

Digital controller for wireless battery charger transmitters with multistandard Qi, PMA and wearable support

Datasheet - production data

Features

- Digital controller for wireless battery charger transmitter
- · Multiple Qi and PMA standard supported
- · Support for up to 5 W applications
 - Mobile
 - Wearable, sports gear, medical
 - Remote controllers
- Native support to half-bridge and full bridge topologies
- 5 V supply voltage
- 2 firmware options
 - Turn-key solution for quick design
 - APIs available for application customization^(a)
- Peripherals available via APIs(a)
 - ADC with 10 bit precision and 1 MW input impedance
 - UART
 - I²C master fast/slow speed rate
 - GPIOs

- Memory
 - Flash and E²PROM with read-while-write (RWW) and error correction code (ECC)
 - Program memory: 32 KBytes Flash; data retention 15 years at 85 °C after 10 kcycles at 25 °C
 - Data memory: 1 KByte true data E²PROM; data retention:15 years at 85 °C after 100 kcycles at 85 °C
 - RAM: 6 KBytes
- Reference design features
 - 2 layers PCBs
 - Active object detection
 - Graphical user interface for application monitoring
 - Evaluation boards
- Operating temperature: -40 °C up to 105 °C
- Package: VFQFPN32

Applications

Qi A11

- Evaluation board: STEVAL-ISB027V1

Power rate: 5W

– Input: 5V

Qi A13^(a)

Power rate: 5 WInput: 5 - 16 V, 12 V

Wearable^(a)

- Power rate: 2 W

Input: 5 V

PMA^(a)

power rate: 5 W

- input: 5 V

Contact local sale representative for further details: see www.st.com.

Contents

Contents

1	Description		
2	STW	/BC system architecture4	
	Firm	vare4	
3	Pino	out and pin description	
	3.1	Pinout for STWBC in Qi A11 configuration	
	3.2	Pin description	
4	Pack	kage information	
	4.1	Package design overview	
	4.2	Package mechanical data 8	
5	Orde	er codes 9	
6	Revi	sion history9	

STWBC Description

1 Description

The STWBC is the STMicroelectronics digital platform designed for wireless battery charger transmitter applications.

Wireless battery charging systems replace the traditional power supply cable by means of electromagnetic induction between a transmitting pad (TX) and a battery powered unit (RX), such as a mobile phone or a battery pack.

The power transmitter unit is responsible for controlling the transmitting coil and generating the correct amount of power requested by the receiver unit. The receiver unit continuously feedbacks to the transmitter the correct power level requested by modulating the transmitter carrier by means of a controlled resistive of capacitive insertion. Generating the correct amount of power guarantees the highest level of end-to-end efficiency due to reduced energy waste. Also, it helps maintaining a lower operational temperature.

The digital feedback is also used to detect foreign objects, i.e.: metal incorrectly exposed to the coils. By stopping the application as soon as a foreign object is detected the risk of damage is reduced.

Digital wireless battery transmitters can adapt the amount of energy transferred by the coil by modulating the frequency, duty cycles or coil input voltage.

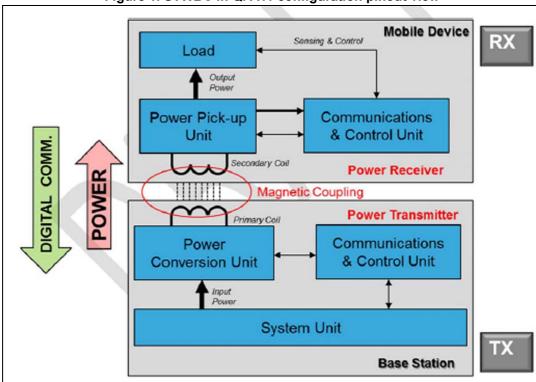


Figure 1. STWBC in Qi A11 configuration pinout view

Thanks to the internal STWBC 96 MHz clock, support for half-bridge and full bridge topologies and protocol detection units, the STWBC can drive the power emitted by a transmitting coil. The STWBC firmware sits on the top of the hardware to monitor and control the correct wireless charging operations.

2 STWBC system architecture

Figure 2 illustrates the overall system blocks implemented in the STWBC architecture.

The STWBC is a flexible controller which can be configured to support several types of wireless charging transmitter systems thanks to dedicated firmware options.

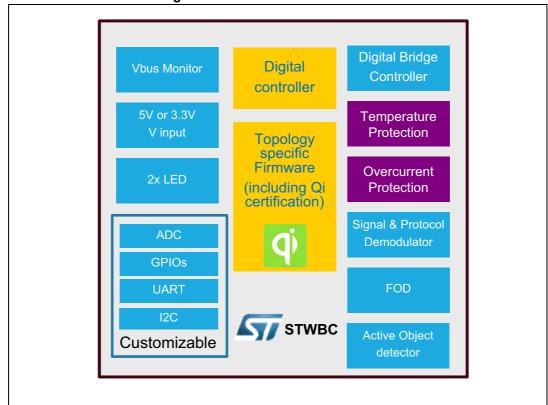


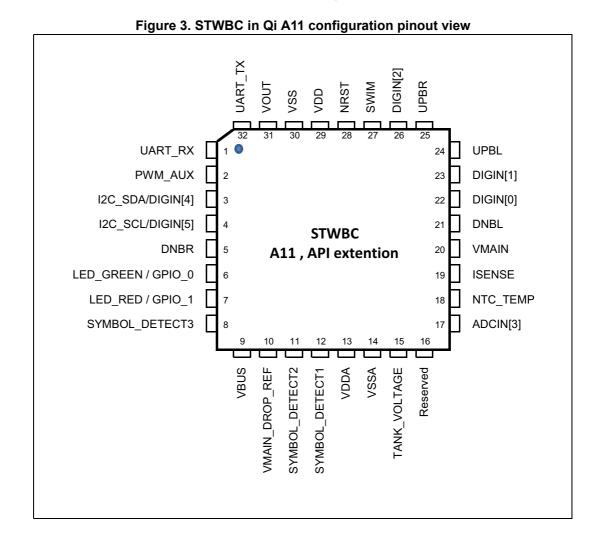
Figure 2. STWBC device architecture

Firmware

The STWBC firmware is available in two separate software packages:

- Turn-key: the firmware is distributed as a binary file.
- API customizable: the firmware is designed as a library and external functions as well as peripherals can be added by means of APIs.

The software APIs allow a great freedom of application customization. The STWBC and the API library can be accessed by programming the internal controller via standard programming tools such as the IAR™ Workbench® Studio.


Every STWBC wireless charging architecture is a reference design supported by firmware, evaluation boards, application notes and PCB layouts notes.

4/10 DocID027322 Rev 1

3 Pinout and pin description

The STWBC is a multifunction device that can support several wireless charging architectures. The pinout is therefore application specific. *Section 3.1* shows the pinout used by the STWBC when the Qi A11 configuration is used.

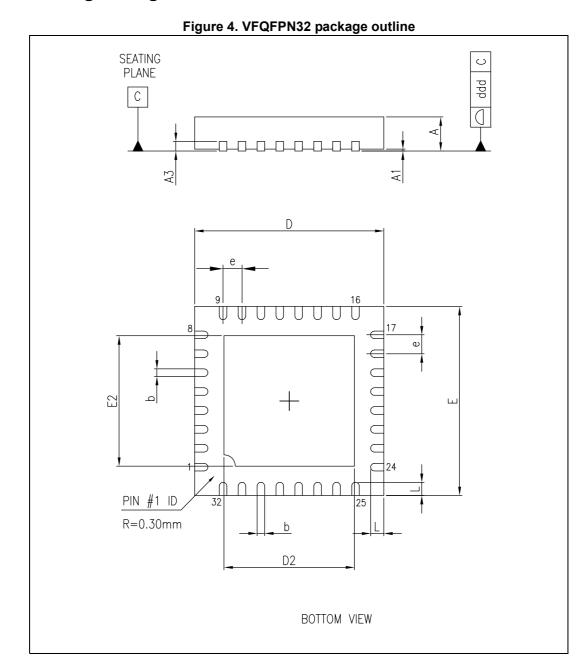
3.1 Pinout for STWBC in Qi A11 configuration

3.2 Pin description

Table 1. Pin description

Pin number	Pin name	Pin type	Description
1	UART_RX ⁽¹⁾	DI	UART RX link
2	PWM_AUX ⁽¹⁾	DO	PWM output for general purpose use
3	I2C_SDA/DIGIN [4] ⁽¹⁾		I2C_SDA / digital input 4
4	I2C_SCL/DIGIN [5] ⁽¹⁾		I2C_SCL / digital input 5
5	DNBR	DO	Output driver for low-side branch right
6	LED_GREEN / GPIO_0 ⁽¹⁾	DO	Digital output for the green light indicator / general purpose I/O
7	LED_RED / GPIO_1 ⁽¹⁾	DO	Digital output for the red light indicator / general purpose I/O
8	SYMBOL_DETECT3	Al	Symbol detector
9	VBUS	Al	Vbus monitor
10	VMAIN_DROP_REF	Al	Vmain voltage reference
11	SYMBOL_DETECT2	Al	Symbol detector
12	SYMBOL_DETECT1	Al	Symbol detector
13	VDDA	PS	Analog power supply
14	VSSA	PS	Analog ground
15	TANK_VOLTAGE	Al	LC tank voltage probe
16	Reserved		Reserved
17	ADCIN [3] ⁽¹⁾		ADC Input (API only)
18	NTC_TEMP	Al	NTC temperature measurement.
19	ISENSE	Al	LC tank current measurement
20	VMAIN	Al	Vmain monitor
21	DNBL	DO	Output driver for low-side branch left
22	DIGIN [0] ⁽¹⁾	DI	Digital input 0
23	DIGIN [1] ⁽¹⁾	DI	Digital input 1
24	UPBL	DO	Output driver for high-side branch left
25	UPBR	DO	Output driver for high-side branch right
26	DIGIN [2] ⁽¹⁾	DI	Digital input 2
27	SWIM	DIO	Debug interface
28	NRST	DI	Reset
29	VDD	PS	Digital and I/O power supply
30	VSS	PS	Digital and I/O ground
31	VOUT	Supply	Internal LDO output
32	UART_TX ⁽¹⁾	DO	UART TX link

^{1.} API configurable.


6/10 DocID027322 Rev 1

STWBC Package information

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 Package design overview

Package information STWBC

4.2 Package mechanical data

Table 2. VFQFPN32 package dimensions

Symbol	Dimensions (mm)			
Symbol	Min.	Тур.	Max.	
А	0.80	0.90	1.00	
A1	0	0.02	0.05	
A3		0.20		
b	0.18	0.25	0.30	
D	4.85	5.00	5.15	
D2	3.40	3.45	3.50	
E	4.85	5.00	5.15	
E2	3.40	3.45	3.50	
е		0.50	0.55	
L	0.30	0.40	0.50	
ddd			0.08	

Note:

- 1. VFQFPN stands for "Thermally Enhanced Very thin Fine pitch Quad Flat Package No lead".
- 2. Very thin profile: $0.80 < A \le 1.00 \text{ mm}$.
- 3. Details of the terminal 1 are optional but must be located on the top surface of the package by using either a mold or marked features.
- 4. Package outline exclusive of any mold flashes dimensions and metal burrs.

STWBC Order codes

5 Order codes

Table 3. Silicon product order code

Order code	Package	Packaging
STWBC	VFQFPN32	Tube
STWBCTR	VFQFFN32	Tape and reel

6 Revision history

Table 4. Document revision history

Date	Revision	Changes
18-Dec-2014	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2014 STMicroelectronics - All rights reserved