC PARAMETERS	5
Operating and AC Measurement Conditions (Table 3.)	5
AC Testing Load Circuit (Figure 5.)	
Capacitance (Table 4.)	
DC Characteristics (Table 5.)	6
OPERATION MODES	6
Operating Modes (Table 6.)	6
READ Mode	7
READ Mode AC Waveforms (Figure 6.)	
READ Mode AC Characteristics (Table 7.)	
WRITE Mode	
WRITE Enable Controlled, WRITE AC Waveform (Figure 7.)	
Chip Enable Controlled, WRITE AC Waveforms (Figure 8.)	
WRITE Mode AC Characteristics (Table 8.)	
Checking the BOK Flag Status (Figure 9.)	
Power Down/Up Mode AC Waveforms (Figure 10.)	
Power Down/Up AC Characteristics (Table 9.)	
Power Down/Up Trip Points DC Characteristics (Table 10.)	
Crystal Accuracy Across Temperature (Figure 11.)	
Power Supply Decoupling and Undershoot Protection	
Supply Voltage Protection (Figure 12.)	12
PART NUMBERING	13
PACKAGE MECHANICAL INFORMATION	14

SUMMARY DESCRIPTION

The M48Z02/12 ZEROPOWER $^{\circledR}$ RAM is a 2K x 8 non-volatile static RAM which is pin and functional compatible with the DS1220.


A special 24-pin, 600mil DIP CAPHAT™ package houses the M48Z02/12 silicon with a long life lithium button cell to form a highly integrated battery backed-up memory solution.

The M48Z02/12 button cell has sufficient capacity and storage life to maintain data and clock functionality for an accumulated time period of at least

10 years in the absence of power over commercial operating temperature range.

The M48Z02/12 is a non-volatile pin and function equivalent to any JEDEC standard 2K x 8 SRAM. It also easily fits into many ROM, EPROM, and EEPROM sockets, providing the non-volatility of PROMs without any requirement for special WRITE timing or limitations on the number of WRITEs that can be performed.

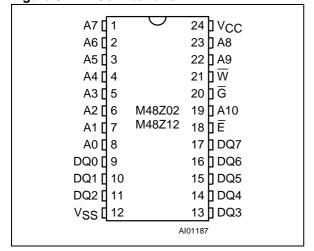

Figure 2. Logic Diagram

Table 1. Signal Names

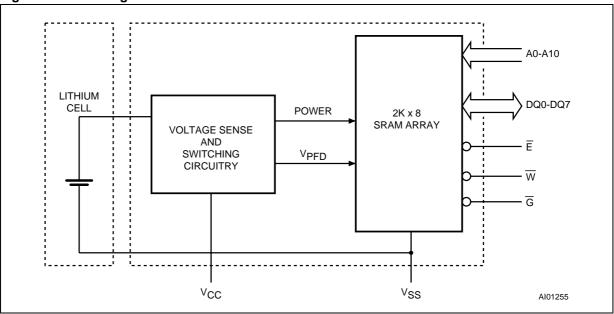

A0-A10	Address Inputs			
DQ0-DQ7	Data Inputs / Outputs			
Ē	Chip Enable			
G	Output Enable			
W	WRITE Enable			
V _{CC}	Supply Voltage			
V _{SS}	Ground			

Figure 3. DIP Connections

477

Figure 4. Block Diagram

MAXIMUM RATING

Stressing the device above the rating listed in the "Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is

not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 2. Absolute Maximum Ratings

Symbol	Parameter	Value	Unit	
TA	Analysis of Operation Terror continue		0 to 70	°C
'A	Ambient Operating Temperature	Grade 6	-40 to 85	
T _{STG}	Storage Temperature (V _{CC} Off, Oscillator Off)	-40 to 85	°C	
T _{SLD} ⁽¹⁾	Lead Solder Temperature for 10 seconds	260	°C	
V _{IO}	Input or Output Voltages	-0.3 to 7	V	
Vcc	Supply Voltage		-0.3 to 7	V
Io	Output Current	20	mA	
P _D	Power Dissipation	1	W	

Note: 1. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds).

CAUTION: Negative undershoots below -0.3V are not allowed on any pin while in the Battery Back-up mode.

DC AND AC PARAMETERS

This section summarizes the operating and measurement conditions, as well as the DC and AC characteristics of the device. The parameters in the following DC and AC Characteristic tables are derived from tests performed under the Measure-

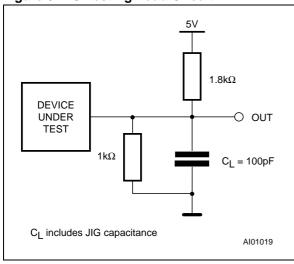

ment Conditions listed in the relevant tables. Designers should check that the operating conditions in their projects match the measurement conditions when using the quoted parameters.

Table 3. Operating and AC Measurement Conditions

Parameter	M48Z02	M48Z12	Unit	
Supply Voltage (V _{CC})		4.75 to 5.5	4.5 to 5.5	V
Ambient Operating Temperature (T _A)	Grade 1	0 to 70	0 to 70	°C
Anibient Operating Temperature (14)	Grade 6	-	-40 to 85	°C
Load Capacitance (C _L)	·	100	100	pF
Input Rise and Fall Times		≤ 5	≤ 5	ns
Input Pulse Voltages		0 to 3	0 to 3	V
Input and Output Timing Ref. Voltages		1.5	1.5	V

Note: Output Hi-Z is defined as the point where data is no longer driven.

Figure 5. AC Testing Load Circuit

Table 4. Capacitance

Symbol	Parameter ^(1,2)	Min	Max	Unit
C _{IN}	Input Capacitance		10	pF
C _{IO} (3)	Input / Output Capacitance		10	pF

Note: 1. Effective capacitance measured with power supply at 5V. Sampled only, not 100% tested.

- 2. At 25°C, f = 1MHz.
- 3. Outputs deselected.

Table 5. DC Characteristics

Symbol	Parameter	Test Condition ⁽¹⁾	Test Condition ⁽¹⁾ Min		Unit
ILI	Input Leakage Current	$0V \le V_{IN} \le V_{CC}$		±1	μA
I _{LO} ⁽²⁾	Output Leakage Current	$0V \le V_{OUT} \le V_{CC}$		±1	μA
Icc	Supply Current	Outputs open		80	mA
I _{CC1}	Supply Current (Standby) TTL	$\overline{E} = V_IH$		3	mA
I _{CC2}	Supply Current (Standby) CMOS	$\overline{E} = V_{CC} - 0.2V$		3	mA
V _{IL} ⁽³⁾	Input Low Voltage		-0.3	0.8	V
V _{IH}	Input High Voltage		2.2	V _{CC} + 0.3	V
V _{OL}	Output Low Voltage	I _{OL} = 2.1mA		0.4	V
V _{OH}	Output High Voltage	$I_{OH} = -1mA$	2.4		V

Note: 1. Valid for Ambient Operating Temperature: $T_A = 0$ to 70° C or -40 to 85° C; $V_{CC} = 4.75$ to 5.5V or 4.5 to 5.5V (except where noted).

OPERATION MODES

The M48Z02/12 also has its own Power-fail Detect circuit. The control circuitry constantly monitors the single 5V supply for an out of tolerance condition. When V_{CC} is out of tolerance, the circuit write protects the SRAM, providing a high degree of

data security in the midst of unpredictable system operation brought on by low V_{CC} . As V_{CC} falls below approximately 3V, the control circuitry connects the battery which maintains data and clock operation until valid power returns.

Table 6. Operating Modes

Mode	V _{CC}	Ē	G	W	DQ0-DQ7	Power
Deselect		V _{IH}	Х	Х	High Z	Standby
WRITE	4.75 to 5.5V or	VIL	Х	V _{IL}	D _{IN}	Active
READ	4.5 to 5.5V	V_{IL}	V_{IL}	V _{IH}	D _{OUT}	Active
READ		VIL	V _{IH}	V _{IH}	High Z	Active
Deselect	V _{SO} to V _{PFD} (min) ⁽¹⁾	Х	Х	Х	High Z	CMOS Standby
Deselect	≤ V _{SO} ⁽¹⁾	Х	Х	Х	High Z	Battery Back-up Mode

Note: X = V_{IH} or V_{IL}; V_{SO} = Battery Back-up Switchover Voltage.

^{2.} Outputs deselected.

^{3.} Negative spikes of -1V allowed for up to 10ns once per Cycle.

^{1.} See Table 10, page 11 for details.

READ Mode

The M48Z02/12 is in the READ Mode whenever \overline{W} (WRITE Enable) is high and \overline{E} (Chip Enable) is low. The device architecture allows ripple-through access of data from eight of 16,384 locations in the static storage array. Thus, the unique address specified by the 11 Address Inputs defines which one of the 2,048 bytes of data is to be accessed. Valid data will be available at the Data I/O pins within Address Access time (tAVQV) after the last address input signal is stable, providing that the $\overline{\mathsf{E}}$ and G access times are also satisfied. If the \overline{E} and G access times are not met, valid data will be available after the latter of the Chip Enable Access time (t_{ELQV}) or Output Enable Access time (t_{GLQV}).

The state of the eight three-state Data I/O signals is controlled by \overline{E} and \overline{G} . If the outputs are activated before t_{AVQV}, the data lines will be driven to an indeterminate state until tAVQV. If the Address Inputs are changed while \overline{E} and \overline{G} remain active, output data will remain valid for Output Data Hold time (t_{AXQX}) but will go indeterminate until the next Address Access.

tAVAV A0-A10 VALID tAVQV tAXQX tELQV tEHQZ Ē tELQX tGLQV tGHQ7 G tGLQX VALID DO0-DO7 AI01330

Figure 6. READ Mode AC Waveforms

Note: WRITE Enable (\overline{W}) = High.

Table 7. READ Mode AC Characteristics

			M48Z02/M48Z12						
Symbol	Parameter ⁽¹⁾	-7	-70		50	-200		Unit	
		Min	Max	Min	Max	Min	Max		
t _{AVAV}	READ Cycle Time	70		150		200		ns	
t _{AVQV}	Address Valid to Output Valid		70		150		200	ns	
t _{ELQV}	Chip Enable Low to Output Valid		70		150		200	ns	
t _{GLQV}	Output Enable Low to Output Valid		35		75		80	ns	
t _{ELQX}	Chip Enable Low to Output Transition	5		10		10		ns	
t _{GLQX}	Output Enable Low to Output Transition	5		5		5		ns	
t _{EHQZ}	Chip Enable High to Output Hi-Z		25		35		40	ns	
t _{GHQZ}	Output Enable High to Output Hi-Z		25		35		40	ns	
t _{AXQX}	Address Transition to Output Transition	10		5		5		ns	

Note: 1. Valid for Ambient Operating Temperature: $T_A = 0$ to 70°C or -40 to 85°C; $V_{CC} = 4.75$ to 5.5V or 4.5 to 5.5V (except where noted).

WRITE Mode

The M48Z02/12 is in the WRITE Mode whenever \overline{W} and \overline{E} are active. The start of a WRITE is referenced from the latter occurring falling edge of \overline{W} or \overline{E} . A WRITE is terminated by the earlier rising edge of \overline{W} or \overline{E} . The addresses must be held valid throughout the cycle. \overline{E} or \overline{W} must return high for a minimum of t_{EHAX} from Chip Enable or t_{WHAX} from WRITE Enable prior to the initiation of anoth-

er READ or WRITE cycle. Data-in must be valid t_{D-VWH} prior to the end of WRITE and remain valid for t_{WHDX} afterward. \overline{G} should be kept high during WRITE cycles to avoid bus contention; although, if the output bus has been activated by a low on \overline{E} and \overline{G} , a low on \overline{W} will disable the outputs t_{WLQZ} after \overline{W} falls.

Figure 7. WRITE Enable Controlled, WRITE AC Waveform

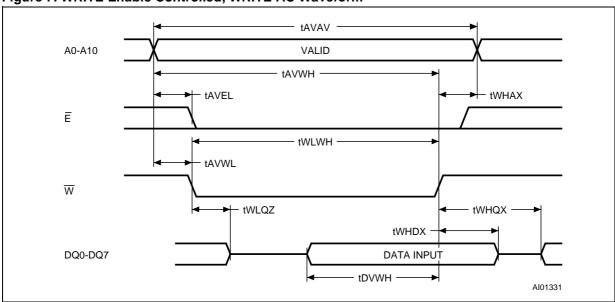
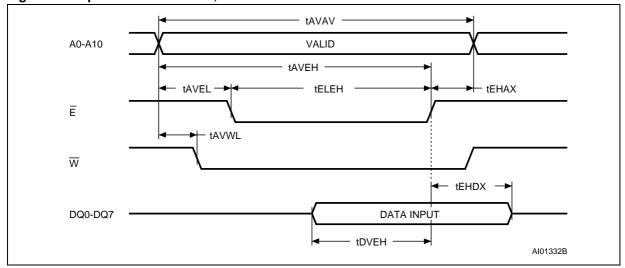



Figure 8. Chip Enable Controlled, WRITE AC Waveforms

Table 8. WRITE Mode AC Characteristics

-			M48Z02/M48Z12						
Symbol	Parameter ⁽¹⁾	_	-70		50	-200		Unit	
		Min	Max	Min	Max	Min	Max		
t _{AVAV}	WRITE Cycle Time	70		150		200		ns	
t _{AVWL}	Address Valid to WRITE Enable Low	0		0		0		ns	
t _{AVEL}	Address Valid to Chip Enable 1 Low	0		0		0		ns	
t _{WLWH}	WRITE Enable Pulse Width	50		90		120		ns	
t _{ELEH}	Chip Enable Low to Chip Enable 1 High	55		90		120		ns	
twhax	WRITE Enable High to Address Transition	0		10		10		ns	
t _{EHAX}	Chip Enable High to Address Transition	0		10		10		ns	
t _{DVWH}	Input Valid to WRITE Enable High	30		40		60		ns	
t _{DVEH}	Input Valid to Chip Enable High	30		40		60		ns	
t _{WHDX}	WRITE Enable High to Input Transition	5		5		5		ns	
t _{EHDX}	Chip Enable High to Input Transition	5		5		5		ns	
t_{WLQZ}	WRITE Enable Low to Output Hi-Z		25		50		60	ns	
t _{AVWH}	Address Valid to WRITE Enable High	60		120		140		ns	
t _{AVEH}	Address Valid to Chip Enable High	60		120		140		ns	
t _{WHQX}	WRITE Enable High to Output Transition	5		10		10		ns	

Note: 1. Valid for Ambient Operating Temperature: $T_A = 0$ to 70° C or -40 to 85° C; $V_{CC} = 4.75$ to 5.5V or 4.5 to 5.5V (except where noted).

Data Retention Mode

With valid V_{CC} applied, the M48Z02/12 operates as a conventional BYTEWIDETM static RAM. Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself when V_{CC} falls within the V_{PFD} (max), V_{PFD} (min) window. All outputs become high impedance, and all inputs are treated as "don't care."

Note: A power failure during a WRITE cycle may corrupt data at the currently addressed location, but does not jeopardize the rest of the RAM's content. At voltages below V_{PFD} (min), the user can be assured the memory will be in a write protected state, provided the V_{CC} fall time is not less than t_F . The M48Z02/12 may respond to transient noise spikes on V_{CC} that reach into the deselect window during the time the device is sampling V_{CC} . Therefore, decoupling of the power supply lines is recommended.

The power switching circuit connects external V_{CC} to the RAM and disconnects the battery when V_{CC} rises above V_{SO} . As V_{CC} rises, the battery voltage is checked. If the voltage is too low, an internal Battery Not OK (\overline{BOK}) flag will be set. The \overline{BOK} flag can be checked after power up. If the \overline{BOK} flag is set, the first WRITE attempted will be blocked. The flag is automatically cleared after the first WRITE, and normal RAM operation resumes. Figure 9 illustrates how a \overline{BOK} check routine could be structured.

For more information on a Battery Storage Life refer to the Application Note AN1012.

Figure 9. Checking the BOK Flag Status

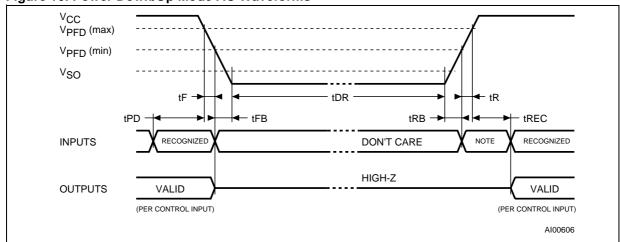
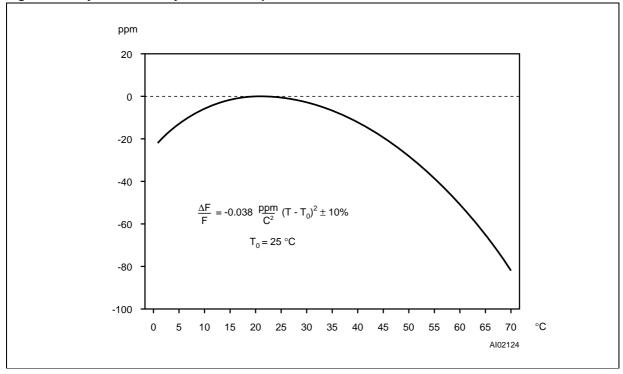



Figure 10. Power Down/Up Mode AC Waveforms

Note: Inputs may or may not be recognized at this time. Caution should be taken to keep \overline{E} high as V_{CC} rises past V_{PFD} (min). Some systems may perform inadvertent WRITE cycles after V_{CC} rises above V_{PFD} (min) but before normal system operations begin. Even though a power on reset is being applied to the processor, a reset condition may not occur until after the system clock is running.

Table 9. Power Down/Up AC Characteristics


Symbol	Parameter ⁽¹⁾	Min	Max	Unit
t _{PD}	Ē or W at V _{IH} before Power Down	0		μs
t _F ⁽²⁾	V _{PFD} (max) to V _{PFD} (min) V _{CC} Fall Time	300		μs
t _{FB} ⁽³⁾	V _{PFD} (min) to V _{SS} V _{CC} Fall Time	10		μs
t _R	V _{PFD} (min) to V _{PFD} (max) V _{CC} Rise Time	0		μs
t _{RB}	V _{SS} to V _{PFD} (min) V _{CC} Rise Time	1		μs
t _{REC}	E or W at V _{IH} after Power Up	2		ms

Note: 1. Valid for Ambient Operating Temperature: $T_A = 0$ to 70° C or -40 to 85° C; $V_{CC} = 4.75$ to 5.5V or 4.5 to 5.5V (except where noted).

Table 10. Power Down/Up Trip Points DC Characteristics

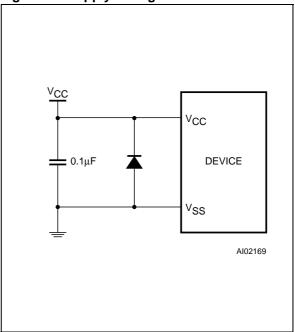
Symbol	Parameter ^(1,2)		Min	Тур	Max	Unit
V _{PFD}	Power-fail Deselect Voltage —	M48Z02	4.5	4.6	4.75	V
		M48Z12	4.2	4.3	4.5	V
V _{SO}	Battery Back-up Switchover Voltage			3.0		V
t _{DR}	Expected Data Retention Time		10			YEARS

Figure 11. Crystal Accuracy Across Temperature

^{2.} V_{PFD} (max) to V_{PFD} (min) fall time of less than tF may result in deselection/write protection not occurring until 200µs after V_{CC} passes V_{PFD} (min).

^{3.} V_{PFD} (min) to V_{SS} fall time of less than t_{FB} may cause corruption of RAM data.

Note: 1. All voltages referenced to V_{SS}.


2. Valid for Ambient Operating Temperature: T_A = 0 to 70°C or -40 to 85°C; V_{CC} = 4.75 to 5.5V or 4.5 to 5.5V (except where noted).

Power Supply Decoupling and Undershoot Protection

 I_{CC} transients, including those produced by output switching, can produce voltage fluctuations, resulting in spikes on the V_{CC} bus. These transients can be reduced if capacitors are used to store energy which stabilizes the V_{CC} bus. The energy stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic bypass capacitor value of $0.1\mu F$ (as shown in Figure 12) is recommended in order to provide the needed filtering.

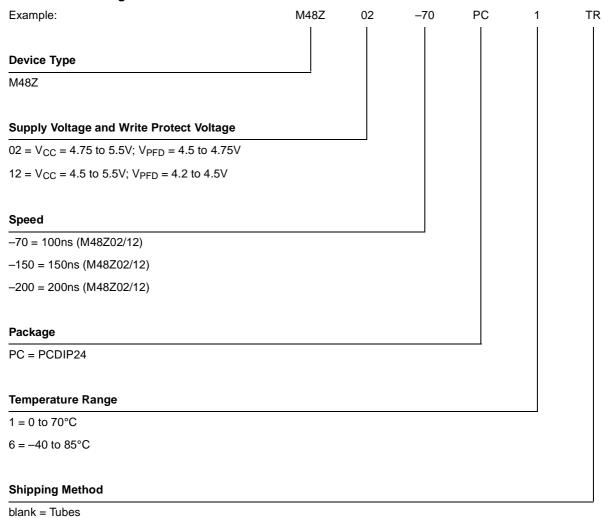
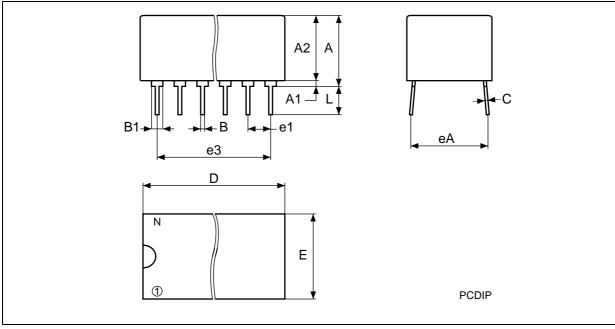

In addition to transients that are caused by normal SRAM operation, power cycling can generate negative voltage spikes on V_{CC} that drive it to values below V_{SS} by as much as one Volt. These negative spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, it is recommended to connect a schottky diode from V_{CC} to V_{SS} (cathode connected to V_{CC} , anode to V_{SS}). Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is recommended for surface mount.

Figure 12. Supply Voltage Protection

PART NUMBERING


For a list of available options (e.g., Speed, Package) or for further information on any aspect of this device, please contact the ST Sales Office nearest you.

477

TR = Tape & Reel

PACKAGE MECHANICAL INFORMATION

Figure 13. PCDIP24 – 24-pin Plastic DIP, Battery CAPHAT™, Package Outline

Note: Drawing is not to scale.

Table 12. PCDIP24 – 24-pin Plastic DIP, Battery CAPHAT™, Package Mechanical Data

Symb		mm			inches	
Symb	Тур	Min	Max	Тур	Min	Max
А		8.89	9.65		0.350	0.380
A1		0.38	0.76		0.015	0.030
A2		8.38	8.89		0.330	0.350
В		0.38	0.53		0.015	0.021
B1		1.14	1.78		0.045	0.070
С		0.20	0.31		0.008	0.012
D		34.29	34.80		1.350	1.370
E		17.83	18.34		0.702	0.722
e1		2.29	2.79		0.090	0.110
e3		25.15	30.73		0.990	1.210
eA		15.24	16.00		0.600	0.630
L		3.05	3.81		0.120	0.150
N		24			24	

REVISION HISTORY

Table 13. Document Revision History

Date	Revision Details
May 1999	First issue
07/09/01	Reformatted; Temperature information added to tables (Table 2, 3, 4, 5, 7, 8, 9, 10); Figure updated (Figure 10)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics All other names are the property of their respective owners.

© 2001 STMicroelectronics - All Rights Reserved

STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.

www.st.com