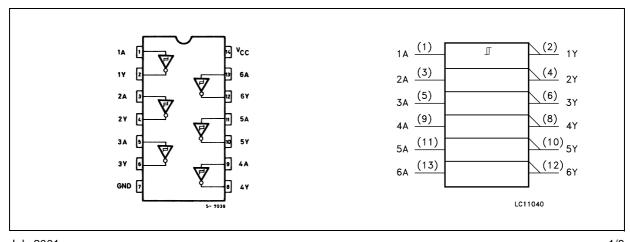

HEX SCHMITT INVERTER

- HIGH SPEED: t_{PD} =12ns (TYP.) at V_{CC} = 6V
- LOW POWER DISSIPATION: $I_{CC} = 1\mu A(MAX.)$ at $T_A=25^{\circ}C$
- HIGH NOISE IMMUNITY: $V_H = 1.2 \text{ V (TYP.)}$ AT $V_{CC} = 6 \text{ V}$
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 4mA (MIN)
- BALANCED PROPAGATION DELAYS: t_{PLH} ≅ t_{PHL}
- WIDE OPERATING VOLTAGE RANGE: V_{CC} (OPR) = 2V to 6V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 14

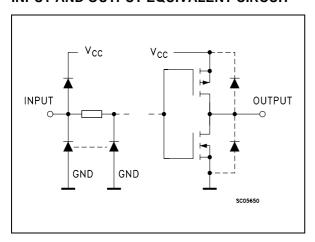
The M74HC14 is an high speed CMOS HEX SCHMITT INVERTER fabricated with silicon gate $\mbox{C}^2\mbox{MOS}$ technology. Pin configuration and function are the same as those of the M74HC04 but all inputs have 20% $\mbox{V}_{\rm CC}$ hysteresis level.

This, together with its schmitt trigger function, allows it to be used on line receivers with slow rise/fall input signals.



ORDER CODES

PACKAGE	TUBE	T & R
DIP	M74HC14B1R	
SOP	M74HC14M1R	M74HC14RM13TR
TSSOP		M74HC14TTR


All inputs are equipped with protection circuits against static discharge and transient excess voltage.

PIN CONNECTION AND IEC LOGIC SYMBOLS

July 2001 1/8

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1, 3, 5, 9, 11, 13	1A to 6A	Data Inputs
2, 4, 6, 8, 10, 12	1Y to 6Y	Data Outputs
7	GND	Ground (0V)
14	V _{CC}	Positive Supply Voltage

TRUTH TABLE

Α	Y
L	Н
Н	L

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7	V
V _I	DC Input Voltage	-0.5 to V _{CC} + 0.5	V
Vo	DC Output Voltage	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	± 20	mA
I _{OK}	DC Output Diode Current	± 20	mA
Io	DC Output Current	± 25	mA
I_{CC} or I_{GND}	DC V _{CC} or Ground Current	± 50	mA
P_{D}	Power Dissipation	500(*)	mW
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied
(*) 500mW at 65 °C; derate to 300mW by 10mW/°C from 65°C to 85°C

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	2 to 6	V
V _I	Input Voltage	0 to V _{CC}	V
Vo	Output Voltage	0 to V _{CC}	V
T _{op}	Operating Temperature	-55 to 125	°C

2/8