
Applicability
This document applies to the part numbers of STM32G471xx/473xx/474xx/483xx/484xx devices and the device variants as
stated in this page.

It gives a summary and a description of the device errata, with respect to the device datasheet and reference manual RM0440.

Deviation of the real device behavior from the intended device behavior is considered to be a device limitation. Deviation of the
description in the reference manual or the datasheet from the intended device behavior is considered to be a documentation
erratum. The term “errata” applies both to limitations and documentation errata.

Table 1. Device summary

Reference Part numbers

STM32G471xx
STM32G471CB, STM32G471CC, STM32G471CE, STM32G471MC, STM32G471ME, STM32G471QB,
STM32G471QC, STM32G471QE, STM32G471RB, STM32G471RC, STM32G471RE, STM32G471VB,

STM32G471VC, STM32G471VE

STM32G473xx
STM32G473CB, STM32G473CC, STM32G473CE, STM32G473MB, STM32G473MC, STM32G473ME,
STM32G473QB, STM32G473QC, STM32G473QE, STM32G473RB, STM32G473RC, STM32G473RE,

STM32G473VB, STM32G473VC, STM32G473VE

STM32G474xx
STM32G474CB, STM32G474CC, STM32G474CE, STM32G474MB, STM32G474MC, STM32G474ME,
STM32G474QB, STM32G474QC, STM32G474QE, STM32G474RB, STM32G474RC, STM32G474RE,

STM32G474VB, STM32G474VC, STM32G474VE

STM32G483xx STM32G483CE, STM32G483ME, STM32G483QE, STM32G483RE, STM32G483VE

STM32G484xx STM32G484CE, STM32G484ME, STM32G484QE, STM32G484RE, STM32G484VE

Table 2. Device variants

Reference
Silicon revision codes

Device marking(1) REV_ID(2)

STM32G471xx/473xx/474xx/484xx Z 0x2001

STM32G471xx/473xx/474xx/484xx Y 0x2002

1. Refer to the device datasheet for how to identify this code on different types of package.
2. REV_ID[15:0] bitfield of DBGMCU_IDCODE register.

STM32G471xx/473xx/474xx/483xx/484xx device errata

 STM32G471xx/473xx/474xx/483xx/484xx

Errata sheet

ES0430 - Rev 2 - December 2019
For further information contact your local STMicroelectronics sales office.

www.st.com

http://www.st.com

1 Summary of device errata

The following table gives a quick reference to the STM32G471xx/473xx/474xx/483xx/484xx device limitations and
their status:
A = workaround available
N = no workaround available
P = partial workaround available
Applicability of a workaround may depend on specific conditions of target application. Adoption of a workaround
may cause restrictions to target application. Workaround for a limitation is deemed partial if it only reduces the
rate of occurrence and/or consequences of the limitation, or if it is fully effective for only a subset of instances on
the device or in only a subset of operating modes, of the function concerned.

Table 3. Summary of device limitations

Function Section Limitation
Status

Rev.
Z

Rev.
Y

Core

2.1.1 Interrupted loads to SP can cause erroneous behavior A A

2.1.2 VDIV or VSQRT instructions might not complete correctly when very short
ISRs are used A A

2.1.3 Store immediate overlapping exception return operation might vector to
incorrect interrupt A A

System

2.2.1 Full JTAG configuration without NJTRST pin cannot be used A A

2.2.2 Data cache might be corrupted during Flash memory read-while-write
operation A A

2.2.3 FLASH_ECCR corrupted upon reset or power-down occurring during
Flash memory program or erase operation A A

2.2.4 Unstable LSI when it clocks RTC or CSS on LSE P P

DMA 2.3.1 DMA disable failure and error flag omission upon simultaneous transfer
error and global flag clear A A

DMAMUX

2.4.1 SOFx not asserted when writing into DMAMUX_CFR register N N

2.4.2 OFx not asserted for trigger event coinciding with last DMAMUX request N N

2.4.3 OFx not asserted when writing into DMAMUX_RGCFR register N N

2.4.4 Wrong input DMA request routed upon specific DMAMUX_CxCR register
write coinciding with synchronization event A A

FMC
2.5.1 Dummy read cycles inserted when reading synchronous memories N N

2.5.2 Wrong data read from a busy NAND memory A A

QUADSPI

2.6.1 QUADSPI cannot be used in indirect read mode when only data phase is
activated P P

2.6.2 QUADSPI_CCR hangs when QUADSPI_CR is cleared P P

2.6.3 QUADSPI internal timing criticality A A

2.6.4 Memory-mapped read of last memory byte fails P P

ADC

2.7.1 End of 10/8/6-bit ADC conversion disturbing other ADCs A -

2.7.2 ADC input channel switching disturbs ongoing conversions P -

2.7.3 Wrong ADC result if conversion done late after calibration or previous
conversion A A

 STM32G471xx/473xx/474xx/483xx/484xx
Summary of device errata

ES0430 - Rev 2 page 2/20

Function Section Limitation
Status

Rev.
Z

Rev.
Y

TIM 2.8.1 One-pulse mode trigger not detected in master-slave reset + trigger
configuration P P

LPTIM
2.9.1 MCU may remain stuck in LPTIM interrupt when entering Stop mode A A

2.9.2 MCU may remain stuck in LPTIM interrupt when clearing event flag P P

RTC and TAMP
2.10.1 Calendar initialization may fail in case of consecutive INIT mode entry A A

2.10.2 Alarm flag may be repeatedly set when the core is stopped in debug N N

I2C

2.11.1 Wrong data sampling when data setup time (tSU;DAT) is shorter than one
I2C kernel clock period P P

2.11.2 Spurious bus error detection in master mode A A

2.11.3 Spurious master transfer upon own slave address match P P

2.11.4 OVR flag not set in underrun condition N N

2.11.5 Transmission stalled after first byte transfer A A

SPI
2.12.1 BSY bit may stay high when SPI is disabled A A

2.12.2 BSY bit may stay high at the end of data transfer in slave mode A A

 STM32G471xx/473xx/474xx/483xx/484xx
Summary of device errata

ES0430 - Rev 2 page 3/20

2 Description of device errata

The following sections describe limitations of the applicable devices with Arm® core and provide workarounds if
available. They are grouped by device functions.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

2.1 Core

Errata notice for the Arm® Cortex®-M4 core revision r0p1 is available from http://infocenter.arm.com.

2.1.1 Interrupted loads to SP can cause erroneous behavior
This limitation is registered under Arm ID number 752770 and classified into “Category B”. Its impact to the device
is minor.

Description

If an interrupt occurs during the data-phase of a single word load to the stack-pointer (SP/R13), erroneous
behavior can occur. In all cases, returning from the interrupt will result in the load instruction being executed an
additional time. For all instructions performing an update to the base register, the base register will be erroneously
updated on each execution, resulting in the stack-pointer being loaded from an incorrect memory location.
The affected instructions that can result in the load transaction being repeated are:
• LDR SP, [Rn],#imm
• LDR SP, [Rn,#imm]!
• LDR SP, [Rn,#imm]
• LDR SP, [Rn]
• LDR SP, [Rn,Rm]

The affected instructions that can result in the stack-pointer being loaded from an incorrect memory address are:
• LDR SP,[Rn],#imm
• LDR SP,[Rn,#imm]!

As compilers do not generate these particular instructions, the limitation is only likely to occur with hand-written
assembly code.

Workaround

Both issues may be worked around by replacing the direct load to the stack-pointer, with an intermediate load to a
general-purpose register followed by a move to the stack-pointer.

2.1.2 VDIV or VSQRT instructions might not complete correctly when very short ISRs are used
This limitation is registered under Arm ID number 776924 and classified into “Category B”. Its impact to the device
is limited.

Description

The VDIV and VSQRT instructions take 14 cycles to execute. When an interrupt is taken a VDIV or VSQRT
instruction is not terminated, and completes its execution while the interrupt stacking occurs. If lazy context save
of floating point state is enabled then the automatic stacking of the floating point context does not occur until a
floating point instruction is executed inside the interrupt service routine.
Lazy context save is enabled by default. When it is enabled, the minimum time for the first instruction in the
interrupt service routine to start executing is 12 cycles. In certain timing conditions, and if there is only one or two
instructions inside the interrupt service routine, then the VDIV or VSQRT instruction might not write its result to the
register bank or to the FPSCR.

 STM32G471xx/473xx/474xx/483xx/484xx
Description of device errata

ES0430 - Rev 2 page 4/20

The failure occurs when the following condition is met:
1. The floating point unit is enabled
2. Lazy context saving is not disabled
3. A VDIV or VSQRT is executed
4. The destination register for the VDIV or VSQRT is one of s0 - s15
5. An interrupt occurs and is taken
6. The interrupt service routine being executed does not contain a floating point instruction
7. Within 14 cycles after the VDIV or VSQRT is executed, an interrupt return is executed
A minimum of 12 of these 14 cycles are utilized for the context state stacking, which leaves 2 cycles for
instructions inside the interrupt service routine, or 2 wait states applied to the entire stacking sequence (which
means that it is not a constant wait state for every access).
In general, this means that if the memory system inserts wait states for stack transactions (that is, external
memory is used for stack data), then this erratum cannot be observed.
The effect of this erratum is that the VDIV or VQSRT instruction does not complete correctly and the register bank
and FPSCR are not updated, which means that these registers hold incorrect, out of date, data.

Workaround

A workaround is only required if the floating point unit is enabled. A workaround is not required if the stack is in
external memory.
There are two possible workarounds:
• Disable lazy context save of floating point state by clearing LSPEN to 0 (bit 30 of the FPCCR at address

0xE000EF34).
• Ensure that every interrupt service routine contains more than 2 instructions in addition to the exception

return instruction.

2.1.3 Store immediate overlapping exception return operation might vector to incorrect interrupt
This limitation is registered under Arm ID number 838869 and classified into “Category B (rare)”. Its impact to the
device is minor.

Description

The core includes a write buffer that permits execution to continue while a store is waiting on the bus. Under
specific timing conditions, during an exception return while this buffer is still in use by a store instruction, a late
change in selection of the next interrupt to be taken might result in there being a mismatch between the interrupt
acknowledged by the interrupt controller and the vector fetched by the processor.
The failure occurs when the following condition is met:
1. The handler for interrupt A is being executed.
2. Interrupt B, of the same or lower priority than interrupt A, is pending.
3. A store with immediate offset instruction is executed to a bufferable location.

– STR/STRH/STRB <Rt>, [<Rn>,#imm]
– STR/STRH/STRB <Rt>, [<Rn>,#imm]!
– STR/STRH/STRB <Rt>, [<Rn>],#imm

4. Any number of additional data-processing instructions can be executed.
5. A BX instruction is executed that causes an exception return.
6. The store data has wait states applied to it such that the data is accepted at least two cycles after the BX is

executed.
– Minimally, this is two cycles if the store and the BX instruction have no additional instructions between

them.
– The number of wait states required to observe this erratum needs to be increased by the number of

cycles between the store and the interrupt service routine exit instruction.
7. Before the bus accepts the buffered store data, another interrupt C is asserted which has the same or lower

priority as A, but a greater priority than B.
Example:

 STM32G471xx/473xx/474xx/483xx/484xx
Core

ES0430 - Rev 2 page 5/20

The processor should execute interrupt handler C, and on completion of handler C should execute the handler for
B. If the conditions above are met, then this erratum results in the processor erroneously clearing the pending
state of interrupt C, and then executing the handler for B twice. The first time the handler for B is executed it will
be at interrupt C's priority level. If interrupt C is pended by a level-based interrupt which is cleared by C's handler
then interrupt C will be pended again once the handler for B has completed and the handler for C will be
executed.
As the STM32 interrupt C is level based, it eventually becomes pending again and is subsequently handled.

Workaround

For software not using the memory protection unit, this erratum can be worked around by setting DISDEFWBUF
in the Auxiliary Control Register.
In all other cases, the erratum can be avoided by ensuring a DSB occurs between the store and the BX
instruction. For exception handlers written in C, this can be achieved by inserting the appropriate set of intrinsics
or inline assembly just before the end of the interrupt function, for example:
ARMCC:

...
__schedule_barrier();
__asm{DSB};
__schedule_barrier();
}

GCC:

...
__asm volatile ("dsb 0xf":::"memory");
}

2.2 System

2.2.1 Full JTAG configuration without NJTRST pin cannot be used

Description

When using the JTAG debug port in Debug mode, the connection with the debugger is lost if the NJTRST pin
(PB4) is used as a GPIO. Only the 4-wire JTAG port configuration is impacted.

Workaround

Use the SWD debug port instead of the full 4-wire JTAG port.

2.2.2 Data cache might be corrupted during Flash memory read-while-write operation

Description

When a write to the internal Flash memory is done, the data cache is normally updated to reflect the data value
update. During this data cache update, a read to the other Flash memory bank may occur; this read can corrupt
the data cache content and subsequent read operations at the same address (cache hits) will be corrupted.
This limitation only occurs in dual bank mode, when reading (data access or code execution) from one bank while
writing to the other bank with data cache enabled.

Workaround

When the application is performing data accesses in both Flash memory banks, the data cache must be disabled
by resetting the DCEN bit before any write to the Flash memory. Before enabling the data cache again, it must be
reset by setting and then resetting the DCRST bit.

 STM32G471xx/473xx/474xx/483xx/484xx
System

ES0430 - Rev 2 page 6/20

Code example:

/* Disable data cache */
__HAL_FLASH_DATA_CACHE_DISABLE();

/* Set PG bit */
SET_BIT(FLASH->CR, FLASH_CR_PG);

/* Program the Flash word */
WriteFlash(Address, Data);

/* Reset data cache */
__HAL_FLASH_DATA_CACHE_RESET();

/* Enable data cache */
__HAL_FLASH_DATA_CACHE_ENABLE();

2.2.3 FLASH_ECCR corrupted upon reset or power-down occurring during Flash memory program
or erase operation

Description

Reset or power-down occurring during a Flash memory location program or erase operation, followed by a read of
the same memory location, may lead to a corruption of the FLASH_ECCR register content.

Workaround

Under such condition, erase the page(s) corresponding to the Flash memory location.

2.2.4 Unstable LSI when it clocks RTC or CSS on LSE

Description

The LSI clock can become unstable (duty cycle different from 50 %) and its maximum frequency can become
significantly higher than 32 kHz, when:
• LSI clocks the RTC, or it clocks the clock security system (CSS) on LSE (which holds when the LSECSSON

bit set), and
• the VDD power domain is reset while the backup domain is not reset, which happens:

– upon exiting Shutdown mode
– if VBAT is separate from VDD and VDD goes off then on
– if VBAT is tied to VDD (internally in the package for products not featuring the VBAT pin, or externally)

and a short (< 1 ms) VDD drop under VDD(min) occurs

Workaround

Apply one of the following measures:
• Clock the RTC with LSE or HSE/32, without using the CSS on LSE
• If LSI clocks the RTC or when the LSECSSON bit is set, reset the backup domain upon each VDD power up

(when the BORRSTF flag is set). If VBAT is separate from VDD, also restore the RTC configuration, backup
registers and anti-tampering configuration.

2.3 DMA

 STM32G471xx/473xx/474xx/483xx/484xx
DMA

ES0430 - Rev 2 page 7/20

2.3.1 DMA disable failure and error flag omission upon simultaneous transfer error and global flag
clear

Description

Upon a data transfer error in a DMA channel x, both the specific TEIFx and the global GIFx flags are raised and
the channel x is normally automatically disabled. However, if in the same clock cycle the software clears the GIFx
flag (by setting the CGIFx bit of the DMA_IFCR register), the automatic channel disable fails and the TEIFx flag is
not raised.
This issue does not occur with ST's HAL software that does not use and clear the GIFx flag, but uses and clears
the HTIFx, TCIFx, and TEIFx specific event flags instead.

Workaround

Do not clear GIFx flags. Instead, use HTIFx, TCIFx, and TEIFx specific event flags and their corresponding clear
bits.

2.4 DMAMUX

2.4.1 SOFx not asserted when writing into DMAMUX_CFR register

Description

The SOFx flag of the DMAMUX_CSR status register is not asserted if overrun from another DMAMUX channel
occurs when the software writes into the DMAMUX_CFR register.
This can happen when multiple DMA channels operate in synchronization mode, and when overrun can occur
from more than one channel. As the SOFx flag clear requires a write into the DMAMUX_CFR register (to set the
corresponding CSOFx bit), overrun occurring from another DMAMUX channel operating during that write
operation fails to raise its corresponding SOFx flag.

Workaround

None. Avoid the use of synchronization mode for concurrent DMAMUX channels, if at least two of them potentially
generate synchronization overrun.

2.4.2 OFx not asserted for trigger event coinciding with last DMAMUX request

Description

In the DMAMUX request generator, a trigger event detected in a critical instant of the last-generated DMAMUX
request being served by the DMA controller does not assert the corresponding trigger overrun flag OFx. The
critical instant is the clock cycle at the very end of the trigger overrun condition.
Additionally, upon the following trigger event, one single DMA request is issued by the DMAMUX request
generator, regardless of the programmed number of DMA requests to generate.
The failure only occurs if the number of requests to generate is set to more than two (GNBREQ[4:0] > 00001).

Workaround

Make the trigger period longer than the duration required for serving the programmed number of DMA requests,
so as to avoid the trigger overrun condition from occurring on the very last DMA data transfer.

2.4.3 OFx not asserted when writing into DMAMUX_RGCFR register

Description

The OFx flag of the DMAMUX_RGSR status register is not asserted if an overrun from another DMAMUX request
generator channel occurs when the software writes into the DMAMUX_RGCFR register. This can happen when
multiple DMA channels operate with the DMAMUX request generator, and when an overrun can occur from more
than one request generator channel. As the OFx flag clear requires a write into the DMAMUX_RGCFR register (to
set the corresponding COFx bit), an overrun occurring in another DMAMUX channel operating with another
request generator channel during that write operation fails to raise the corresponding OFx flag.

 STM32G471xx/473xx/474xx/483xx/484xx
DMAMUX

ES0430 - Rev 2 page 8/20

Workaround

None. Avoid the use of request generator mode for concurrent DMAMUX channels, if at least two channels are
potentially generating a request generator overrun.

2.4.4 Wrong input DMA request routed upon specific DMAMUX_CxCR register write coinciding with
synchronization event

Description

If a write access into the DMAMUX_CxCR register having the SE bit at zero and SPOL[1:0] bitfield at a value
other than 00:
• sets the SE bit (enables synchronization),
• modifies the values of the DMAREQ_ID[5:0] and SYNC_ID[4:0] bitfields, and
• does not modify the SPOL[1:0] bitfield,

and if a synchronization event occurs on the previously selected synchronization input exactly two AHB clock
cycles before this DMAMUX_CxCR write, then the input DMA request selected by the DMAREQ_ID[5:0] value
before that write is routed.

Workaround

Ensure that the SPOL[1:0] bitfield is at 00 whenever the SE bit is 0. When enabling synchronization by setting the
SE bit, always set the SPOL[1:0] bitfield to a value other than 00 with the same write operation into the
DMAMUX_CxCR register.

2.5 FMC

2.5.1 Dummy read cycles inserted when reading synchronous memories

Description

When performing a burst read access from a synchronous memory, two dummy read accesses are performed at
the end of the burst cycle whatever the type of burst access.
The extra data values read are not used by the FMC and there is no functional failure.

Workaround

None.

2.5.2 Wrong data read from a busy NAND memory

Description

When a read command is issued to the NAND memory, the R/B signal gets activated upon the de-assertion of the
chip select. If a read transaction is pending, the NAND controller might not detect the R/B signal (connected to
NWAIT) previously asserted and sample a wrong data. This problem occurs only when the MEMSET timing is
configured to 0x00 or when ATTHOLD timing is configured to 0x00 or 0x01.

Workaround

Either configure MEMSET timing to a value greater than 0x00 or ATTHOLD timing to a value greater than 0x01.

2.6 QUADSPI

 STM32G471xx/473xx/474xx/483xx/484xx
FMC

ES0430 - Rev 2 page 9/20

2.6.1 QUADSPI cannot be used in indirect read mode when only data phase is activated

Description

When the QUADSPI peripheral is configured in indirect read with only the data phase activated (in single, dual, or
quad I/O mode), the QUADSPI peripheral hangs and the BUSY flag of the QUADSPI_SR register remains high.
An abort must be performed to reset the BUSY flag and exit the hanging state.

Workaround

Insert a dummy phase with at least two dummy cycles.

2.6.2 QUADSPI_CCR hangs when QUADSPI_CR is cleared

Description

Writing 0x0000 0000 to the QUADSPI_CCR register causes the QUADSPI peripheral to hang while the BUSY
flag of the QUADSPI_SR register remains set. Even an abort does not allow exiting this status.

Workaround

Clear then set the EN bit of the QUADSPI_CR register.

2.6.3 QUADSPI internal timing criticality

Description

The timing of some internal signals of the QUADSPI peripheral is critical. At certain conditions, this can lead to a
general failure of the peripheral. As these conditions cannot be exactly determined, it is recommended to
systematically apply the workaround as described.

Workaround

The code below have to be executed upon reset and upon switching from memory-mapped to any other mode:

// Save QSPI_CR and QSPI_CCR values if necessary
QSPI->QSPI_CR = 0; // ensure that prescaling factor is not at maximum, and disable the perip
heral
while(QSPI->QSPI_SR & 0x20){}; // wait for BUSY flag to fall if not already low
QSPI->QSPI_CR = 0xFF000001; // set maximum prescaling factor, and enable the peripheral
QSPI->QSPI_CCR = 0x20000000; // activate the free-running clock
QSPI->QSPI_CCR = 0x20000000; // repeat the previous instruction to prevent a back-to-back dis
able

// The following command must complete less than 127 kernel clocks after the first write to t
he QSPI_CCR register
QSPI->QSPI_CR = 0; // disable QSPI
while(QSPI->QSPI_SR & 0x20){}; // wait for busy to fall

// Restore CR and CCR values if necessary

For the worakround to be effective, it is important to complete the disable instruction less than 127 kernel clock
pulses after the first write to the QSPI_CCR register.

2.6.4 Memory-mapped read of last memory byte fails

Description

Regardless of the number of I/O lines used (1, 2 or 4), a memory-mapped read of the last byte of the memory
region defined through the FSIZE[4:0] bitfield of the QUADSPI_DCR register always yields 0x00, whatever the
memory byte content is. A repeated attempt to read that last byte causes the AXI bus to stall.

Workaround

Apply one of the following measures:

 STM32G471xx/473xx/474xx/483xx/484xx
QUADSPI

ES0430 - Rev 2 page 10/20

• Avoid reading the last byte of the memory region defined through FSIZE, for example by taking margin in
FSIZE bitfield setting.

• If the last byte is read, ignore its value and abort the ongoing process so as to prevent the AXI bus from
stalling.

• For reading the last byte of the memory region defined through FSIZE, use indirect read.

2.7 ADC

2.7.1 End of 10/8/6-bit ADC conversion disturbing other ADCs

Description

The end-of-conversion event of an ADC instance set to 10-, 8-, or 6-bit resolution disturbs the reference voltage,
causing a conversion error to any other ADC instances with conversion in progress.

Workaround

Either set the ADCs to 12-bit resolution, or, with concurrent operation of multiple ADCs, avoid the end of
conversion of one ADC to occur during the conversion phase of another ADC. For example, set them all to the
same resolution and the same sampling duration, and start their sampling phase at the same time.

2.7.2 ADC input channel switching disturbs ongoing conversions

Description

A switch of the ADC input multiplexer to a different input channel disturbs all ADC instances with conversion in
progress, thus negatively impacting their DNL. As the device operates the multiplexer during the ADC conversion,
either to select the following input of a scan sequence or to open all multiplexer inputs (idle mode), this
disturbance source may affect all operating modes except continuous and except bulb sampling.
The DNL impact depends on the input channel and it increases with increasing number of concurrently converting
ADCs, the worst case (a few LSBs) being when all the ADCs on the device operate synchronously.

Workaround

When using a single ADC input channel, activate bulb sampling. This prevents the opening of all multiplexer
inputs during the conversion cycle.
In scan conversion mode, set the input scan sequence such that two successive conversions are performed on
each input. Keep the result of the first and discard the second, as only the second is affected by the input channel
switch disturbance.

2.7.3 Wrong ADC result if conversion done late after calibration or previous conversion

Description

The result of an ADC conversion done more than 1 ms later than the previous ADC conversion or ADC calibration
might be incorrect.

Workaround

Perform two consecutive ADC conversions in single, scan or continuous mode. Reject the result of the first
conversion and only keep the result of the second.

2.8 TIM

2.8.1 One-pulse mode trigger not detected in master-slave reset + trigger configuration

Description

The failure occurs when several timers configured in one-pulse mode are cascaded, and the master timer is
configured in combined reset + trigger mode with the MSM bit set:

 STM32G471xx/473xx/474xx/483xx/484xx
ADC

ES0430 - Rev 2 page 11/20

OPM = 1 in TIMx_CR1, SMS[3:0] = 1000 and MSM = 1 in TIMx_SMCR.
The MSM delays the reaction of the master timer to the trigger event, so as to have the slave timers cycle-
accurately synchronized.
If the trigger arrives when the counter value is equal to the period value set in the TIMx_ARR register, the one-
pulse mode of the master timer does not work and no pulse is generated on the output.

Workaround

None. However, unless a cycle-level synchronization is mandatory, it is advised to keep the MSM bit reset, in
which case the problem is not present. The MSM = 0 configuration also allows decreasing the timer latency to
external trigger events.

2.9 LPTIM

2.9.1 MCU may remain stuck in LPTIM interrupt when entering Stop mode

Description

This limitation occurs when disabling the low-power timer (LPTIM).
When the user application clears the ENABLE bit in the LPTIM_CR register within a small time window around
one LPTIM interrupt occurrence, then the LPTIM interrupt signal used to wake up the MCU from Stop mode may
be frozen in active state. Consequently, when trying to enter Stop mode, this limitation prevents the MCU from
entering low-power mode and the firmware remains stuck in the LPTIM interrupt routine.
This limitation applies to all Stop modes and to all instances of the LPTIM. Note that the occurrence of this issue
is very low.

Workaround

In order to disable a low power timer (LPTIMx) peripheral, do not clear its ENABLE bit in its respective LPTIM_CR
register. Instead, reset the whole LPTIMx peripheral via the RCC controller by setting and resetting its respective
LPTIMxRST bit in RCC_APByRSTRz register.

2.9.2 MCU may remain stuck in LPTIM interrupt when clearing event flag

Description

This limitation occurs when the LPTIM is configured in interrupt mode (at least one interrupt is enabled) and the
software clears any flag by writing the LPTIM_ICR bit in the LPTIM_ISR register. If the interrupt status flag
corresponding to a disabled interrupt is cleared simultaneously with a new event detection, the set and clear
commands might reach the APB domain at the same time, leading to an asynchronous interrupt signal
permanently stuck high.
This issue can occur either during an interrupt subroutine execution (where the flag clearing is usually done), or
outside an interrupt subroutine.
Consequently, the firmware remains stuck in the LPTIM interrupt routine, and the MCU cannot enter Stop mode.

Workaround

To avoid this issue, it is strongly advised to follow the recommendations listed below:
• Clear the flag only when its corresponding interrupt is enabled in the interrupt enable register.
• If for specific reasons, it is required to clear some flags that have corresponding interrupt lines disabled in

the interrupt enable register, it is recommended to clear them during the current subroutine prior to those
which have corresponding interrupt line enabled in the interrupt enable register.

• Flags must not be cleared outside the interrupt subroutine.

Note: The proper clear sequence is already implemented in the HAL_LPTIM_IRQHandler in the STM32Cube.

2.10 RTC and TAMP

 STM32G471xx/473xx/474xx/483xx/484xx
LPTIM

ES0430 - Rev 2 page 12/20

2.10.1 Calendar initialization may fail in case of consecutive INIT mode entry

Description

If the INIT bit of the RTC_ICSR register is set between one and two RTCCLK cycles after being cleared, the INITF
flag is set immediately instead of waiting for synchronization delay (which should be between one and two
RTCCLK cycles), and the initialization of registers may fail. Depending on the INIT bit clearing and setting instants
versus the RTCCLK edges, it can happen that, after being immediately set, the INITF flag is cleared during one
RTCCLK period then set again. As writes to calendar registers are ignored when INITF is low, a write occurring
during this critical period might result in the corruption of one or more calendar registers.

Workaround

After existing the initialization mode, clear the BYPSHAD bit (if set) then wait for RSF to rise, before entering the
initialization mode again.

Note: It is recommended to write all registers in a single initialization session to avoid accumulating synchronization
delays.

2.10.2 Alarm flag may be repeatedly set when the core is stopped in debug

Description

When the core is stopped in debug mode, the clock is supplied to subsecond RTC alarm downcounter even
though the device is configured to stop the RTC in debug.
As a consequence, when the subsecond counter is used for alarm condition (the MASKSS[3:0] bitfield of the
RTC_ALRMASSR and/or RTC_ALRMBSSR register set to a non-zero value) and the alarm condition is met just
before entering a breakpoint or printf, the ALRAF and/or ALRBF flag of the RTC_SR register is repeatedly set by
hardware during the breakpoint or printf, which makes any tentative to clear the flag(s) ineffective.

Workaround

None.

2.11 I2C

2.11.1 Wrong data sampling when data setup time (tSU;DAT) is shorter than one I2C kernel clock period

Description

The I2C-bus specification and user manual specify a minimum data setup time (tSU;DAT) as:
• 250 ns in Standard mode
• 100 ns in Fast mode
• 50 ns in Fast mode Plus

The MCU does not correctly sample the I2C-bus SDA line when tSU;DAT is smaller than one I2C kernel clock (I2C-
bus peripheral clock) period: the previous SDA value is sampled instead of the current one. This can result in a
wrong receipt of slave address, data byte, or acknowledge bit.

 STM32G471xx/473xx/474xx/483xx/484xx
I2C

ES0430 - Rev 2 page 13/20

Workaround

Increase the I2C kernel clock frequency to get I2C kernel clock period within the transmitter minimum data setup
time. Alternatively, increase transmitter’s minimum data setup time. If the transmitter setup time minimum value
corresponds to the minimum value provided in the I2C-bus standard, the minimum I2CCLK frequencies are as
follows:
• In Standard mode, if the transmitter minimum setup time is 250 ns, the I2CCLK frequency must be at least

4 MHz.
• In Fast mode, if the transmitter minimum setup time is 100 ns, the I2CCLK frequency must be at least

10 MHz.
• In Fast-mode Plus, if the transmitter minimum setup time is 50 ns, the I2CCLK frequency must be at least

20 MHz.

2.11.2 Spurious bus error detection in master mode

Description

In master mode, a bus error can be detected spuriously, with the consequence of setting the BERR flag of the
I2C_SR register and generating bus error interrupt if such interrupt is enabled. Detection of bus error has no
effect on the I2C-bus transfer in master mode and any such transfer continues normally.

Workaround

If a bus error interrupt is generated in master mode, the BERR flag must be cleared by software. No other action
is required and the ongoing transfer can be handled normally.

2.11.3 Spurious master transfer upon own slave address match

Description

When the device is configured to operate at the same time as master and slave (in a multi- master I2C-bus
application), a spurious master transfer may occur under the following condition:
• Another master on the bus is in process of sending the slave address of the device (the bus is busy).
• The device initiates a master transfer by bit set before the slave address match event (the ADDR flag set in

the I2C_ISR register) occurs.
• After the ADDR flag is set:

– the device does not write I2C_CR2 before clearing the ADDR flag, or
– the device writes I2C_CR2 earlier than three I2C kernel clock cycles before clearing the ADDR flag

In these circumstances, even though the START bit is automatically cleared by the circuitry handling the ADDR
flag, the device spuriously proceeds to the master transfer as soon as the bus becomes free. The transfer
configuration depends on the content of the I2C_CR2 register when the master transfer starts. Moreover, if the
I2C_CR2 is written less than three kernel clocks before the ADDR flag is cleared, the I2C peripheral may fall into
an unpredictable state.

Workaround

Upon the address match event (ADDR flag set), apply the following sequence.
Normal mode (SBC = 0):
1. Set the ADDRCF bit.
2. Before Stop condition occurs on the bus, write I2C_CR2 with the START bit low.
Slave byte control mode (SBC = 1):
1. Write I2C_CR2 with the slave transfer configuration and the START bit low.
2. Wait for longer than three I2C kernel clock cycles.
3. Set the ADDRCF bit.
4. Before Stop condition occurs on the bus, write I2C_CR2 again with its current value.
The time for the software application to write the I2C_CR2 register before the Stop condition is limited, as the
clock stretching (if enabled), is aborted when clearing the ADDR flag.

 STM32G471xx/473xx/474xx/483xx/484xx
I2C

ES0430 - Rev 2 page 14/20

Polling the BUSY flag before requesting the master transfer is not a reliable workaround as the bus may become
busy between the BUSY flag check and the write into the I2C_CR2 register with the START bit set.

2.11.4 OVR flag not set in underrun condition

Description

In slave transmission with clock stretching disabled (NOSTRETCH = 1 in the I2C_CR1 register), an underrun
condition occurs if the current byte transmission is completed on the I2C bus, and the next data is not yet written
in the TXDATA[7:0] bitfield. In this condition, the device is expected to set the OVR flag of the I2C_ISR register
and send 0xFF on the bus.
However, if the I2C_TXDR is written within the interval between two I2C kernel clock cycles before and three APB
clock cycles after the start of the next data transmission, the OVR flag is not set, although the transmitted value is
0xFF.

Workaround

None.

2.11.5 Transmission stalled after first byte transfer

Description

When the first byte to transmit is not prepared in the TXDATA register, two bytes are required successively,
through TXIS status flag setting or through a DMA request. If the first of the two bytes is written in the I2C_TXDR
register in less than two I2C kernel clock cycles after the TXIS/DMA request, and the ratio between APB clock
and I2C kernel clock frequencies is between 1.5 and 3, the second byte written in the I2C_TXDR is not internally
detected. This causes a state in which the I2C peripheral is stalled in master mode or in slave mode, with clock
stretching enabled (NOSTRETCH = 0). This state can only be released by disabling the peripheral (PE = 0) or by
resetting it.

Workaround

Apply one of the following measures:
• Write the first data in I2C_TXDR before the transmission starts.
• Set the APB clock frequency so that its ratio with respect to the I2C kernel clock frequency is lower than 1.5

or higher than 3.

2.12 SPI

2.12.1 BSY bit may stay high when SPI is disabled

Description

The BSY flag may remain high upon disabling the SPI while operating in:
• master transmit mode and the TXE flag is low (data register full).
• master receive-only mode (simplex receive or half-duplex bidirectional receive phase) and an SCK strobing

edge has not occurred since the transition of the RXNE flag from low to high.
• slave mode and NSS signal is removed during the communication.

Workaround

When the SPI operates in:
• master transmit mode, disable the SPI when TXE = 1 and BSY = 0.
• master receive-only mode, ignore the BSY flag.
• slave mode, do not remove the NSS signal during the communication.

 STM32G471xx/473xx/474xx/483xx/484xx
SPI

ES0430 - Rev 2 page 15/20

2.12.2 BSY bit may stay high at the end of data transfer in slave mode

Description

BSY flag may sporadically remain high at the end of a data transfer in slave mode. This occurs upon coincidence
of internal CPU clock and external SCK clock provided by master.
In such an event, if the software only relies on BSY flag to detect the end of SPI slave data transaction (for
example to enter low-power mode or to change data line direction in half-duplex bidirectional mode), the detection
fails.
As a conclusion, the BSY flag is unreliable for detecting the end of data transactions.

Workaround

Depending on SPI operating mode, use the following means for detecting the end of transaction:
• When NSS hardware management is applied and NSS signal is provided by master, use NSS flag.
• In SPI receiving mode, use the corresponding RXNE event flag.
• In SPI transmit-only mode, use the BSY flag in conjunction with a timeout expiry event. Set the timeout such

as to exceed the expected duration of the last data frame and start it upon TXE event that occurs with the
second bit of the last data frame. The end of the transaction corresponds to either the BSY flag becoming
low or the timeout expiry, whichever happens first.

Prefer one of the first two measures to the third as they are simpler and less constraining.
Alternatively, apply the following sequence to ensure reliable operation of the BSY flag in SPI transmit mode:
1. Write last data to data register.
2. Poll the TXE flag until it becomes high, which occurs with the second bit of the data frame transfer.
3. Disable SPI by clearing the SPE bit mandatorily before the end of the frame transfer.
4. Poll the BSY bit until it becomes low, which signals the end of transfer.

Note: The alternative method can only be used with relatively fast CPU speeds versus relatively slow SPI clocks
or/and long last data frames. The faster is the software execution, the shorter can be the duration of the last data
frame.

 STM32G471xx/473xx/474xx/483xx/484xx
SPI

ES0430 - Rev 2 page 16/20

Revision history

Table 4. Document revision history

Date Version Changes

19-Apr-2019 1 Initial release.

17-Dec-2019 2

Added in Section 2 Description of device errata and in Table 3. Summary of
device limitations:
• erratum FLASH_ECCR corrupted upon reset or power-down occurring

during Flash memory program or erase operation
• erratum OVR flag not set in underrun condition
• Transmission stalled after first byte transfer
• silicon revision Y

Removed erratum First double‑word of Flash memory corrupted upon reset or
power-down while programming.

 STM32G471xx/473xx/474xx/483xx/484xx

ES0430 - Rev 2 page 17/20

Contents

1 Summary of device errata. .2

2 Description of device errata. .4

2.1 Core . 4

2.1.1 Interrupted loads to SP can cause erroneous behavior . 4

2.1.2 VDIV or VSQRT instructions might not complete correctly when very short ISRs are used . 4

2.1.3 Store immediate overlapping exception return operation might vector to incorrect interrupt 5

2.2 System . 6

2.2.1 Full JTAG configuration without NJTRST pin cannot be used . 6

2.2.2 Data cache might be corrupted during Flash memory read-while-write operation 6

2.2.3 FLASH_ECCR corrupted upon reset or power-down occurring during Flash memory
program or erase operation. 7

2.2.4 Unstable LSI when it clocks RTC or CSS on LSE . 7

2.3 DMA . 7

2.3.1 DMA disable failure and error flag omission upon simultaneous transfer error and global
flag clear . 7

2.4 DMAMUX . 8

2.4.1 SOFx not asserted when writing into DMAMUX_CFR register . 8

2.4.2 OFx not asserted for trigger event coinciding with last DMAMUX request 8

2.4.3 OFx not asserted when writing into DMAMUX_RGCFR register . 8

2.4.4 Wrong input DMA request routed upon specific DMAMUX_CxCR register write coinciding
with synchronization event . 9

2.5 FMC . 9

2.5.1 Dummy read cycles inserted when reading synchronous memories 9

2.5.2 Wrong data read from a busy NAND memory . 9

2.6 QUADSPI . 9

2.6.1 QUADSPI cannot be used in indirect read mode when only data phase is activated. 9

2.6.2 QUADSPI_CCR hangs when QUADSPI_CR is cleared . 10

2.6.3 QUADSPI internal timing criticality . 10

2.6.4 Memory-mapped read of last memory byte fails . 10

2.7 ADC . 11

2.7.1 End of 10/8/6-bit ADC conversion disturbing other ADCs . 11

 STM32G471xx/473xx/474xx/483xx/484xx
Contents

ES0430 - Rev 2 page 18/20

2.7.2 ADC input channel switching disturbs ongoing conversions . 11

2.7.3 Wrong ADC result if conversion done late after calibration or previous conversion 11

2.8 TIM . 11

2.8.1 One-pulse mode trigger not detected in master-slave reset + trigger configuration 11

2.9 LPTIM . 12

2.9.1 MCU may remain stuck in LPTIM interrupt when entering Stop mode. 12

2.9.2 MCU may remain stuck in LPTIM interrupt when clearing event flag. 12

2.10 RTC and TAMP . 12

2.10.1 Calendar initialization may fail in case of consecutive INIT mode entry 12

2.10.2 Alarm flag may be repeatedly set when the core is stopped in debug 13

2.11 I2C . 13

2.11.1 Wrong data sampling when data setup time (tSU;DAT) is shorter than one I2C kernel clock
period . 13

2.11.2 Spurious bus error detection in master mode . 14

2.11.3 Spurious master transfer upon own slave address match . 14

2.11.4 OVR flag not set in underrun condition . 15

2.11.5 Transmission stalled after first byte transfer . 15

2.12 SPI . 15

2.12.1 BSY bit may stay high when SPI is disabled . 15

2.12.2 BSY bit may stay high at the end of data transfer in slave mode. 15

Revision history .17

 STM32G471xx/473xx/474xx/483xx/484xx
Contents

ES0430 - Rev 2 page 19/20

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST
products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST
products are sold pursuant to ST’s terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of
Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service
names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics – All rights reserved

 STM32G471xx/473xx/474xx/483xx/484xx

ES0430 - Rev 2 page 20/20

http://www.st.com/trademarks

	1 Summary of device errata
	2 Description of device errata
	2.1 Core
	2.1.1 Interrupted loads to SP can cause erroneous behavior
	2.1.2 VDIV or VSQRT instructions might not complete correctly when very short ISRs are used
	2.1.3 Store immediate overlapping exception return operation might vector to incorrect interrupt

	2.2 System
	2.2.1 Full JTAG configuration without NJTRST pin cannot be used
	2.2.2 Data cache might be corrupted during Flash memory read-while-write operation
	2.2.3 FLASH_ECCR corrupted upon reset or power-down occurring during Flash memory program or erase operation
	2.2.4 Unstable LSI when it clocks RTC or CSS on LSE

	2.3 DMA
	2.3.1 DMA disable failure and error flag omission upon simultaneous transfer error and global flag clear

	2.4 DMAMUX
	2.4.1 SOFx not asserted when writing into DMAMUX_CFR register
	2.4.2 OFx not asserted for trigger event coinciding with last DMAMUX request
	2.4.3 OFx not asserted when writing into DMAMUX_RGCFR register
	2.4.4 Wrong input DMA request routed upon specific DMAMUX_CxCR register write coinciding with synchronization event

	2.5 FMC
	2.5.1 Dummy read cycles inserted when reading synchronous memories
	2.5.2 Wrong data read from a busy NAND memory

	2.6 QUADSPI
	2.6.1 QUADSPI cannot be used in indirect read mode when only data phase is activated
	2.6.2 QUADSPI_CCR hangs when QUADSPI_CR is cleared
	2.6.3 QUADSPI internal timing criticality
	2.6.4 Memory-mapped read of last memory byte fails

	2.7 ADC
	2.7.1 End of 10/8/6-bit ADC conversion disturbing other ADCs
	2.7.2 ADC input channel switching disturbs ongoing conversions
	2.7.3 Wrong ADC result if conversion done late after calibration or previous conversion

	2.8 TIM
	2.8.1 One-pulse mode trigger not detected in master-slave reset + trigger configuration

	2.9 LPTIM
	2.9.1 MCU may remain stuck in LPTIM interrupt when entering Stop mode
	2.9.2 MCU may remain stuck in LPTIM interrupt when clearing event flag

	2.10 RTC and TAMP
	2.10.1 Calendar initialization may fail in case of consecutive INIT mode entry
	2.10.2 Alarm flag may be repeatedly set when the core is stopped in debug

	2.11 I2C
	2.11.1 Wrong data sampling when data setup time (tSU;DAT) is shorter than one I2C kernel clock period
	2.11.2 Spurious bus error detection in master mode
	2.11.3 Spurious master transfer upon own slave address match
	2.11.4 OVR flag not set in underrun condition
	2.11.5 Transmission stalled after first byte transfer

	2.12 SPI
	2.12.1 BSY bit may stay high when SPI is disabled
	2.12.2 BSY bit may stay high at the end of data transfer in slave mode

	Revision history

