# **MP34DT04**



## MEMS audio sensor omnidirectional digital microphone

Datasheet - production data



### Features

- Single supply voltage
- Low power consumption
- 120 dBSPL acoustic overload point
- 64 dB signal-to-noise ratio
- Omnidirectional sensitivity
- –26 dBFS sensitivity
- PDM output
- HCLGA package
  - Top-port design
  - SMD-compliant
  - EMI-shielded
  - ECOPACK<sup>®</sup>, RoHS, and "Green" compliant

### Applications

- Mobile terminals
- Laptop and notebook computers
- Portable media players
- VolP
- Speech recognition
- A/V eLearning devices

- Gaming and virtual reality input devices
- Digital still and video cameras
- Antitheft systems

### Description

The MP34DT04 is an ultra-compact, low-power, omnidirectional, digital MEMS microphone built with a capacitive sensing element and an IC interface.

The sensing element, capable of detecting acoustic waves, is manufactured using a specialized silicon micromachining process dedicated to produce audio sensors.

The IC interface is manufactured using a CMOS process that allows designing a dedicated circuit able to provide a digital signal externally in PDM format.

The MP34DT04 has an acoustic overload point of 120 dBSPL with a 64 dB signal-to-noise ratio and –26 dBFS sensitivity.

The MP34DT04 is available in a top-port, SMDcompliant, EMI-shielded package and is guaranteed to operate over an extended temperature range from -40 °C to +85 °C.

| Order codes | Temp.<br>range [°C] | Package                         | Packing       |
|-------------|---------------------|---------------------------------|---------------|
| MP34DT04    | -40 to +85          | HCLGA<br>(3x4 x1.095 mm)<br>4LD | Tray          |
| MP34DT04TR  | -40 to +85          | HCLGA<br>(3x4x1.095 mm)<br>4LD  | Tape and reel |

#### Table 1: Device summary

March 2015

DocID027586 Rev 1

This is information on a product in full production.

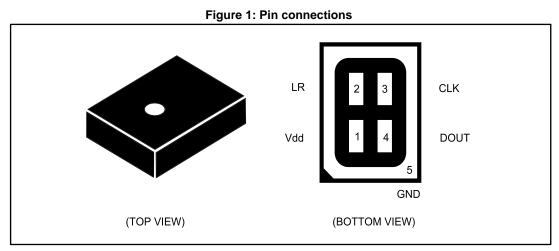
#### Contents

| Со | ntents  |                                         |    |
|----|---------|-----------------------------------------|----|
| 1  | Pin des | cription                                | 5  |
| 2  | Acoust  | ic and electrical specifications        | 6  |
|    | 2.1     | Acoustic and electrical characteristics | 6  |
|    | 2.2     | Timing characteristics                  | 7  |
|    | 2.3     | Frequency response                      | 8  |
| 3  | Applica | tion recommendations                    | 9  |
| 4  | Carrier | tape mechanical specifications          | 11 |
| 5  | Process | s recommendations                       | 12 |
| 6  | Sensing | g element                               | 14 |
| 7  | Absolut | te maximum ratings                      | 15 |
| 8  | Functio | onality                                 | 16 |
|    | 8.1     | L/R channel selection                   | 16 |
| 9  | Packag  | e information                           | 17 |
|    | 9.1     | Soldering information                   |    |
|    | 9.2     | HCLGA package (3x4x1.095mm)             |    |
| 10 | Revisio | n history                               |    |



## List of tables

| Table 1: Device summary                                  | 1  |
|----------------------------------------------------------|----|
| Table 2: Pin description                                 |    |
| Table 3: Acoustic and electrical characteristics         | 6  |
| Table 4: Distortion specifications                       | 6  |
| Table 5: Timing characteristics                          |    |
| Table 6: Frequency response mask for digital microphones | 8  |
| Table 7: Absolute maximum ratings                        | 15 |
| Table 8: L/R channel selection                           | 16 |
| Table 9: Recommended soldering profile limits            | 17 |
| Table 10: Outer dimensions                               |    |
| Table 11: Document revision history                      | 20 |
|                                                          |    |




# List of figures

| Figure 1: Pin connections                                                     | 5  |
|-------------------------------------------------------------------------------|----|
| Figure 2: Timing waveforms                                                    | 7  |
| Figure 3: Frequency response and mask                                         | 8  |
| Figure 4: MP34DT04 electrical connections (top view)                          | 9  |
| Figure 5: MP34DT04 electrical connections for stereo configuration (top view) | 10 |
| Figure 6: Carrier tape without microphone (top view)                          | 11 |
| Figure 7: Carrier tape with microphone (top view)                             | 11 |
| Figure 8: Recommended picking area                                            | 12 |
| Figure 9: Recommended picker design                                           | 13 |
| Figure 10: Recommended soldering profile limits                               | 17 |
| Figure 11: HCLGA (3x4x1.095) 4-lead package outline                           |    |
| Figure 12: Land pattern                                                       | 19 |



## 1 Pin description



| Pin #           | Pin name | Function                     |
|-----------------|----------|------------------------------|
| 1               | Vdd      | Power supply                 |
| 2               | LR       | Left/Right channel selection |
| 3               | CLK      | Synchronization input clock  |
| 4               | DOUT     | Left/Right PDM data output   |
| 5 (ground ring) | GND      | 0 V supply                   |



### 2 Acoustic and electrical specifications

#### 2.1 Acoustic and electrical characteristics

The values listed in the table below are specified for Vdd = 1.8 V, Clock = 2.4 MHz, T = 25  $^{\circ}$ C, unless otherwise noted.

| Symbol           | Parameter                                                 | Test condition                    | Min.     | Тур. <sup>(1)</sup> | Max.     | Unit   |
|------------------|-----------------------------------------------------------|-----------------------------------|----------|---------------------|----------|--------|
| Vdd              | Supply voltage                                            |                                   | 1.6      | 1.8                 | 3.6      | V      |
| ldd              | Current consumption in normal mode                        | Mean value                        |          | 600                 | 700      | μA     |
| lddPdn           | Current consumption in power-<br>down mode <sup>(2)</sup> |                                   |          |                     | 10       | μA     |
| Scc              | Short-circuit current                                     |                                   | 1        |                     | 10       | mA     |
| AOP              | Acoustic overload point                                   |                                   |          | 120                 |          | dBSPL  |
| So               | Sensitivity                                               |                                   | -29      | -26                 | -23      | dBFS   |
| SNR              | Signal-to-noise ratio                                     | A-weighted at 1 kHz,<br>94 dB SPL |          | 64                  |          | dB (A) |
| PSR              | Power supply rejection                                    | 100 mVpp sine 1 kHz               |          | -70                 |          | dBFS   |
| Clock            | Input clock frequency (3)                                 |                                   | 1        | 2.4                 | 3.25     | MHz    |
| Ton              | Turn-on time (4)                                          | Guaranteed by design              |          |                     | 10       | ms     |
| Тор              | Operating temperature range                               |                                   | -40      |                     | +85      | °C     |
| V <sub>IOL</sub> | Low-level logic input/output voltage                      | I <sub>out</sub> = 1 mA           | -0.3     |                     | 0.35xVdd | V      |
| V <sub>IOH</sub> | High-level logic input/output voltage                     | I <sub>out</sub> = 1 mA           | 0.65xVdd |                     | Vdd+0.3  | V      |

Table 3: Acoustic and electrical characteristics

#### Notes:

<sup>(1)</sup>Typical specifications are not guaranteed.

<sup>(2)</sup>Input clock in static mode.

 $^{(3)}$ Duty cycle: min = 40% max = 60%.

<sup>(4)</sup>Time from the first clock edge to valid output data.

#### **Table 4: Distortion specifications**

| Parameter  | Test condition            | ition Value  |  |
|------------|---------------------------|--------------|--|
| Distortion | 100 dBSPL (50 Hz - 4 kHz) | < 1% THD + N |  |
| Distortion | 115 dBSPL (1 kHz)         | < 5% THD + N |  |



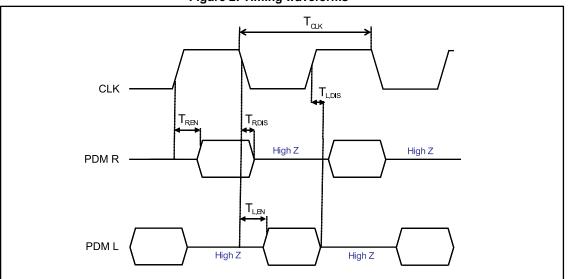

### 2.2 Timing characteristics

Table 5: Timing characteristics

| Parameter          | Description                               | Min.              | Max.              | Unit |
|--------------------|-------------------------------------------|-------------------|-------------------|------|
| f <sub>CLK</sub>   | Clock frequency for normal mode           | 1                 | 3.25              | MHz  |
| f <sub>PD</sub>    | Clock frequency for power-down mode       |                   | 0.23              | MHz  |
| T <sub>CLK</sub>   | Clock period for normal mode              | 308               | 1000              | ns   |
| $T_{R,EN}$         | Data enabled on DATA line, L/R pin = 1    | 18 <sup>(1)</sup> |                   | ns   |
| T <sub>R,DIS</sub> | Data disabled on DATA line, L/R pin = 1   |                   | 16 <sup>(1)</sup> | ns   |
| $T_{L,EN}$         | Data enabled on DATA line, $L/R$ pin = 0  | 18 <sup>(1)</sup> |                   | ns   |
| T <sub>L,DIS</sub> | Data disabled on DATA line, $L/R$ pin = 0 |                   | 16 <sup>(1)</sup> | ns   |

#### Notes:

<sup>(1)</sup>From design simulations







#### 2.3 Frequency response

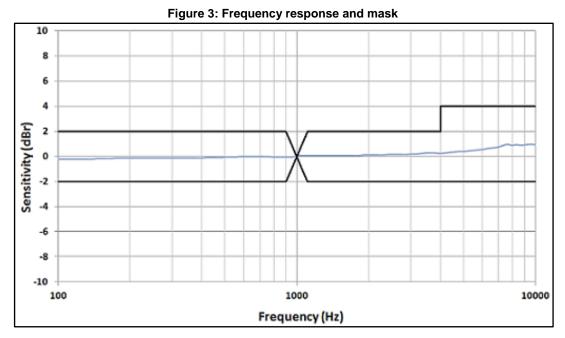



Table 6: Frequency response mask for digital microphones

| Frequency / Hz <sup>(1)</sup> | Lower limit | Upper limit | Unit      |
|-------------------------------|-------------|-------------|-----------|
| 1004000                       | -2          | +2          | dBr 1 kHz |
| 400010000                     | -2          | +4          | dBr 1 kHz |

#### Notes:

 $^{(1)}\mbox{At}$  T = 20 °C and acoustic stimulus = 1 Pa (94 dB SPL)



## 3 Application recommendations

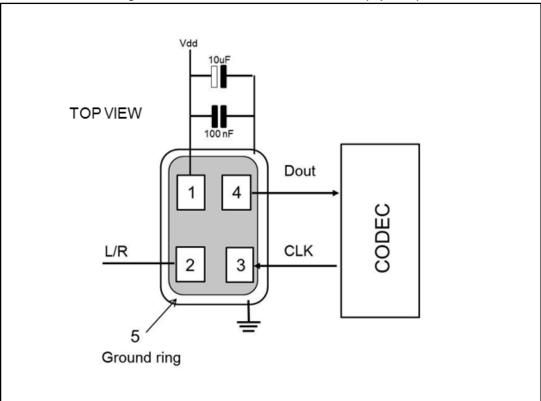
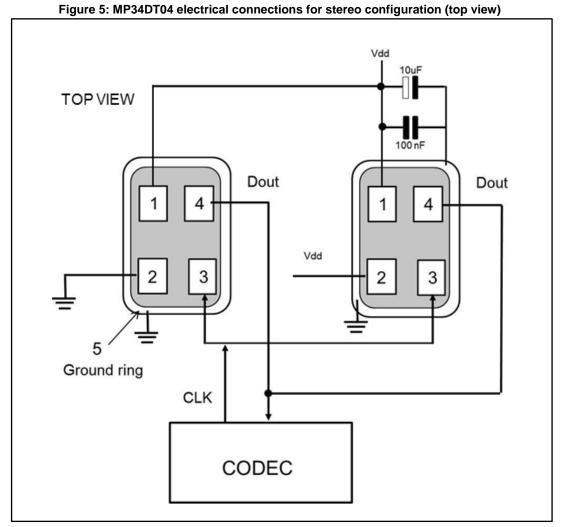




Figure 4: MP34DT04 electrical connections (top view)



Application recommendations



Power supply decoupling capacitors (100 nF ceramic, 10  $\mu$ F ceramic) should be placed as near as possible to pin 1 of the device (common design practice).

The L/R pin must be connected to Vdd or GND (refer to Table 8: "L/R channel selection").



57

## 4 Carrier tape mechanical specifications

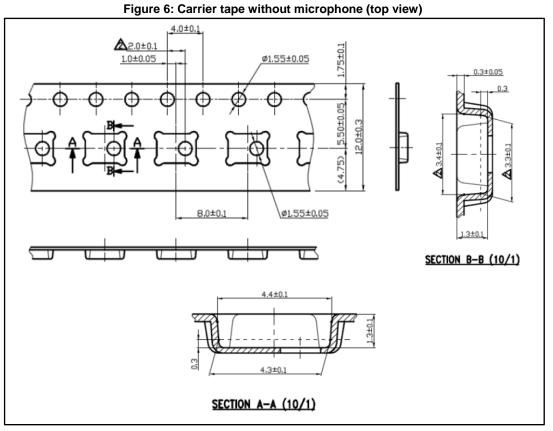
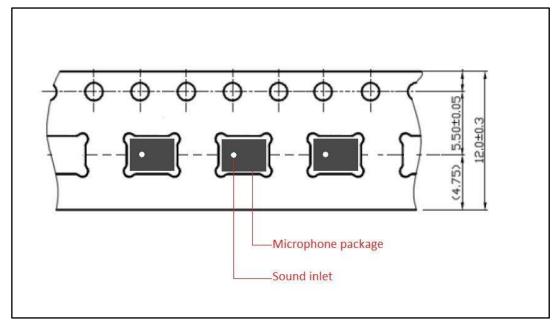




Figure 7: Carrier tape with microphone (top view)



DocID027586 Rev 1

### 5 **Process recommendations**

To ensure a consistent manufacturing process it is strongly advised to comply with the following recommendations:

- The recommended pick-up area for the MP34DT04 package must be defined using the worst case (ie. no device alignment during the picking process). This area has been defined considering all the tolerances of the components involved (reel, package, sound inlet). The picker tolerance shall be considered as well.
- To prevent damage to the MEMS membrane or incorrect pick-up and placement, do not pick up the component on the inlet area
- For the package outline please refer to . Nozzle shape, size, and placement accuracy are the other key factors to consider when deciding on the coordinates for picking.
- Device alignment before picking is highly recommended.
- A vacuum force greater than 7 psi must be avoided
- 1 kPa = 0.145 psi (lb/in2) = 0.0102 kgf/cm<sup>2</sup> = 0.0098 atm
- All recommended dimensions (device safe-picking area) do not include the pick-andplace equipment tolerances

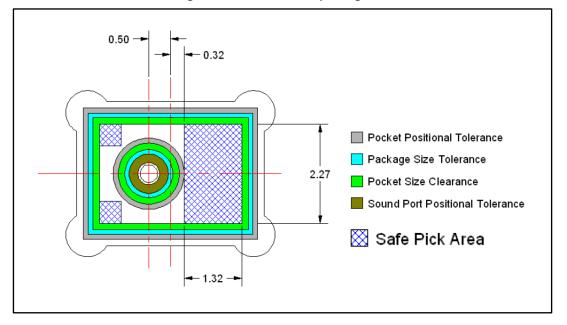
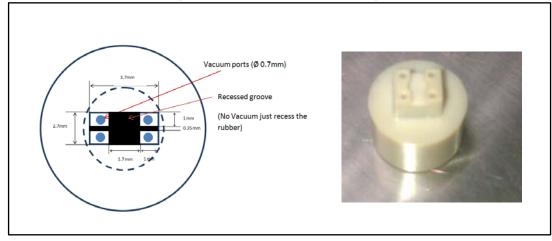



Figure 8: Recommended picking area


To have a safe pick-up "by design", ST strongly advises an ad hoc nozzle.

The following picker ensures that the holes for the vacuum and the air stream are ALWAYS away from the porthole of the device (4 vacuum ports located at each corner of the device).

The recommended nozzle also has a recess, in the form of a cross, which guarantees that the porthole is always left at atmospheric pressure. By using the recommended nozzle, the membrane will not suffer any sudden air disturbances during the picking or placing of the devices in the tape and reel.



#### Figure 9: Recommended picker design





## 6 Sensing element

The sensing element shall mean the acoustic sensor consisting of a conductive movable plate and a fixed plate placed in a tiny silicon chip. This sensor transduces the sound pressure into the changes of coupled capacity between those two plates.

Omron Corporation supplies this element for STMicroelectronics.



## 7 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

| Symbol           | Ratings                                             | Maximum value    | Unit |  |
|------------------|-----------------------------------------------------|------------------|------|--|
| Vdd              | Supply voltage                                      | -0.3 to 5        | V    |  |
| Vin              | Input voltage on any control pin                    | -0.3 to Vdd +0.3 | V    |  |
| T <sub>STG</sub> | Storage temperature range                           | -40 to +125      | °C   |  |
|                  |                                                     | ±2000 (HBM)      |      |  |
| ESD              | Electrostatic discharge protection                  | ±200 (MM)        | V    |  |
|                  |                                                     | ±750 (CBM)       |      |  |
| ESD              | Product standard EN 55024:2010 - 3 air<br>discharge | ±15000           | V    |  |

| Table 7: | Absolute | maximum | ratings |
|----------|----------|---------|---------|
|          | Absolute | maximum | ratings |



This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.



## 8 Functionality

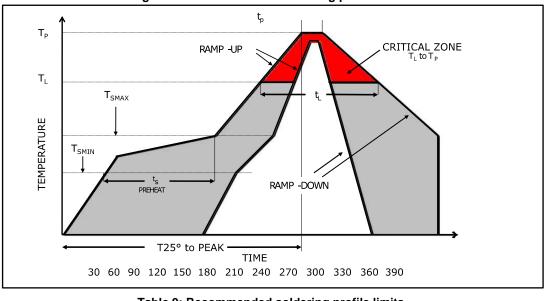
### 8.1 L/R channel selection

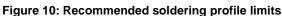
The L/R digital pad lets the user select the DOUT signal pattern as shown in *Table 8: "L/R channel selection"*. The L/R pin must be connected to Vdd or GND.

| Table 8 | 8: L/R | channel | selection  |
|---------|--------|---------|------------|
| I GOIO  | 0      | onanioi | 0010011011 |

| L/R | CLK low        | CLK high       |
|-----|----------------|----------------|
| GND | Data valid     | High impedance |
| Vdd | High impedance | Data valid     |




### 9 Package information

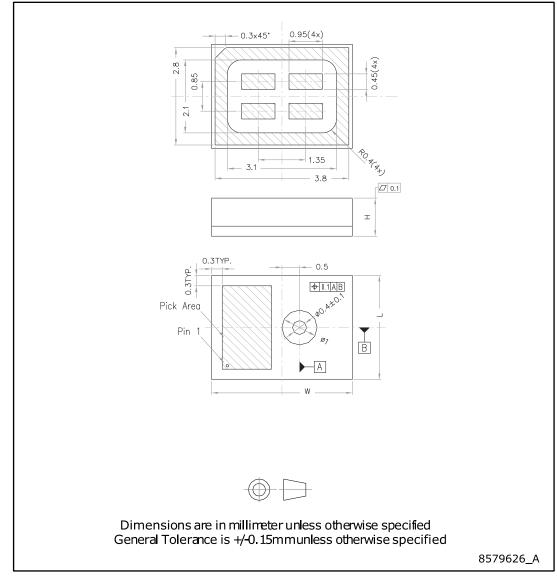

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK<sup>®</sup> is an ST trademark.

### 9.1 Soldering information

The HCLGA (3 x 4) 4LD package is also compliant with the RoHS and "Green" standards and is qualified for soldering heat resistance according to JEDEC J-STD-020.

Land pattern and soldering recommendations are available at www.st.com.





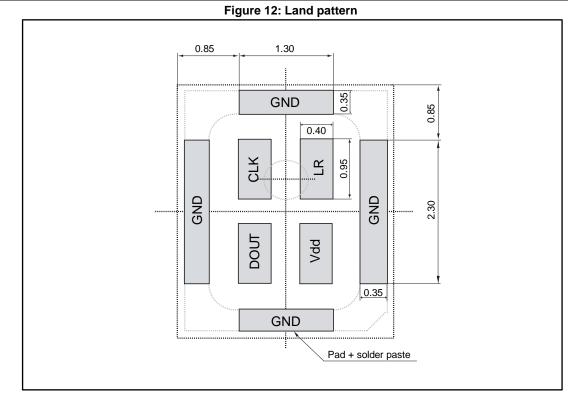

| Table 9: Recommende                                                                                     | ed soldering profile lim                                 | lits                                  |
|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------|
| Description                                                                                             | Parameter                                                | Pb free                               |
| Average ramp rate                                                                                       | $T_L$ to $T_P$                                           | 3 °C/sec max                          |
| Preheat<br>Minimum temperature<br>Maximum temperature<br>Time (T <sub>SMIN</sub> to T <sub>SMAX</sub> ) | T <sub>SMIN</sub><br>T <sub>SMAX</sub><br>t <sub>S</sub> | 150 °C<br>200 °C<br>60 sec to 120 sec |
| Ramp-up rate                                                                                            | $T_{\text{SMAX}}$ to $T_{\text{L}}$                      |                                       |
| Time maintained above liquids temperature<br>Liquids temperature                                        | t∟<br>T∟                                                 | 60 sec to 150 sec<br>217 °C           |
| Peak temperature                                                                                        | T <sub>P</sub>                                           | 260 °C max                            |
| Time within 5 °C of actual peak temperature                                                             |                                                          | 20 sec to 40 sec                      |
| Ramp-down rate                                                                                          |                                                          | 6 °C/sec max                          |
| Time 25 °C (t25 °C) to peak temperature                                                                 |                                                          | 8 minutes max                         |



## 9.2 HCLGA package (3x4x1.095mm)

Figure 11: HCLGA (3x4x1.095) 4-lead package outline




- 1. The MEMS microphone plastic cap can exhibit some level of variation in color when the device is subjected to thermal processes.
- 2. Ring plating can be subject to change not affecting acoustic and electrical performance.

|  | Table | 10: | Outer | dimensions |
|--|-------|-----|-------|------------|
|--|-------|-----|-------|------------|

| Symbol | Dimension (mm) | Tolerance (mm) |
|--------|----------------|----------------|
| Length | 3              | ±0.1           |
| Width  | 4              | ±0.1           |
| Height | 1.095          | ±0.1           |
| AP     | Ф0.4           | ±0.1           |



#### Package information





## 10 Revision history

| Table     | 11: D | ocument | revision | historv |  |
|-----------|-------|---------|----------|---------|--|
| 1 4 6 1 0 |       | ••••    |          |         |  |

| Date        | Revision | Changes         |
|-------------|----------|-----------------|
| 10-Mar-2015 | 1        | Initial release |



#### **MP34DT04**

#### **IMPORTANT NOTICE – PLEASE READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

