

4 x 50 W MOSFET quad bridge power amplifier

Datasheet - production data

Features

- Multipower BCD technology
- High output power capability:
 - $-4 \times 50 \text{ W/4 } \Omega \text{ Max.}$
 - 4 x 28 W/4 Ω @ 14.4 V, 1 kHz, 10 %
 - 4 x 72 W/2 Ω Max.
- MOSFET output power stage
- \blacksquare 2 Ω driving capability
- Hi-Fi class distortion
- Low output noise
- High immunity to RF noise injection
- Standby function
- Mute function
- Automute at min. supply voltage detection
- Low external component count
- Internally fixed gain (26 dB)
- Protections:
 - Output short circuit to GND, to Vs, across the load
 - Very inductive loads
 - Overrating chip temperature with soft thermal limiter
 - Output DC offset detection
 - Load dump
 - Fortuitous open GND
 - Reversed battery
 - ESD
 - Capable to operate down to 6 V (e.g. "Startstop")

Description

The STPA001 is a breakthrough MOSFET technology class AB audio power amplifier designed for high power car radio. The fully complementary P-Channel/N-Channel output structure allows a rail to rail output voltage swing which, combined with high output current and minimized saturation losses sets new power references in the car-radio field, with unparalleled distortion performances.

The STPA001 can operate down to 6V and this makes the IC compliant to the most recent OEM specifications for low voltage operation (so called 'start-stop' battery profile during engine stop), helping car manufacturers to reduce the overall emissions and thus contributing to environment protection.

Table 1. Device summary

Order code	Package	Packing
STPA001	Flexiwatt25	Tube
STPA001A	Flexiwatt27	Tube

Contents STPA001

Contents

1	Ove	rview .		5
	1.1	Block	diagram and application circuit	5
2	Pin (descrip	tion	7
	2.1	Pin co	nnection	7
	2.2	Pin fur	nctions	8
3	Elec	trical sp	pecifications	9
	3.1	Absolu	ute maximum ratings	9
	3.2	Therm	al data	9
	3.3	Electri	cal characteristics	10
	3.4	Electri	cal characteristics curves	12
4	Gen	eral info	ormation	15
	4.1	Opera	tion	15
	4.2	Batter	y variations	15
		4.2.1	Low voltage operation	15
		4.2.2	Cranks	16
		4.2.3	Advanced battery management (hybrid vehicles)	17
	4.3	Protec	tions	18
		4.3.1	Short circuits and open circuit operation	18
		4.3.2	Over-voltage and load dump protection	18
		4.3.3	Thermal protection	18
	4.4	Warnir	ngs	19
		4.4.1	DC offset detection (OD pin)	19
		4.4.2	Clipping detection and diagnostics (CD-DIAG pin)	19
	4.5	Heat s	sink definition	20
5	Pacl	kage inf	ormation	21
6	Revi	ision his	story	23

STPA001 List of tables

List of tables

Table 1.	Device summary
Table 2.	Pin functions
Table 3.	Absolute maximum ratings
Table 4.	Thermal data
	Electrical characteristics
Table 6.	Document revision history

List of figures STPA001

List of figures

Figure 1.	Block diagram	5
Figure 2.	Application circuit (STPA001)	6
Figure 3.	Application circuit (STPA001A)	6
Figure 4.	Pin connection (top view)	7
Figure 5.	Quiescent current vs. supply voltage	12
Figure 6.	Output power vs. supply voltage (4 Ω)	12
Figure 7.	Output power vs. supply voltage (2 Ω)	12
Figure 8.	Distortion vs. output power (4 Ω)	12
Figure 9.	Distortion vs. frequency (4 Ω)	12
Figure 10.	Distortion vs. output power (4 Ω , Vs = 6 V)	12
Figure 11.	Distortion vs. output power (2 Ω)	13
Figure 12.	Distortion vs. frequency (2 Ω)	13
Figure 13.	Distortion vs. output power (2 Ω , Vs = 6 V)	13
Figure 14.	Supply voltage rejection vs. frequency	13
Figure 15.	Crosstalk vs. frequency	13
Figure 16.	Total power dissipation & efficiency vs. Po (4 Ω , Sine)	
Figure 17.	Power dissipation vs. average output power (4 Ω , audio program simulation)	14
Figure 18.	Power dissipation vs. average output power (2 Ω , audio program simulation)	14
Figure 19.	ITU R-ARM frequency response, weighting filter for transient pop	14
Figure 20.	SVR charge diagram	15
Figure 21.	Battery cranking curve example 1	
Figure 22.	Battery cranking curve example 2	16
Figure 23.	Upwards fast battery transitions diagram	17
Figure 24.	Load dump protection diagram	18
Figure 25.	Thermal protection diagram	18
Figure 26.	Audio section waveforms	
Figure 27.	Flexiwatt27 mechanical data and package dimensions	21
Figure 28.	Flexiwatt25 mechanical data and package dimensions	22

STPA001 Overview

1 Overview

The STPA001 is a complementary quad audio power amplifier. It is available in two different packages, Flexiwatt25 and Flexiwatt27. It embeds four independent amplifiers working in class AB, a standby and a mute pin, a clipping detector and diagnostics output and, only for the Flexiwatt27 package, an offset detector pin. The amplifier is fully operational down to a battery voltage of 6 V, without producing pop noise and continuing to play during battery transitions.

The STPA001 can drive 2 ohm loads and has a very high immunity to disturbs without need of external components or compensation. It is protected against any kind of short or open circuit, over-voltage and over-temperature.

1.1 Block diagram and application circuit

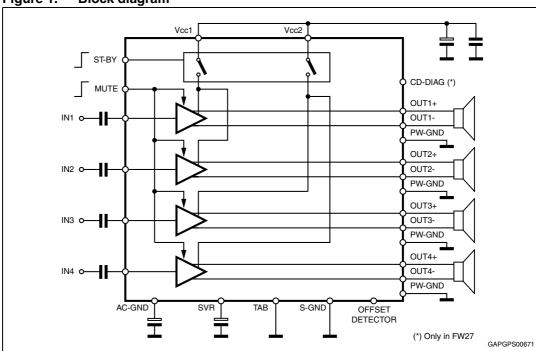


Figure 1. Block diagram

Overview STPA001

Figure 2. Application circuit (STPA001)

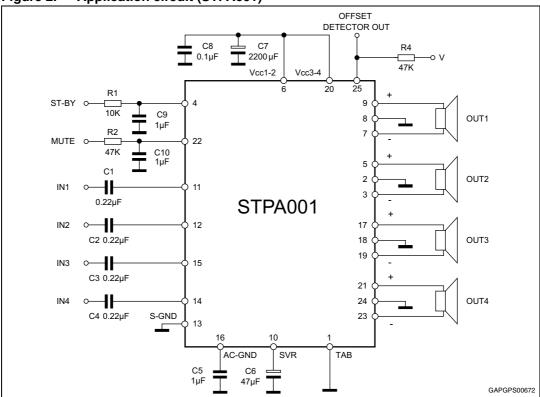
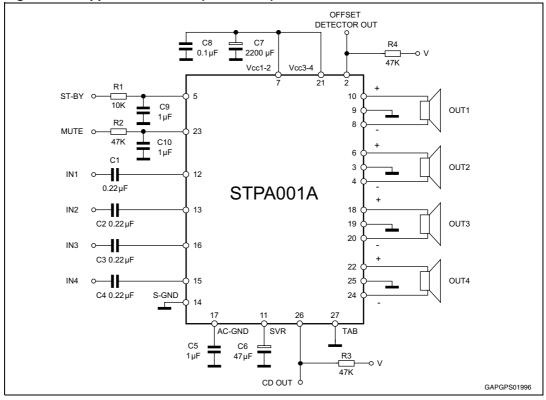
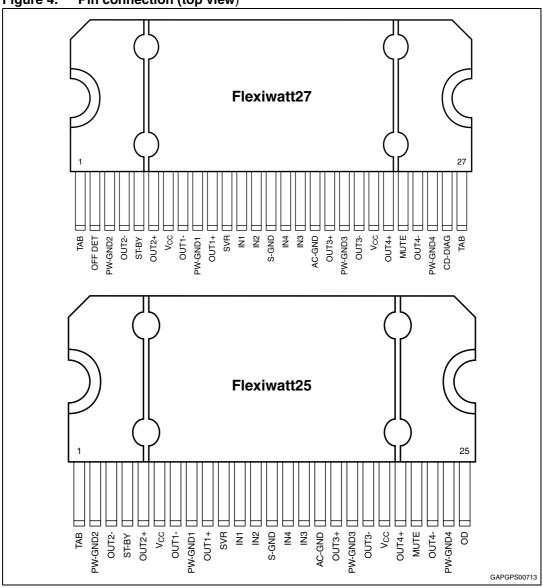



Figure 3. Application circuit (STPA001A)



STPA001 Pin description

2 Pin description

2.1 Pin connection

Figure 4. Pin connection (top view)

Pin description STPA001

2.2 Pin functions

Table 2. Pin functions

Pin number FW27	Pin number FW25	Pin name	Description
1	1	TAB	-
2	25	OD	Offset detector output
3	2	PW-GND2	Channel 2, output power ground
4	3	OUT2-	Channel 2, negative output
5	4	ST-BY	Stand-by
6	5	OUT2+	Channel 2, positive output
7	6	VCC	Supply voltage
8	7	OUT1-	Channel 1, negative output
9	8	PW-GND1	Channel 1, output power ground
10	9	OUT1+	Channel 1, positive output
11	10	SVR	Supply voltage rejection pin
12	11	IN1	Channel 1, input
13	12	IN2	Channel 2, input
14	13	S-GND	Signal ground
15	14	IN4	Channel 4, input
16	15	IN3	Channel 3, input
17	16	AC-GND	AC ground
18	17	OUT3+	Channel 3, positive output
19	18	PW-GND3	Channel 3, output power ground
20	19	OUT3-	Channel 3, negative output
21	20	VCC	Supply voltage
22	21	OUT4+	Channel 4, positive output
23	22	MUTE	Mute pin
24	23	OUT4-	Channel 4, negative output
25	24	PW-GND4	Channel 4, output power ground
26	n.a	CD-DIAG	Clipping detector and diagnostics output
27	n.a	TAB	-

3 Electrical specifications

3.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _S	Operating supply voltage	18	V
V _{S (DC)}	DC supply voltage	28	V
V _{S (pk)}	Peak supply voltage (for t = 50 ms)	50	V
I _O	Output peak current Non repetitive (t = 100 µs) Repetitive (duty cycle 10 % at f = 10 Hz)	10 9	A A
P _{tot}	Power dissipation T _{case} = 70 °C	85	W
Tj	Junction temperature	150	°C
T _{stg}	Storage temperature	-55 to 150	°C
GND _{max}	Ground pin voltage	-0.3 to 0.3	V
V _{in max}	Input pin max voltage	-0.3 to 8	V
V _{SB max}	ST-BY pin max voltage	-0.3 to V _{s (pk)}	V
V _{mute max}	Mute pin max voltage	-0.3 to 6	V

3.2 Thermal data

Table 4. Thermal data

Symbol	Parameter	Value	Unit
R _{th j-case}	Thermal resistance junction-to-case Max	1	°C/W

3.3 Electrical characteristics

Refer to the test and application diagram, V_s = 14.4 V; R_L = 4 Ω ; R_g = 600 Ω ; f = 1 kHz; T_{amb} = 25 °C; unless otherwise specified.

Table 5. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit			
General c	General characteristics								
V _S	Supply voltage range	-	6	-	18	V			
I _{q1}	Quiescent current	$R_L = \infty$	100	200	300	mA			
V _{OS}	Output offset voltage	Play mode / Mute mode	-90	-	+90	mV			
dV _{OS}	During mute ON/OFF output offset voltage	ITU R-ARM weighted	-10	-	+10	mV			
uvos	During standby ON/OFF output offset voltage	TTO TEALIWI Weighted	-15	-	+15	mV			
R _i	Input impedance	-	40	55	70	kΩ			
las	Standby current consumption	V _{St-by} = 1.2 V	-	-	20	μΑ			
I _{SB}	Standby current consumption	$V_{St-by} = 0$	-	-	10	μΑ			
Audio per	formances								
		THD = 10 %	26	28	-	W			
Po	Output power	THD = 1 %	20	22	-	W			
0	Culput power	THD = 10 %, 2 Ω THD = 1 %, 2 Ω	43 34	48 38	-	W W			
		Square wave input (2 Vrms)	+						
Ь	May output power	$R_L = 4 \Omega$	41	45	-	W			
P _{o max.}	Max. output power	$R_L = 2 \Omega$	68	75	-	W			
		$V_S = 15.2 \text{ V}; R_L = 4 \Omega$	46	50	-	W			
THD	Distortion	P _o = 4 W	-	0.007	0.05	%			
G _v	Voltage gain	-	25	26	27	dB			
dG _v	Channel gain unbalance	-	-1	-	+1	dB			
e _{No}	Output Noise	"A" Weighted	-	35	-	μV			
ONO	Carparitions	Bw = 20 Hz to 20 kHz	-	50	100	μV			
SVR	Supply voltage rejection	f = 100 Hz; V _r = 1 Vrms	50	70	-	dB			
f _{ch}	High cut-off frequency	$P_0 = 0.5 \text{ W}$	100	300	-	kHz			
C _T	Cross talk	$f = 1 \text{ kHz P}_{O} = 4 \text{ W}$	60	75	-	dB			
		f = 10 kHz P _O = 4 W	-	60	-	dB			
A _M	Mute attenuation	P _{Oref} = 4 W	80	90	-	dB			
Control pi	in characteristics								
I _{pin5}	Standby pin current	V _{St-by} = 1.2 V to 2.6 V	-	-	1	μA			
V _{SB out}	Standby out threshold voltage	(Amp: ON)	2.6	-	-	V			

Table 5. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
V _{SB in}	Standby in threshold voltage	(Amp: OFF)	-	-	1.2	V
V _{M out}	Mute out threshold voltage	(Amp: Play)	2.6	-	-	V
V _{M in}	Mute in threshold voltage	(Amp: Mute)	-	-	1.2	V
V _{AM in}	V _S automute threshold	(Amp: Mute) Att ≥ 80 dB; P _{Oref} = 4 W (Amp: Play)	4.5	5	5.5	V
		Att < 0.1 dB; $P_0 = 0.5 \text{ W}$	-	-	6	V
lpin23	Muting pin current	V _{MUTE} = 1.2 V (Sourced current)	5	8	12	μΑ
Offset detector						
V _{OFF}	Detected differential output offset	V _{St-by} = 5 V	±1	±2	±3	V
V _{OFF_SAT}	Off detector saturation voltage	V _o > ±3 V, I _{off Det} = 1 mA 0 V < V _{off Det} < 18 V	-	0.1	0.2	V
V _{OFF_LK}	Off detector leakage current	V ₀ < ±1 V	-	0	15	μΑ
Clipping detector						
CD _{LK}	Clip detector high leakage current	Cd off	-	0	1	μΑ
CD _{SAT}	Clip detector saturation voltage	DC On; I _{CD} = 1 mA	-	0.1	0.2	V
CD _{THD}	Clip detector THD level	V _{CC} > 6.5 V	-	1	-	%

3.4 Electrical characteristics curves

Figure 5. Quiescent current vs. supply voltage 6. Output power vs. supply voltage (4 Ω)

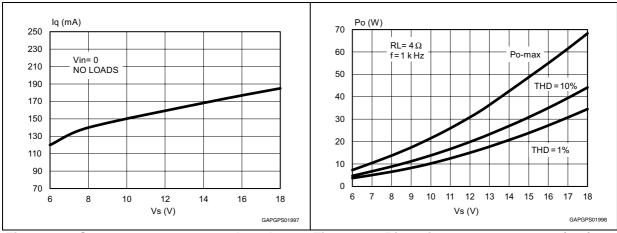


Figure 7. Output power vs. supply voltage Figure 8. Distortion vs. output power (4 Ω) (2 Ω)

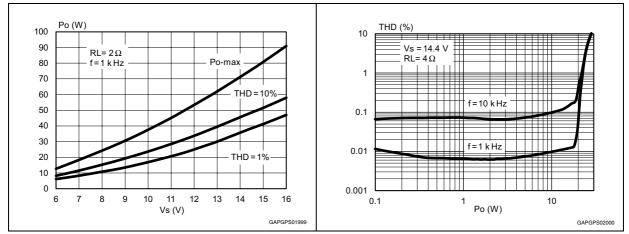
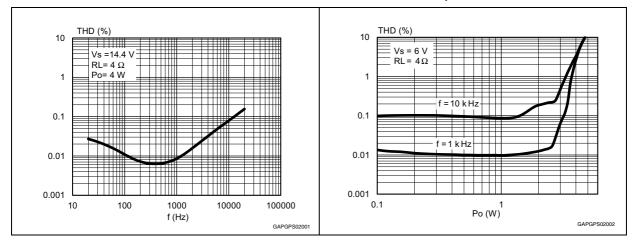



Figure 9. Distortion vs. frequency (4 Ω)

Figure 10. Distortion vs. output power (4 Ω , Vs = 6 V)

12/24 Doc ID 023043 Rev 3

Figure 11. Distortion vs. output power (2 Ω) Figure 12. Distortion vs. frequency (2 Ω)

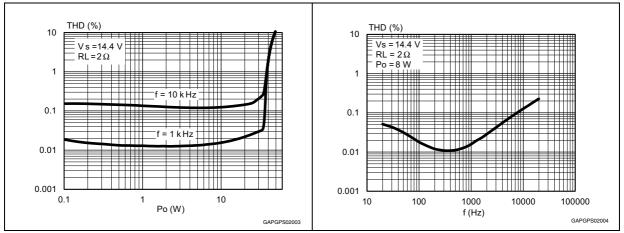


Figure 13. Distortion vs. output power (2 Ω , Vs = 6 V)

Figure 14. Supply voltage rejection vs. frequency

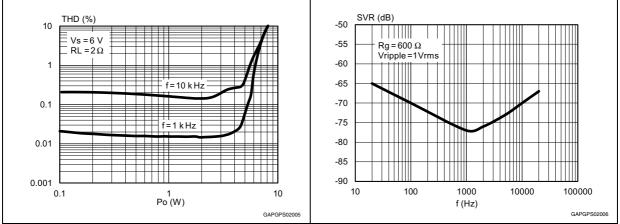


Figure 15. Crosstalk vs. frequency

Figure 16. Total power dissipation & efficiency vs. Po (4 Ω , Sine)

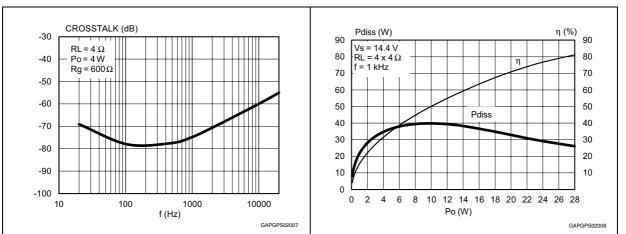
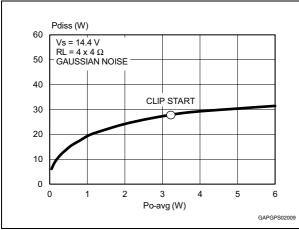



Figure 17. Power dissipation vs. average output power (4 Ω , audio program simulation)

Figure 18. Power dissipation vs. average output power (2 Ω , audio program simulation)

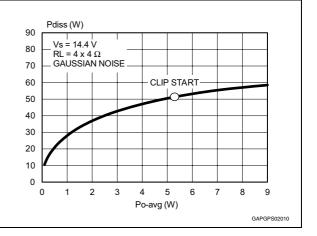
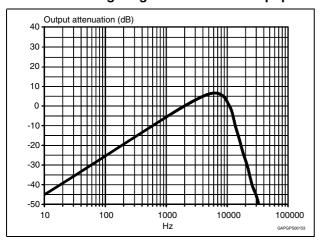



Figure 19. ITU R-ARM frequency response, weighting filter for transient pop

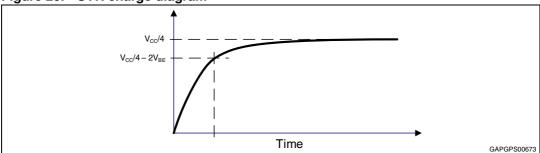
14/24 Doc ID 023043 Rev 3

STPA001 General information

4 General information

4.1 Operation

The STPA001's inputs are ground-compatible. If the standard value for the input capacitors (0.22 μ F) is adopted, the low frequency cut-off will amount to 16 Hz. The input capacitors should be 1/4 of the capacitor connected to AC-GND pin for optimum pop performances (see *Figure 2: Application circuit (STPA001)*).


Standby and mute pins are both CMOS compatible.

RC cells at both mute and stand-by pins have always to be used in order to smooth the transitions for preventing any audible transient noise.

In case muting and stand-by functions are not used, they could steadily be connected to V_S , but a 470 kohm resistance should be present between the power supply and the pins.

The capacitance on SVR sets the start-up and shut-down times and helps to have popnoise free transitions. Its minimum recommended value is 10 μF . However, to have a fast start-up time, the internal resistor on SVR pin, used to set the time constant, is reduced from 50 k Ω to 3 k Ω till voltage on SVR reaches VCC/4 -2V_{BE} and then released. In this way the capacitor on SVR is charged very quickly to VCC/4, as shown in the following figure. The time constant to be assigned to the standby pin in order to obtain a virtually pop-free transition has to be slower than 2.5 V/ms.

Figure 20. SVR charge diagram

SVR pin accomplishes multiple functions:

- it is used as a reference voltage for input pins (VCC/4)
- the capacitor connected to SVR helps the supply voltage ripple rejection
- it is used as a reference to generate the half supply voltage for the output

When the amplifier goes in standby mode or goes out from this condition, it is suggested to put the amplifier in mute to ensure the absence of audible noise. Then the stand-by pin can be set to the appropriate value (ground or > 2.6 V) and the capacitance on SVR pin is discharged or charged consequently.

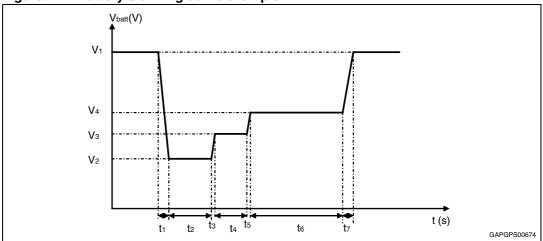
4.2 Battery variations

4.2.1 Low voltage operation

The most recent OEM specifications are require automatic stop of car engine at traffic lights, in order to reduce emissions of polluting substances. The STPA001, thanks to its innovating

General information STPA001

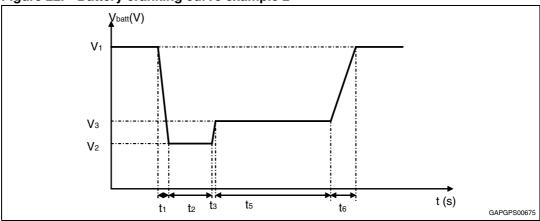
design, allows a continuous operation when battery falls down. At 6V it is still fully operational, only the maximum output power is reduced accordingly to the available voltage supply.


If the battery voltage drops below the minimum operating voltage of 6V the amplifier is fast muted, the capacitor on SVR is discharged and the amplifier restarts when the battery voltage returns to the correct voltage.

4.2.2 Cranks

STPA001 can sustain worst case cranks from 16 V to 6 V, continuing to play and without producing any pop noise.

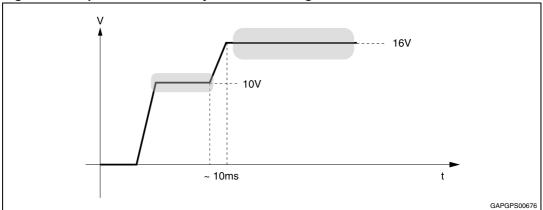
Examples of battery cranking curves are shown below, indicating the shape and duration of allowed battery transitions.


Figure 21. Battery cranking curve example 1

V1 = 16 V; V2 = 6 V; V3 = 7 V; V4 = 8 V

t1 = 2 ms; t2 = 50 ms; t3 = 5 ms; t4 = 300 ms; t5 = 10 ms; t6 = 1 s; t7 = 2 ms

V1 = 16 V; V2 = 6 V; V3 = 7 V


t1 = 2 ms; t2 = 5 ms; t3 = 15 ms; t5 = 1 s; t6 = 50 ms

STPA001 General information

4.2.3 Advanced battery management (hybrid vehicles)

In addition to compatibility with low Vbatt, the STPA001 is able to sustain upwards fast battery transitions without causing unwanted audible effects, like pop noise, and without any sound interruption thanks to the innovative circuit topology. In fact, in hybrid vehicles, the engine ignition causes a fast increase of battery voltage which can reach 16 V in less than 10 ms.

General information STPA001

4.3 **Protections**

4.3.1 Short circuits and open circuit operation

When the IC detects a short circuit to ground, to Vs or across the load, the output of the amplifier is put in three-state (high impedance condition). The power stage remains in this condition until the short is removed.

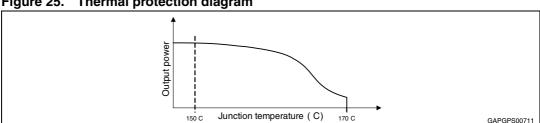
In case of short circuit to ground or Vcc, the amplifier exits from the three-state condition only when the output returns inside the limits imposed by an internal voltage comparator.

When a short across the load is present, the power stage sees an over-current and is brought in protection mode for 100 µs. After this time, if the short circuit condition is removed the amplifier returns to play, otherwise the high impedance state is maintained and the check is repeated every 100 µs.

Disconnection of load (open load condition) doesn't damage the amplifier, which continues to play.

4.3.2 Over-voltage and load dump protection

When the battery voltage is higher than 19 V, the amplifier is switched to a high impedance state. It stops to playing till the supply voltage returns in the permitted range.


The amplifier is protected against load dump surges having amplitude as high as 50 V and a rising time lower than 5 ms (see Figure 24).

50V Vdump 14.4V Vcc 50ms GAPGPS00710

Figure 24. Load dump protection diagram

4.3.3 Thermal protection

If the junction temperature of the IC reaches $T_i = 150$ °C, a smooth mute is applied to reduce output power and limit power dissipation. If this is not enough and the junction temperature continues to increase, the amplifier is switched off when reaches the maximum temperature of 170 °C.

STPA001 General information

4.4 Warnings

4.4.1 DC offset detection (OD pin)

The STPA001 integrates a DC offset detector to avoid that an anomalous input DC offset is multiplied by the amplifier gain producing a dangerous large offset at the output. In fact an output offset may lead to speakers damage for overheating. The detector works with the amplifier un-muted and no signal at the inputs.

When the differential output voltage is out of a window comparator with thresholds $\pm 2V$ (typ), the OD pin is pulled down.

4.4.2 Clipping detection and diagnostics (CD-DIAG pin)

When clipping occurs, the output signal is distorted. If the signal distortion on one of the output channels exceeds 1%, the CD-DIAG pin is pulled down. This information can be sent to an audio processor in order to reduce the input signal of the amplifier and reduce the clipping. Thanks to a particular internal circuitry, the clip detector is always functional till 6.5 V.

A short to ground and short to Vcc is pointed out by CD-DIAG. This pin is pulled down to 0 V till these shorts are present to inform the user a protection occurred.

CD-DIAG acts also as thermal warning. In fact every time T_j exceeds 140 °C, it is pulled down to notify this occurrence.

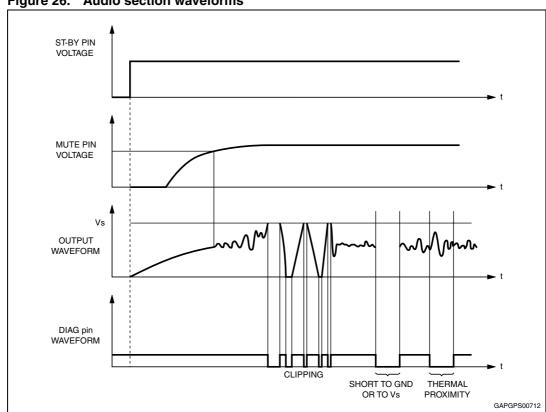


Figure 26. Audio section waveforms

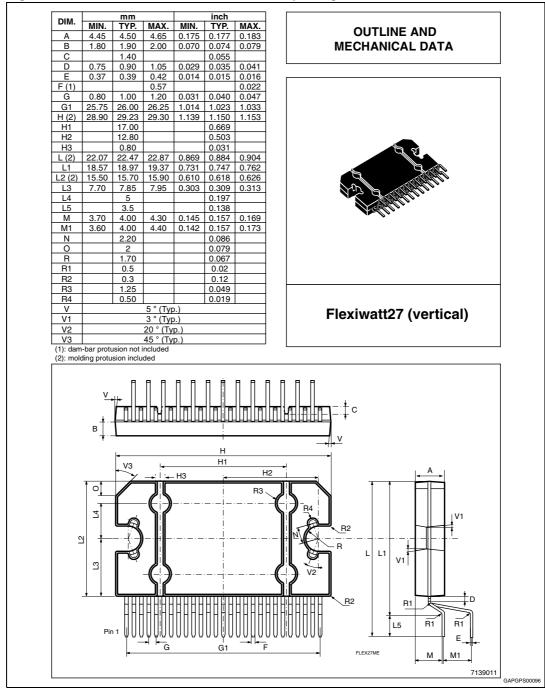
General information STPA001

4.5 Heat sink definition

20/24

Assuming we have a maximum dissipated power of 26 W (e.g. in the worst case situation of frequent clipping occurrence), considering T_j max is 150°C and assuming ambient temperature is 70 °C, the available temperature gap for a correct dissipation is 80 °C. This means the thermal resistance of the system R_{Th} has to be 80 °C/26 W = 3 °C/W.

The junction to case thermal resistance is 1 °C/W. So the heat sink thermal resistance should be approximately 2 °C/W. This would avoid any thermal shutdown occurrence even after long-term and full-volume operation.


STPA001 Package information

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

 $\mathsf{ECOPACK}^{(\! R \!)}$ is an ST trademark.

Figure 27. Flexiwatt27 mechanical data and package dimensions

Package information STPA001

Figure 28. Flexiwatt25 mechanical data and package dimensions

MIN. TYP. MAX. MIN. TYP. MAX. B MAX. MIN. TYP. MAX. B A 45 4.50 4.65 0.175 0.177 0.183	MIN. TYP. MAX. MIN. TYP. MAX. A 4.45 4.50 4.65 0.175 0.177 0.183 B 1.80 1.90 2.00 0.070 0.074 0.079 C 1.40 0.055 D 0.75 0.90 1.05 0.029 0.035 0.041 E 0.37 0.39 0.42 0.014 0.015 0.016 F(1) 0.57 0.30 0.42 0.014 0.015 0.016 F(1) 1.00 1.20 0.031 0.040 0.047 G1 23.75 24.00 24.25 0.935 0.945 0.955 H(2) 28.90 29.23 29.30 1.139 1.150 1.153 H(2) 22.07 22.47 22.87 0.869 0.884 0.904 L(3) 18.57 18.97 19.37 0.731 0.747 0.762 L(2) 12.50 15.70 15.90 0.610 0.618 0.626 13 7.70 7.85 7.95 0.303 0.309 0.313 L(2) 22.07 52.40 4.00 4.30 0.145 0.157 0.169 M1 3.60 4.00 4.30 0.145 0.157 0.169 M1 3.60 4.00 4.30 0.145 0.157 0.169 M1 3.60 4.00 4.30 0.145 0.157 0.173 N 2 2.0 4.00 4.30 0.145 0.157 0.173 N 6 2.20 4.00 0.086 O 2 0.079 R 1.70 0.067 R1 0.5 0.009 R2 0.3 0.12 R3 1.25 0.049 R4 0.50 5 (Typ.) V 5 (Typ.) V 5 (Typ.) V 2 20 (Typ.) V 2 20 (Typ.) V 45 (Typ.) V 45 (Typ.) V 5 (Typ.) V 5 (Typ.) V 1 3 (Typ.) V 1 3 (Typ.) V 1 3 (Typ.) V 2 20 (Typ.) V 3 45 (Typ.) V 45 (Typ.) V 45 (Typ.) V 45 (Typ.) V 47 (Typ.) V 48 (Typ.) V 49 (Typ.) V 49 (Typ.) V 49 (Typ.) V 49 (Typ.) V 40 (Typ.) V 45 (Typ.) V 45 (Typ.) V 47 (Typ.) V 48 (Typ.) V 49 (Typ.) V 49 (Typ.) V 49 (Typ.) V 40 (Typ.) V 40 (Typ.) V 45 (Typ.) V 46 (Typ.) V 47 (Typ.) V 48 (Typ.) V 48 (Typ.) V 49 (Typ.) V 49 (Typ.) V 49 (Typ.) V 40 (Typ.	DIM.	mn	m		inch		
B 1.80 1.90 2.00 0.070 0.074 0.079 0.075 0.075 0.075 0.005 0.0	B 1,80 190 2,00 0,070 0,074 0,079 C 0,074 0,079 C 0,074 0,079 C 0,075 0,90 1,05 0,020 0,035 0,041 0,075 0,90 1,05 0,020 0,035 0,041 0,075 0,030 0,020 0,037 0,039 0,040 0,022 0,033 0,040 0,002 0,035 0,041 0,015 0,020 0,032 0,033 0,040 0,002 0,035 0,041 0,000 0,022 0,000	N			MIN.	TYP.		OUTLINE AND
C	C					-		
D 0.75 0.90 1.05 0.029 0.035 0.041 E 0.37 0.39 0.42 0.014 0.015 0.016 F(1) 0.57 0.0022 G 0.80 1.00 1.20 0.031 0.040 0.047 G1 23.75 24.00 24.25 0.935 0.945 9.955 H(2) 28.90 29.23 29.30 1.139 1.150 1.153 H1 17.00 0.669 H2 12.80 0.503 H3 0.80 0.031 H3 0.80 0.080 H3 0.80 0.031 H3 0.80 0.080 H3 0.80 0.080 H3 0.80 0.080 H3 0.80 0.080 H3 0.80 0.80 0.331 H3 0.80 0.80 0.80 H2 0.80 0.80 0.80 H3 0.80 0.80 0.80 H3 0.80 0.80 0.80 H3 0.80 0.80 0.80 H3 0.80 0.80 0.80 H2 0.80 0.80 0.80 H2 0.80 0.80 0.80 H3 0.80 0.80 0.80 H2 0.80 0.80 0.80 H2 0.80 0.80 0.80 H2 0.80 0.80 0.80 H2 0.80 0.80 0.80 H3 0.80 0.80 0.80 H2 0.80 0.80 0.80 H2 0.80 0.80 0.80 H3 0.80 0.80 0.80 H2 0.80 0.80 0.80 H2 0.80 0.80 0.80 H3 0.80 0.80	D 0.75 0.90 1.05 0.29 0.035 0.041 E 0.37 0.39 0.42 0.014 0.015 0.016 F(1) 0.57 G 0.80 1.00 1.20 0.031 0.040 0.027 G1 23.75 24.00 24.25 0.935 0.945 0.955 H1 (2) 22.90 29.23 29.30 1.139 1.150 1.153 H1 1 17.00 0.80 0.50 H2 12.80 0.80 0.301 1.139 1.150 1.153 H3 2.02 1.139 1.150 1.153 H3 2.02 1.139 1.139 1.150 1.153 H3 2.13 1.139 1.150 1.153 H3 2.13 1.139 1.139 1.139 1.139 1.150 1.153 H3 2.13 1.139 1.139 1.139 1.139 1.150 1.153 H3 3.13 1.130 1.130 1.131 1.153 H3 3.13 1.130 1.130 1.131 1.153 H3 3.70 1.139 1.139 1.139 1.139 1.139 1.139 H3 3.70 1.139 1.139 1.139 1.139 1.139 1 H3 3.70 1.139 1.139 1.139 1.139 1.139 1 H3 1.70 1.139 1.139 1.139 1.139 1 H3 1.70 1.139 1.139 1.139 1 H3 1.70 1.139 1.139 1.139 1 H3 1.70 1.139 1.139 1 H3 1.70 1.139 1.139 1.139 1 H3 1.70 1				0.070		0.079	MECHANICAL DATA
E 0.37 0.39 0.42 0.014 0.015 0.016 F(1) 0.057 0.002 G 0.80 1.00 1.20 0.031 0.040 0.047 G1 23.75 24.00 24.25 0.935 0.945 0.955 H(2) 28.90 29.23 29.30 1.139 1.150 1.153 H1 17.00 0.069 H2 12.80 0.031 L(2) 22.07 22.47 22.87 0.869 0.884 0.904 L1 18.57 18.97 19.37 0.731 0.747 0.762 L2 (2) 15.50 15.70 15.90 0.610 0.618 0.626 L3 7.70 7.85 7.95 0.303 0.309 0.313 L4 5 0.197 L5 3.5 0.138 M 3.70 4.00 4.30 0.145 0.157 0.169 M1 3.60 4.00 4.40 0.142 0.157 0.173 N 2.20 0.086 O 2 0 0.079 R1 1.70 0.0067 R1 0.5 0.002 R2 0.3 0.12 R3 1.25 0.049 R4 0.50 5° (Typ.) V1 3° (Typ.) V2 20° (Typ.) V3 45° (Typ.) V3 45° (Typ.) V3 45° (Typ.) U3 am-bar protusion not included 2): molding protusion included 2): molding protusion included 2): molding protusion included	E 0.37 0.39 0.42 0.014 0.015 0.016 (Color of the color of				0.029		0.041	
F (1)	F(1) 0.80 1.00 1.20 0.031 0.040 0.022 G 0.80 1.00 1.20 0.031 0.040 0.047 G1 23.75 24.00 24.25 0.935 0.945 0.955 H1 (2) 28.90 29.23 29.30 1.139 1.150 1.153 H1 177.00 0.603 H2 12.80 0.80 0.503 H3 0.80 0.80 0.869 0.931 H3 0.80 0.80 0.869 0.931 H3 0.80 0.80 0.869 0.931 H2 (2) 22.07 22.47 22.87 0.869 0.884 0.904 L1 18.57 18.97 19.37 0.731 0.747 0.762 L2 (2) 15.50 15.70 15.90 0.610 0.618 0.626 L3 7.70 7.85 7.95 0.303 0.309 0.313 L4 5 L3 7.70 7.85 7.95 0.303 0.309 0.313 H1 0.5 0 0.2 0.079 R 1.70 0.0667 R1 0.5 0 0.067 R1 0.5 0 0.067 R1 0.5 0 0.067 R1 0.5 0 0.067 R1 0.5 0 0.019 V1 3° (Typ.) V2 20° (Typ.) V3 45° (Typ.) V4 V3 45° (Typ.) V5 10 45° (Typ.) V6 10 45° (Typ.) V7 10 45° (Typ.) V8 10 45° (Typ.) V9 10 45° (T							
G 0.80 1.00 1.20 0.031 0.040 0.047 G1 23.75 24.00 24.25 0.935 0.945 0.955 H(2) 28.90 29.23 29.30 1.139 1.150 1.153 H1 17.00 0.669 H2 12.80 0.503 H3 0.80 0.031 H3 0.80 0.80 0.031 H2 118.57 18.97 19.37 0.731 0.747 0.762 L2 (2) 15.50 15.70 15.90 0.610 0.618 0.626 L3 7.70 7.85 7.95 0.303 0.309 0.313 L4 5 0.197 L5 3.5 0.197 L5 3.5 0.197 N 2.20 0.086 O 2 0.079 R1 0.5 0.067 R1 0.5 0.067 R1 0.5 0.002 R2 0.3 0.112 R3 1.25 0.049 R4 0.50 0 0.009 R3 1.25 0.049 R4 0.50 0 0.009 R5 0.009 R6 0.009 R7 0.009 R7 0.009 R8 1.70 0.0067 R9 0.009 R9 0.009 R9 0.009 R9 0.009 R1 0.5 0.002 R9 0.009 R	G 0.80 1.00 1.20 0.031 0.040 0.047 (1 23.75 24.00 24.25 0.935 0.945 0.955) 49.00 24.25 0.935 0.945 0.955) 49.00 24.25 0.935 0.945 0.955) 49.00 24.25 0.935 0.945 0.955) 49.00 28.90 29.23 29.30 1.139 1.150 1.153 41.00 1.700 41.00 0.669 41.00 0.66		0.0		0.014	0.010		
H (2) 28.90 29.23 29.30 1.139 1.150 1.153 1.153 1.150 1.153 1.150 1.153 1.153 1.150 1.153 1.153 1.150 1.153 1.153 1.153 1.150 1.153	H (2) 28.90 99.23 29.30 1.139 1.150 1.153 HT 1.153 HT 1.153 HT 1.170		0.80 1.0		0.031	0.040		
H1 17.00	H1	G1 2	3.75 24.0	.00 24.25	0.935	0.945	0.955	
H2	12				1.139		1.153	
H3	H3							
L (2) 22.07 22.47 22.87 0.869 0.884 0.904 L1 18.57 18.97 19.37 0.731 0.747 0.762 L2 (2) 15.50 15.70 15.90 0.610 0.618 0.626 L3 7.70 7.85 7.95 0.303 0.309 0.313 L4 5 0.157 0.197 L5 0.5 0.0197 L5 0.5 0.0197 N 2.20 0.086 O 2 0.079 R 1.70 0.067 R1 0.5 0.02 R2 0.3 0.12 R3 1.25 0.049 R4 0.50 0.012 R3 1.25 0.049 N1 3° (Typ.) V2 20° (Typ.) V3 45° (Typ.) V3 45° (Typ.) U3 dam-bar protusion not included Plant of the control of the c	L(2) 22.07 22.47 22.87 0.889 0.884 0.904 L1 18.57 18.97 19.37 0.731 0.747 0.762 L2 (2) 15.50 15.70 15.90 0.610 0.618 0.626 L3 7.70 7.85 7.95 0.303 0.309 0.313 L4 5 0.0197 L5 3.5 0.0197 L5 3.5 0.0197 N 2.20 0.086 M1 3.60 4.00 4.40 0.142 0.157 0.169 M1 3.60 4.00 4.40 0.142 0.157 0.169 R1 0.5 0.02 R2 0.079 R 1.70 0.067 R1 0.5 0.02 R2 0.03 0.12 R3 1.25 0.049 R4 0.50 5° (Typ.) V1 3° (Typ.) V2 20° (Typ.) V3 45° (Typ.) V3 45° (Typ.) U3 45° (Typ.) U4 11 10 10 10 10 10 10 10 10 10 10 10 10							The second second
1	1				0.000		0.004	
L2 (2) 15.50 15.70 15.90 0.610 0.618 0.626 0.3 7.70 7.85 7.95 0.303 0.309 0.313 0.319 0.313 0.309 0.313 0.319 0.318 0.309 0.313 0.319 0.318 0.309 0.313 0.319 0.318 0.319	L2 (2) 15.50 15.70 15.90 0.610 0.618 0.626 L3 7.70 7.85 7.95 0.303 0.309 0.313 L4 5 0.197 L5 3.5 0.138 0.139 MI 3.70 4.00 4.30 0.145 0.157 0.169 MI 3.80 4.00 4.40 0.142 0.157 0.173 N 2.20 0.086 0 O 2 0.079 R 1.70 0.067 R1 0.5 0.02 R2 0.3 0.12 R3 1.25 0.0449 R4 0.50 5 0.0019 V 5° (Typ.) V2 20° (Typ.) V3 3* (Typ.) V2 20° (Typ.) V3 3* (Typ.) V3 4* (Typ.) D1: dam-bar protusion not included 2); molding protusion included 2); molding protusion included							
L3 7.70 7.85 7.95 0.303 0.309 0.313 L4 5 0.197 L5 3.5 0.138 M 3.70 4.00 4.30 0.145 0.157 0.169 M1 3.60 4.00 4.40 0.142 0.157 0.173 N 2.20 0.086 O 2 0.079 R 1.70 0.067 R1 0.5 0.02 R2 0.3 0.12 R3 1.25 0.049 R4 0.50 5° (Typ.) V1 3° (Typ.) V2 20° (Typ.) V3 45° (Typ.) U3 45° (Typ.) U3 45° (Typ.) U3 45° (Typ.) U3 R5 (Typ.) U3 R5 (Typ.) U3 R6 (Typ.) U3 R7 (Typ.) U3 R8 (Typ.) U4 R8 (Typ.) U5 (Typ.) U5 (Typ.) U6 (Typ.) U7 R8 (Typ.) U8 (Typ.) U9 (Typ.) U9 (Typ.) U9 (Typ.) U1 (Typ.) U1 (Typ.) U1 (Typ.) U2 (Typ.) U3 (Typ.) U4 (Typ.) U5 (Typ.) U5 (Typ.) U5 (Typ.) U6 (Typ.) U7 (Typ.) U8 (Typ.) U8 (Typ.) U9	13 7.70 7.85 7.95 0.303 0.309 0.313							
L4	14 5 0.197 0.138 0.138 0.138 0.138 0.138 0.138 0.138 0.138 0.137 0.169 0.138 0.1							
Section Sect	Section Sect							
M1 3.60 4.00 4.40 0.142 0.157 0.173 N 2.20 0.086 O 2 0.079 R 1.70 0.067 R1 0.5 0.02 R2 0.3 0.12 R3 1.25 0.049 R4 0.50 5°(Typ.) V1 3°(Typ.) V2 20°(Typ.) V3 45°(Typ.) U3 45°(Typ.) U3 45°(Typ.) U3 R5°(Typ.) U4 R5°(Typ.) U5 R5°(Typ.) U5 R5°(Typ.) R5°(Typ.) R6°(Typ.) R7°(Typ.) R8°(Typ.) R8°(Typ.) U5 R5°(Typ.) R8°(Typ.) R8°(Typ	M1 3.60 4.00 4.40 0.142 0.157 0.173 N 2.20 0.086 0 O 2 0.079 R 1.70 0.067 R1 0.5 0.02 R2 0.3 0.12 R3 1.25 0.049 R4 0.50 0.019 V V 5° (Typ.) V1 3° (Typ.) V2 20° (Typ.) V3 45° (Typ.) V2 20° (Typ.) V3 H5 (Typ.) V3 H5 (Typ.) V3 H5 (Typ.) V3 H5 (Typ.) V4 H1 H1 H2 V4 H1 H1 H2 V5 H1 H1 H2 V6 H1 H1 H2 V7 H1 H1 H2 V8 H1 H1 H2 V9							
N	N					0.157	0.169	
C	C				0.142		0.173	
R	R							
R1	R1							
R2	R2							
R3	R3							
R4	Flexiwatt25 (vertical) Flexiwatt25 (vertical) Flexiwatt25 (vertical)							
V 5° (Typ.) V1 3° (Typ.) V2 20° (Typ.) V3 45° (Typ.) D): dam-bar protusion not included 2): molding protusion included	The state of the s							
V1 3 (1yp.) V2 20° (Typ.) V3 45° (Typ.) D): dam-bar protusion not included 2): molding protusion included V H1 43 H2 V A A A A A A A A A A A A A A A A A A	VI 3 (Typ.) V3 45° (Typ.) D): dam-bar protusion not included D): molding protusion included D): molding protusion included Pin 1	V	1 2.0	5° (Тур.)		-	Flexiwatt25 (vertical)
V2 20° (Typ.) V3 45° (Typ.) Is dam-bar protusion not included Dismolding protusion included V H H1 H3 H2 A A	V2 20° (Typ.) 13 45° (Typ.) 13 dam-bar protusion not included 2): molding protusion included 14 H1 H1 H2 Pin 1 Pi			3° (Тур.)			i ionitratteo (voi tioui)
i): dam-bar protusion not included 2): molding protusion included V H H H3 H2 A A A A A A A B3 B4 B4 B3 B4 B4 B3 B4 B4 B4	elimolding protusion not included Note that the state of			20° (Тур.)			
2): molding protusion included V H H H H H R3 A A	Pin 1				Тур.)			
V	No. 1	ı): aam-bar 2): moldina ı	protusion no protusion inc	iot included icluded				
Pin 1		L2 L4 0	V3 V3			H1	R3 、	R2 R1 R1 R1 R1

STPA001 Revision history

6 Revision history

Table 6. Document revision history

Date	Revision	Changes
03-Apr-2012	1	Initial release.
10-Sep-2012	2	Updated Table 3: Absolute maximum ratings on page 9.
14-Nov-2012	3	Updated: Features on page 1; Section 1.1: Block diagram and application circuit; Section 3.3: Electrical characteristics; Section 4.4.2: Clipping detection and diagnostics (CD-DIAG pin) on page 19; Added Section 3.4: Electrical characteristics curves.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

24/24 Doc ID 023043 Rev 3

