
TDA7577BLV

2 x 75 W dual-bridge power amplifier with I²C complete diagnostics and "start-stop" profile (6 V operation)

Datasheet - production data

Features

- MOSFET (DMOS) output power stage
- High-efficiency (class SB)
- Single-channel 1 Ω driving capability
 84 W undistorted power
- High output power capability 2 x 28 W / 4 Ω @ 14.4 V, 1 kHz, 10 % THD
- Max. output power 2 x 75 W / 2 Ω, 1 x 150 W / 1 Ω
- Full I²C bus driving with 4 addresses
- Low voltage (6 V) operation (i.e. 'start-stop')
- Gain 16/26 dB
- Full digital diagnostic (AC and DC loads)
- Legacy mode (operation without I²C)
- Differential inputs
- Fault detection through integrated diagnostics
- DC offset detection
- · Two independent short circuit protections
- Diagnostic on clipping detector with selectable threshold (2 % / 10 %)
- Clipping detector pin
- ST-BY and MUTE pins
- · ESD protection
- · Very robust against misconnections

Description

The TDA7577BLV is a new MOSFET dual bridge amplifier specially intended for car radio applications. Thanks to the DMOS output stage the TDA7577BLV has a very low distortion allowing a clear powerful sound, together with high output power capability.

It is a very flexible device capable to support the most demanding specifications in terms of power dissipation and battery transitions: its superior efficiency performance, coming from the internal exclusive structure, can reduce the dissipated output power up to the 50 % (when compared to conventional class AB solutions). Moreover it is compliant to the recent OEM specifications thanks to the capability to work down to 6 V ('start-stop' compatibility).

This device is also equipped with a full diagnostic array that communicates the status of each speaker through the I²C bus. TDA7577BLV can also drive 1 Ω loads (with parallel connection of the outputs).

It is possible also to exclude the I²C bus interface, controlling the device by means of the usual ST-BY and MUTE pins.

Table 1. Device summary

Order code	Package	Packing				
TDA7577BLV	Flexiwatt 27 (vertical)	Tube				
TDA7577BLVPD	PowerSO36	Tube				
TDA7577BLVPDTR	PowerSO36	Tape and reel				
TDA7577BLVH	Flexiwatt 27 (horizontal)	Tube				
TDA7577BLVSM	Flexiwatt 27 (SMD)	Tube				

Contents TDA7577BLV

Contents

1	Bloc	ck and pins diagrams	6
2	App	lication circuit	7
3	Elec	trical specifications	8
	3.1	Absolute maximum ratings	8
	3.2	Thermal data	8
	3.3	Electrical characteristics	8
	3.4	Electrical characteristics typical curves	. 12
4	Diag	gnostics functional description	. 16
	4.1	Turn-on diagnostic	. 16
	4.2	Permanent diagnostics	. 18
	4.3	Output DC offset detection	. 19
	4.4	AC diagnostic	. 19
	4.5	Multiple faults	. 21
	4.6	Fault presence information availability on I ² C	. 21
5	1 Ω Ι	load capability setting	. 22
6	Batt	ery transitions management	. 23
	6.1	Low voltage operation ("start stop")	. 23
	6.2	Advanced battery management	. 24
7	I ² C r	mode and legacy mode selection	. 25
8	App	lication suggestions	. 26
	8.1	High efficiency introduction	. 26
9	I ² C k	bus interface	. 27
	9.1	Data validity	. 27
	9.2	Start and stop conditions	. 27
	9.3	Byte format	. 27

TDA7577BLV		Contents	
	9.4	Acknowledge	27
	9.5	I2C programming/reading sequences	28
10	Soft	ware specifications	29
	10.1	Examples of bytes sequence	32
11	Pack	kage information	33
12	Revi	sion history	37

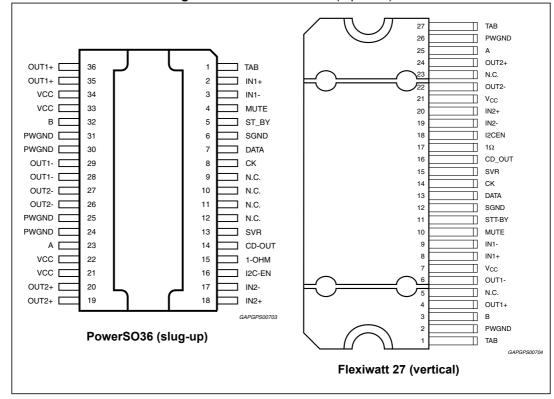
List of tables TDA7577BLV

List of tables

Table 1.	Device summary	1
Table 2.	Absolute maximum ratings	
Table 3.	Thermal data	8
Table 4.	Electrical characteristics	8
Table 5.	Double fault table for turn on diagnostic	. 21
Table 6.	Address selection	. 29
Table 7.	IB1	. 29
Table 8.	IB2	. 30
Table 9.	DB1	. 30
Table 10.	DB2	. 31
Table 11	Document revision history	

TDA7577BLV List of figures

List of figures


-igure 1.	Block diagram	
Figure 2.	Pin connections (top view)	
Figure 3.	Application circuit (TDA7577BLVPD)	
igure 4.	Quiescent drain current vs. supply voltage	
igure 5.	Output power vs. supply voltage (4 Ω)	
Figure 6.	Output power vs. supply voltage (2 Ω)	
Figure 7.	Output power vs. supply voltage (1 Ω)	
igure 8.	Distortion vs. output power (4 Ω , STD mode)	
igure 9.	Distortion vs. output power (2 Ω, STD mode)	
igure 10.	Distortion vs. output power (2 Ω, HI-EFF mode)	
igure 11.	Distortion vs. output power (1 Ω , STD mode)	
Figure 12.	Distortion vs. frequency (4 Ω load)	
Figure 13.	Distortion vs. frequency (2 Ω load)	. 14
igure 14.	Distortion vs. frequency (1 Ω load)	. 14
Figure 15.	Output attenuation vs. supply voltage	. 14
igure 16.	CMRR vs. frequency	. 14
igure 17.	Cross talk vs frequency	. 14
igure 18.	Power dissipation vs. average Po (2 Ω, STD mode, sine wave)	. 15
igure 19.	Power dissipation vs. Po (2 Ω , STD mode, audio program simulation)	
igure 20.	Power dissipation vs. average Po (2Ω, HI-EFF mode)	. 15
igure 21.	Power dissipation vs. Po (1 Ω , STD mode, audio program simulation)	. 15
igure 22.	ITU R-ARM frequency response, weighting filter for transient pop	. 15
igure 23.	Turn-on diagnostic: working principle	. 16
igure 24.	SVR and output behavior - case 1: without turn-on diagnostic	
igure 25.	SVR and output pin behavior - case 2: with turn-on diagnostic	. 17
igure 26.	Short circuit detection thresholds	
igure 27.	Load detection thresholds - high gain setting	. 17
igure 28.	Load detection thresholds - high gain setting	
igure 29.	Restart timing without diagnostic enable (permanent)	. 18
igure 30.	Restart timing with diagnostic enable (permanent)	. 18
Figure 31.	Current detection high: load impedance Z vs. output peak voltage	. 20
igure 32.	Current detection low: load impedance Z vs. output peak voltage	
Figure 33.	Worts case battery cranking curve sample 1	
Figure 34.	Worst case battery cranking curve sample 2	. 23
Figure 35.	Upwards fast battery transitions diagram	
igure 36.	High efficiency - basic structure	
igure 37.	Data validity on the I ² C bus	
Figure 38.	Timing diagram on the I ² C bus	
igure 39.	Timing acknowledge clock pulse	
igure 40.	PowerSO36 (slug up) mechanical data and package dimensions	
igure 41.	Flexiwatt27 (vertical) mechanical data and package dimensions	
igure 42.	Flexiwatt27 (horizontal) mechanical data and package dimensions	
igure 43.	Flexiwatt27 (SMD) mechanical data and package dimensions	. 36

1 Block and pins diagrams

Figure 1. Block diagram ADDRESS A B CLK DATA VCC CD_OUT CLIP I²CBUS DETECTOR IN1+ OUT1+ OUT1-SHORT CIRCUIT **PROTECTION** OUT2+ OUT2-SHORT CIRCUIT **PROTECTION** I²C EN PW_GND ST-BY/HE S_GND 1Ω MUTE GAPGPS00702

TDA7577BLV Application circuit

2 Application circuit

CD_QUT C8 2200μF CLK DATA R1 47K Ω 21-2-33-34 14 C1 0.22μF IN1+ o 35-36 IN1- 0 3 28-29 C2 0.22μF C3 0.22μF \leftarrow IN2+ 19-20 26-29 IN2-I²C BUS ENABLE 24-25-30-31 S_GND PW_GND O MUTE C6 1μF 1Ω SETTING R2 47KΩ ST-BY/HE

Figure 3. Application circuit (TDA7577BLVPD)

3 Electrical specifications

3.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{op}	Operating supply voltage	18	V
V _S	DC supply voltage	28	V
V _{peak}	Peak supply voltage (for t = 50 ms)	50	V
V _{CK} , V _{DATA}	I2C CK and DATA pin voltage	-0.3 to 6	V
GND _{max}	Ground pin voltage	-0.3 to 0.3	V
V _{st-by}	Standby pin voltage	-0.3 to V _{op}	V
V _{CP}	Clip detector voltage	-0.3 to V _{op}	V
V _{in max}	Input max voltage	-0.3 to V _{op}	V
Io	Output peak current (not repetitive t = 100 ms)	8	Α
Io	Output peak current (repetitive f > 10 Hz)	6	Α
P _{tot}	Power dissipation T _{case} = 70 °C ⁽¹⁾	86	W
T _{stg} , T _j	Storage and junction temperature (2)	-55 to 150	°C
T _{amb}	Operative temperature range	-40 to 105	°C

^{1.} This is maximum theoretical value; for power dissipation in real application conditions, please refer to curves reported in Section 3.4: Electrical characteristics typical curves.

3.2 Thermal data

Table 3. Thermal data

Symbol	Parameter		PowerSO36	Flexiwatt 27	Unit
R _{th j-case}	Thermal resistance junction-to-case	Max	1	1	°C/W

3.3 Electrical characteristics

Refer to the test circuit, V_S = 14.4 V; R_L = 4 Ω ; f = 1 kHz; G_V = 26 dB; T_{amb} = 25 °C; unless otherwise specified.

Tested at T_{amb} = 25 °C and T_{hot} = 105 °C; functionality guaranteed for T_i = -40 °C to 150 °C.

Table 4. Electrical characteristics

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
General characteristics						
V _S	Supply voltage range	-	6	-	18	V
		R _L = 2 Ω	6	-	16	V

^{2.} A suitable dissipation system should be used to keep T_i inside the specified limits.

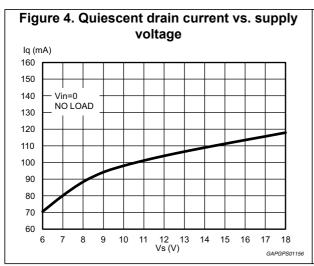
Table 4. Electrical characteristics (continued)

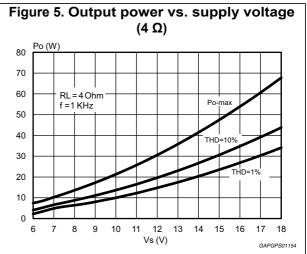
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit		
I _d	Total quiescent drain current	-	-	140	200	mA		
R _{IN}	Input impedance	-	100	115	140	kΩ		
V	Min supply mute threshold	Start-stop IB1(D7) = 0 (default)	5	-	6	V		
V _{AM}	wiiri suppiy mute tilleshold	No start-stop IB1(D7) = 1	7	-	8			
Vos	Offset voltage	Mute & play, standard bridge	-65	-	65	mV		
I _{SB}	Standby current consumption	V _{st-by} = 0 V	-	1	5	μA		
PSRR	Power supply rejection ratio	f = 100 Hz to 10 kHz; V_r = 1 Vpk; R_g = 600 $Ω$	60	75	-	dB		
T _{ON}	Turn on delay	D2 (IB1) 0 to 1	-	30	50	ms		
T _{OFF}	Turn off delay	D2 (IB1) 1 to 0	-	30	50	ms		
V _{MC}	Max. common mode input level	f = 1 kHz	-	-	1	Vrms		
SR	Slew rate	-	2	4.5	-	V/µs		
Audio pe	Audio performances							
	Output power	Max. power ⁽¹⁾ THD = 10 % THD = 1 %	40 25 -	45 28 22	-	W		
De		R_L = 2 Ω; THD 10 % R_L = 2 Ω; THD 1 % R_L = 2 Ω; Max. power ⁽¹⁾	45 - 70	50 40 78	-	w		
Po		Single channel configuration (1 Ω pin >2.5 V); R _L = 1 Ω ; THD 3 % Max. power ⁽¹⁾	80 140	85 155	-	W		
		Max. power ⁽¹⁾ , $V_s = 6 V$	-	6	-	W		
		Max. power ⁽¹⁾ , $V_s = 6 \text{ V}$, $R_L = 1 \Omega$;	-	25	-	W		
		P_O = 1-12W; STD MODE HE MODE; P_O = 1-2 W HE MODE; P_O = 4-8 W	-	0.04 0.03 0.1	0.1 0.1 -	%		
THD	Total harmonic distortion	P _O = 1-12 W, f = 10 kHz, STD MODE	-	0.3	0.5	%		
		$R_L = 2 \Omega$; HE MODE; Po = 3 W	-	0.05	0.5	%		
		Single channel configuration (1 Ω pin > 2.5 V); R _L = 1 Ω ; P _O = 4-30 W	-	0.085	0.15	%		
C _T	Cross talk	$R_g = 600 \Omega; P_O = 1 W$	75	90	-	dB		
G _{V1}	Voltage gain 1 (default)	-	25	26	27	dB		
ΔG _{V1}	Voltage gain match 1	-	-1	-	1	dB		
G _{V2}	Voltage gain 2	-	15	16	17	dB		
ΔG _{V2}	Voltage gain match 2	-	-1	-	1	dB		

Table 4. Electrical characteristics (continued)

Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit
E _{IN1}	Output noise voltage gain 1	R_g = 600 Ω ; Gv = 26 dB filter 20 to 22 kHz	-	45	60	μV
E _{IN2}	Output noise voltage gain 2	$R_g = 600 \Omega$; $Gv = 16 dB$ filter 20 to 22 kHz	-	20	30	μV
BW	Power bandwidth	(-3 dB)	100	-	-	kHz
CMRR	Input CMRR	V_{CM} = 1 Vpk-pk; R_g = 0 Ω	55	70	-	dB
1) / 1	Mute on/off output offset voltage	ITU R-ARM weighted	-	3	12	mV
V _{OS}	Standby on/off output offset voltage	(see <i>Figure 22</i>); High gain	-	1	7.5	mV
1) (Mute on/off output offset voltage	ITU R-ARM weighted	-	2	7.5	mV
V _{OS}	Standby on/off output offset voltage	(see Figure 22); Low gain	-	0.5	7.5	mV
Clip dete	ctor					
I _{CDH}	Clip pin high leakage current	CD off, 0 V < V _{CD} < 5.5 V	-5	-	5	μA
I _{CDL}	Clip pin low sink current	CD on; V _{CD} < 300 mV	1	-	-	mA
0.5	O	D0 (IB1) = 0	1	2	3	%
CD	Clip detect THD level	D0 (IB1) = 1	5	10	15	%
Control p	in characteristics					ı
V _{OFF}	ST-BY pin for standby (2)	-	0	-	1.2	V
V _{SB}	ST-BY pin for standard bridge	-	2.6	-	5	V
V _{HE}	ST-BY pin for Hi-eff	-	7	-	18	V
	ST-BY pin current	1.2 V < V _{st-by/HE} < 18 V	-	150	200	μA
I _{O (ST-BY)}	ST-BY pin current	V _{stby} < 1.2 V	-	1	5	μA
.,	Mute pin voltage for mute mode	-	0	-	1	V
V _m	Mute pin voltage for play mode	-	2.6	-	18	V
	Mute pin current (st_by)	V _{mute} = 0 V, V _{st-by} < 1.2 V	-5	-	5	μA
I _m	Mute pin current (operative)	0 V < V _{mute} < 18 V, V _{st-by} > 2.6 V	-	60	100	μA
.,	I ² C pin voltage for I ² C disabled	-	0	-	1.5	V
V _{I2C}	I ² C pin voltage for I ² C enabled	-	2.5	-	18	V
	I ² C pin current (standby)	$0 \text{ V} < I^2 \text{C EN} < 18 \text{ V}, \text{ V}_{\text{stby}} < 1.2 \text{ V}$	-5	-	5	μA
l _{I2C}	I ² C pin current (operative)	I ² C EN <18 V, V _{st-by} >2.6 V	7	13	18	μA
.,	1Ω pin voltage for 2ch mode	-	0	-	1.5	V
$V_{1\Omega}$	1Ω pin voltage for $1Ω$ mode	-	2.5	-	60 30 12 7.5 7.5 7.5 7.5 15 - 3 15 1.2 5 18 200 5 1 18 5 100 1.5 18 5 18	V
	1Ω pin current (standby)	0 V < 1 Ω <18 V, V _{s-tby} < 1.2 V	-5	-	5	μA
$I_{1\Omega}$	1Ω pin current (operative)	1 Ω < 18 V, V _{s-tby} > 2.6 V	7	13	18	μA
La	A	Low logic level	0	-	1.5	V
На	A pin voltage	High logic level	2.5	-	18	V

Table 4. Electrical characteristics (continued)

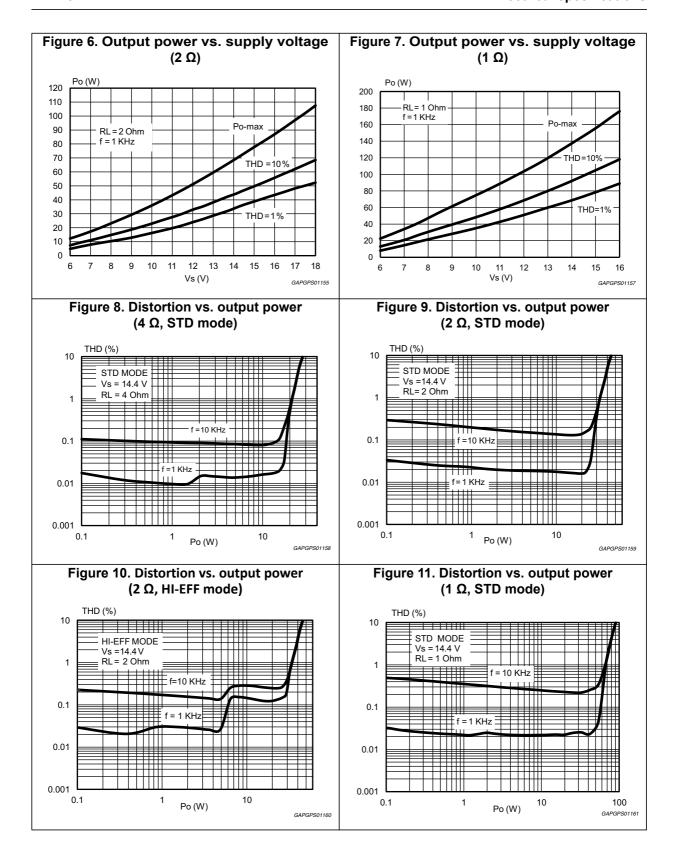

0		Tank and distant	í –		l Na	114	
Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
la	A pin current (ST-BY)	0 V < A < 18 V, V _{st-by} < 1.2 V	-5	-	5	μA	
Iu	A pin current (operative)	A < 18 V, V _{st-by} > 2.6 V	7	13	18	μA	
Lb	B pin voltage	Low logic level	0	-	1.5	V	
Hb	D piii voitage	High logic level	2.5	-	18	V	
lb	B pin current (ST-BY)	0V < B < 18 V, V _{stby} < 1.2 V	-5	-	5	μA	
ID	B pin current (operative)	B < 18 V, V _{st-by} > 2.6 V	7	13	18	μA	
A _{SB}	Standby attenuation	-	90	100	-	dB	
A _M	Mute attenuation	-	80	100	-	dB	
Turn on diagnostics (Power amplifier mode)							
Pgnd	Short to GND det. (below this limit, the Output is considered in Short Circuit to GND)	Power amplifier in standby condition	-	-	1.2	V	
Pvs	Short to Vs det. (above this limit, the Output is considered in Short Circuit to VS)	-	V _s - 0.9	-	-	V	
Pnop	Normal operation thresholds.(Within these limits, the Output is considered without faults).	-	1.8	-	V _s - 1.5	V	
Lsc	Shorted load det.	-	-	-	0.5	Ω	
Lop	Open load det.	-	85	-		Ω	
Lnop	Normal load det.	-	1.5	-	45	Ω	
Turn on o	diagnostics (Line driver mode)		•	•			
Pgnd	Short to GND det. (below this limit, the Output is considered in Short Circuit to GND)		-	-	1.2	٧	
Pvs	Short to Vs det. (above this limit, the Output is considered in Short Circuit to VS)		V _s - 0.9	-	-	V	
Pnop	Normal operation thresholds.(Within these limits, the Output is considered without faults).	Power amplifier in standby	1.8	-	V _s - 1.5	V	
Lsc	Shorted load det.		-	-	1.5	Ω	
Lop	Open load det.		330	-	-	Ω	
Lnop	Normal load det.		4.5	-	180	Ω	
Permane	nt diagnostics (Power amplifier mo	de or line driver mode)			1		
Pgnd	Short to GND det. (below this limit, the Output is considered in Short Circuit to GND)	Power amplifier in Mute or Play condition, one or more short circuits protection activated	-	-	1.2	V	



Symbol	Parameter	Test condition	Min.	Тур.	Max.	Unit	
Pvs	Short to Vs det. (above this limit, the Output is considered in Short Circuit to VS)	-	V _s - 0.9	-	-	V	
Pnop	Normal operation thresholds.(Within these limits, the Output is considered without faults).	-	1.8	-	V _s - 1.5	V	
Lsc	Shorted load det.	Pow. amp. mode	ı	-	0.5	Ω	
LSC	Shorted load det.	Line driver mode	-	-	1.5	Ω	
V _O	Offset detection	Power amplifier in play condition AC input signals = 0	±1.5	±2	±2.5	V	
I _{NLH}	Normal load current detection	$V_O < (V_S - 5)pk IB2 (D0) = 0$	500	-	-	mA	
I _{NLL}	Normal load current detection	V _O < (V _S - 5)pk IB2 (D0) = 1	250	-	-	mA	
I _{OLH}	Open load current detection	$V_O < (V_S - 5)pk IB2 (D0) = 0$	-	-	250	mA	
I _{OLL}	Open load current detection	V _O < (V _S - 5)pk IB2 (D0) =1	ı	-	125	mA	
I ² C bus interface							
f _{SCL}	Clock frequency	-	-	-	400	kHz	
V _{IL}	Input low voltage	-	-	-	1.5	V	
V _{IH}	Input high voltage	-	2.3	-	-	V	

Table 4. Electrical characteristics (continued)

3.4 Electrical characteristics typical curves



5//

12/38 DocID025375 Rev 1

^{1.} Saturated square wave output.

^{2.} ST-BY pin high enables the I^2C bus; ST-BY pin low enables ST-BY condition: detailed pin levels description is contained in paragraph I^2C habilitation settings'.

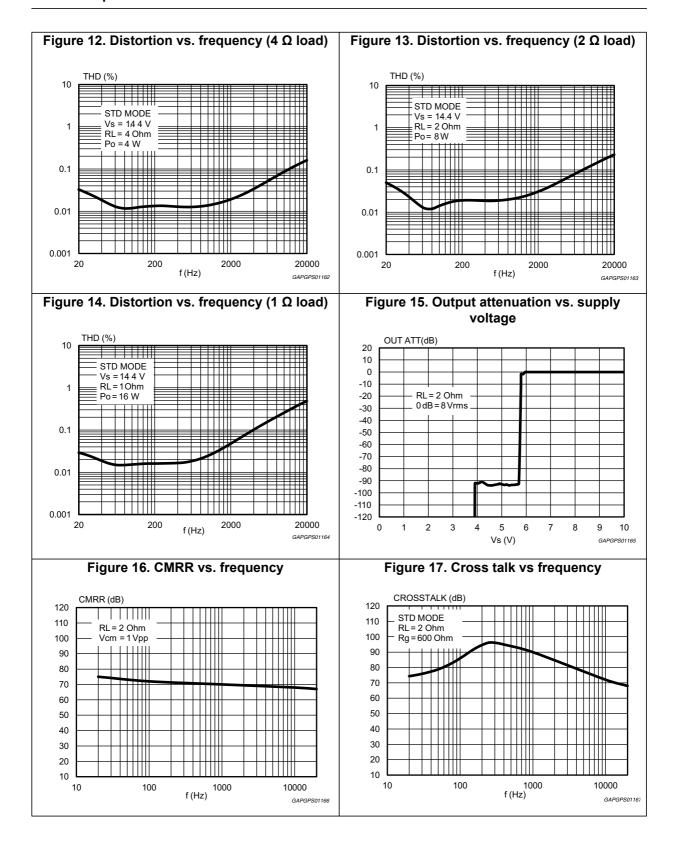


Figure 18. Power dissipation vs. average Po (2 Ω, STD mode, sine wave)

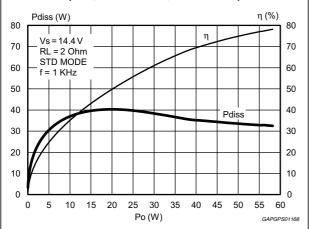


Figure 19. Power dissipation vs. Po (2 Ω , STD mode, audio program simulation)

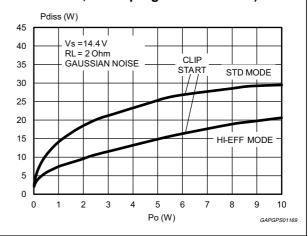


Figure 20. Power dissipation vs. average Po $(2\Omega, HI\text{-}EFF \text{ mode})$

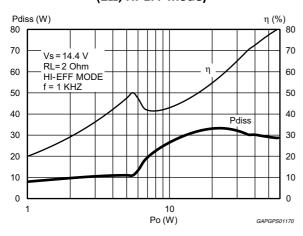


Figure 21. Power dissipation vs. Po (1 Ω , STD mode, audio program simulation)

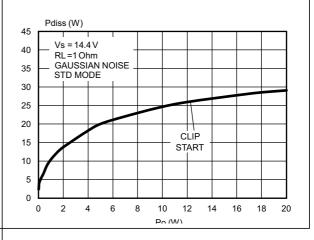
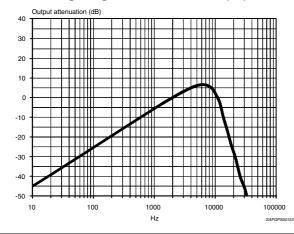



Figure 22. ITU R-ARM frequency response, weighting filter for transient pop

4 Diagnostics functional description

4.1 Turn-on diagnostic

It is strongly recommended to activate this function at the turn-on (standby out) through I²C bus request. Detectable output faults are:

- SHORT TO GND
- SHORT TO Vs
- SHORT ACROSS THE SPEAKER
- OPEN SPEAKER

To verify if any of the above misconnections is in place, a subsonic (inaudible) current pulse (*Figure 23*) is internally generated, sent through the speaker(s) and sunk back. The Turn-on diagnostic status is internally stored until a successive diagnostic pulse is requested (after a I^2C reading).

If the "standby out" and "diag. enable" commands are both given through a single programming step, the pulse takes place first (during the pulse power stages stay off, showing high impedance at the outputs).

Afterwards, when the Amplifier is biased, the permanent diagnostic takes place. The previous turn-on state is kept until a short appears at the outputs.

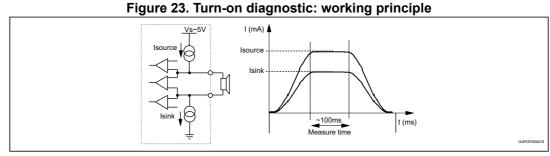


Fig. Figure 24 and Figure 25 show SVR and OUTPUT waveforms at the turn-on (standby out) with and without turn-on diagnostic.

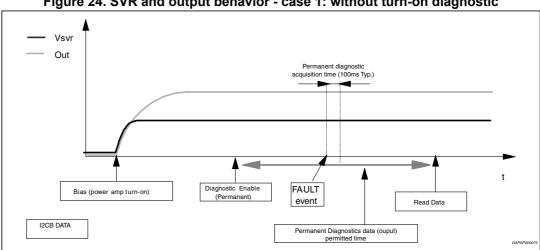


Figure 24. SVR and output behavior - case 1: without turn-on diagnostic

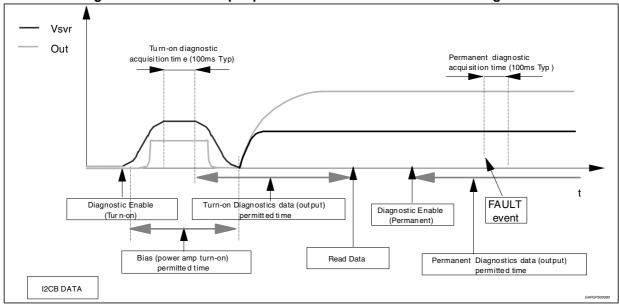
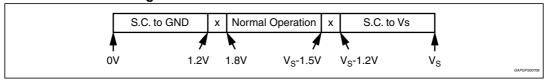



Figure 25. SVR and output pin behavior - case 2: with turn-on diagnostic

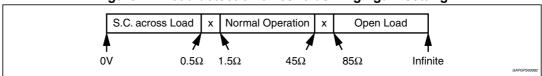

The information related to the outputs status is read and memorized at the end of the current pulse plateau. The acquisition time is 100 ms (typ.). No audible noise is generated in the process. As for SHORT TO GND / Vs the fault-detection thresholds remain unchanged from 26 dB to 16 dB gain setting. They are as follows:

Figure 26. Short circuit detection thresholds

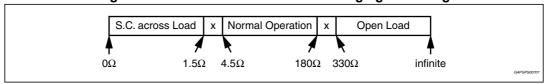

Concerning SHORT ACROSS THE SPEAKER / OPEN SPEAKER, the threshold varies from 26 dB to 16 dB gain setting, since different loads are expected (either normal speaker's impedance or high impedance). The values in case of 26 dB gain are as follows:

Figure 27. Load detection thresholds - high gain setting

If the Line-Driver mode (Gv = 16 dB and Line Driver Mode diagnostic = 1) is selected, the same thresholds will change as follows:

Figure 28. Load detection thresholds - high gain setting

4.2 Permanent diagnostics

Detectable conventional faults are:

- SHORT TO GND
- SHORT TO Vs
- SHORT ACROSS THE SPEAKER

The following additional feature is provided:

OUTPUT OFFSET DETECTION

The TDA7577BLV has 2 operating status:

- RESTART mode. The diagnostic is not enabled. Each audio channel operates independently of each other. If any of the a.m. faults occurs, only the channel(s) interested is shut down. A check of the output status is made every 1 ms (*Figure 29*). Restart takes place when the overload is removed.
- 2. DIAGNOSTIC mode. It is enabled via I²C bus and it self activates if an output overload (such as to cause the intervention of the short-circuit protection) occurs to the speakers outputs. Once activated, the diagnostics procedure develops as follows (*Figure 30*):
 - To avoid momentary re-circulation spikes from giving erroneous diagnostics, a check of the output status is made after 1ms: if normal situation (no overloads) is detected, the diagnostic is not performed and the channel returns active.
 - Instead, if an overload is detected during the check after 1 ms, then a diagnostic cycle having a duration of about 100 ms is started.
 - After a diagnostic cycle, the audio channel interested by the fault is switched to RESTART mode. The relevant data are stored inside the device and can be read by the microprocessor. When one cycle has terminated, the next one is activated by an I²C reading. This is to ensure continuous diagnostics throughout the carradio operating time.
 - To check the status of the device a sampling system is needed. The timing is chosen at microprocessor level (more than half a second is recommended).

Figure 29. Restart timing without diagnostic enable (permanent) each 1ms time, a sampling of the fault is done

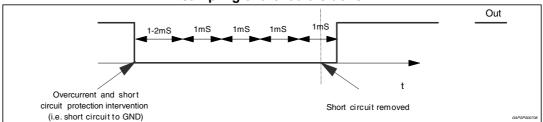
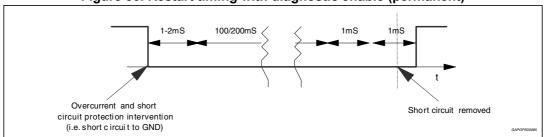



Figure 30. Restart timing with diagnostic enable (permanent)

18/38 DocID025375 Rev 1

4.3 Output DC offset detection

Any DC output offset exceeding ± 2 V is signalled out. This inconvenient might occur as a consequence of initially defective or aged and worn-out input capacitors feeding a DC component to the inputs, so putting the speakers at risk of overheating.

This diagnostic has to be performed with low-level output AC signal (or Vin = 0).

The test is run with selectable time duration by microprocessor (from a "start" to a "stop" command):

- START = Last reading operation or setting IB1 D5 (OFFSET enable) to 1
- STOP = Actual reading operation

Excess offset is signalled out if it is persistent for all the assigned testing time. This feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process.

4.4 AC diagnostic

It is targeted at detecting accidental disconnection of tweeters in 2-way speaker and, more in general, presence of capacitively (AC) coupled loads.

This diagnostic is based on the notion that the overall speaker's impedance (woofer + parallel tweeter) will tend to increase towards high frequencies if the tweeter gets disconnected, because the remaining speaker (woofer) would be out of its operating range (high impedance). The diagnostic decision is made according to peak output current thresholds, and it is enabled by setting (IB2-D2) = 1. Two different detection levels are available:

- HIGH CURRENT THRESHOLD IB2 (D7) = 0 lout > 500mApk = NORMAL STATUS lout < 250mApk = OPEN TWEETER
- LOW CURRENT THRESHOLD IB2 (D7) = 1 lout > 250mApk = NORMAL STATUS lout < 125mApk = OPEN TWEETER

To correctly implement this feature, it is necessary to briefly provide a signal tone (with the amplifier in "play") whose frequency and magnitude are such as to determine an output current higher than 500 mApk with IB2(D7) = 0 (higher than 250 mApk with IB2(D7) = 1) in normal conditions and lower than 250 mApk with IB2(D7) = 0 (lower than 125 mApk with IB2(D7) = 1) should the parallel tweeter be missing.

The test has to last for a minimum number of 3 sine cycles starting from the activation of the AC diagnostic function IB2<D2>) up to the I²C reading of the results (measuring period). To confirm presence of tweeter, it is necessary to find at least 3 current pulses exceeding the above threshold over all the measuring period, else an "open tweeter" message will be issued.

The frequency / magnitude setting of the test tone depends on the impedance characteristics of each specific speaker being used, with or without the tweeter connected (to be calculated case by case). High-frequency tones (> 10 kHz) or even ultrasonic signals are recommended for their negligible acoustic impact and also to maximize the impedance module's ratio between with tweeter-on and tweeter-off.

Figure 31 and 32 shows the load impedance as a function of the peak output voltage and the relevant diagnostic fields.

It is recommended to keep output voltage always below 8 V (high threshold) or 4 V (low threshold) to avoid circuit to saturate (causing wrong detection cases).

This feature is disabled if any overloads leading to activation of the short-circuit protection occurs in the process.

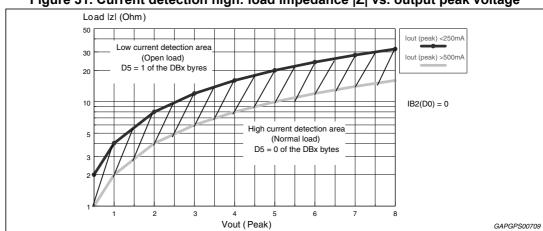
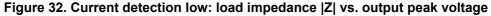
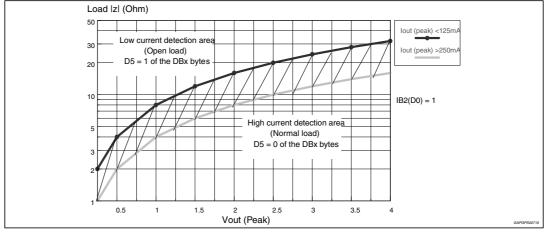




Figure 31. Current detection high: load impedance |Z| vs. output peak voltage

47/

4.5 Multiple faults

When more misconnections are simultaneously in place at the audio outputs, it is guaranteed that at least one of them is initially read out. The others are notified after successive cycles of I²C reading and faults removal, provided that the diagnostic is enabled. This is true for both kinds of diagnostic (Turn on and Permanent).

The table below shows all the couples of double-fault possible. It should be taken into account that a short circuit with the 4 Ω speaker unconnected is considered as double fault.

	S. GND	S. Vs	S. Across L.	Open L.
S. GND	S. GND	S. Vs + S. GND	S. GND	S. GND
S. Vs	1	S. Vs	S. Vs	S. Vs
S. Across L.	1	1	S. Across L.	N.A.
Open L.	1	1	1	Open L. (*)

Table 5. Double fault table for turn on diagnostic

In Permanent Diagnostic the table is the same, with only a difference concerning Open Load(*), which is not among the recognizable faults. Should an Open Load be present during the device's normal working, it would be detected at a subsequent Turn on Diagnostic cycle (i.e. at the successive car radio turn-on).

4.6 Fault presence information availability on I²C

All the results coming from I²C bus, by read operations, are the consequence of measurements inside a defined period of time. If the fault is stable throughout the whole period, it will be sent out. This is true for DC diagnostic (Turn-on and Permanent), for offset detector.

To guarantee always resident functions, every kind of diagnostic cycles (turn-on, Permanent, Offset) will be reactivated after any I^2C reading operation. Each I^2C read-out done by the microcontroller will enable a new diagnostic cycle, but the read data will come from the previous diagnostic cycle (i.e. The device is in turn-on state, with a short to GND, then the short is removed and micro reads I^2C . The short to GND is still present in bytes, because it is the result of the previous cycle. If another I^2C reading operation occurs, the bytes do not show the short). In general to observe a change in diagnostic bytes, two I^2C reading operations are necessary.

5 1 Ω load capability setting

It is possible to drive 1 Ω load paralleling the outputs into a single channel.

In order to implement this feature, outputs should be connected as follows:

OUT1+ shorted to OUT2+

OUT1- shorted to OUT2-.

It is recommended to minimize the impedance on the board between OUT2 and the load in order to minimize THD distortion. It is also recommended to control the maximum mismatch impedance between V_{CC} pins (PIN21/PIN22 respect to PIN33/PIN34) and between PWGND pins (PIN24/PIN25 respect to PIN30/PIN31), mismatch that must not exceed a value of 20 m Ω .

With 1Ω feature settled the active input is IN2 (PIN17 and PIN18), therefore IN1 pins should be let floating.

It is possible to set the load capability acting on 1 Ω pin as follows:

1 Ω PIN < 1.2V: two channels mode (for a minimum load of 2 Ω)

1 Ω PIN > 2.6V: one channel mode (for 1 Ω load).

It is to remember that 1 Ω function is a hardware selection.

Therefore it is recommended to leave 1 Ω pin floating or shorted to GND to set the two channels mode configuration, or to short 1 Ω pin to V_{CC} to set the one channel (1 Ω) configuration.

Battery transitions management 6

Low voltage operation ("start stop") 6.1

The most recent OEM specifications require automatic stop of car engine at traffic light, in order to reduce emissions of polluting substances. The TDA7577BLV, thanks to its innovating design, is able to play when battery falls down to 6/7 V during such conditions, without producing audible pop noise. The maximum system power will be reduced accordingly.

Worst case battery cranking curves are shown below, indicating the shape and duration of allowed battery transitions.

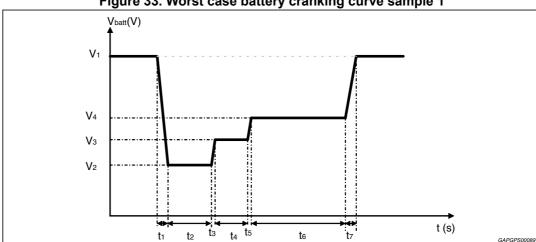


Figure 33. Worst case battery cranking curve sample 1

V1 = 12 V; V2 = 6 V; V3 = 7 V; V4 = 8 V

t1 = 2 ms; t2 = 50 ms; t3 = 5 ms; t4 = 300 ms; t5 = 10 ms; t6 = 1 s; t7 = 2 ms

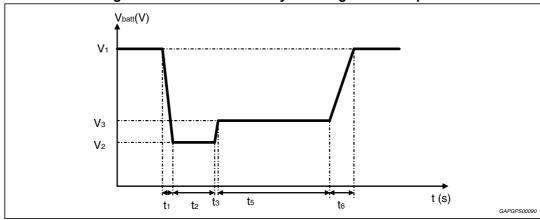
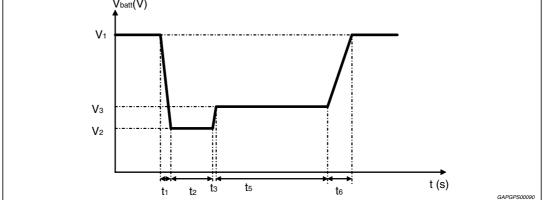



Figure 34. Worst case battery cranking curve sample 2

V1 = 12 V; V2 = 6 V; V3 = 7 V

t1 = 2 ms; t2 = 5 ms; t3 = 15 ms; t5 = 1 s; t6 = 50 ms

Advanced battery management 6.2

In addition to compatibility with low V_{batt} , the TDA7577BLV is able to substain upwards fast battery transitions (like the one showed in *Figure 35*) without causing unwanted audible effect, thanks to the innovative circuit topology.

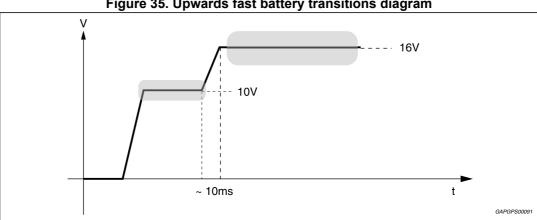


Figure 35. Upwards fast battery transitions diagram

7 I²C mode and legacy mode selection

It is possible to disable the I²C interface by acting on I2C EN pin and control the TDA7577BLV by means of the usual ST-BY and MUTE pins. In order to activate or deactivate this feature, I2C-EN must be set as follows:

- I2C-EN (PIN16) < 1.5 V:
 - I²C bus interface deactivated
- I2C-EN (PIN16) > 2.5 V:
 - I²C bus interface activated

(It is also possible to let I2C-EN PIN floating to deactivate the I^2C bus interface, or to short to V_{CC} to activate I^2C).

In particular:

When I^2C is ENABLED: (I2C-EN pin > 2.5 V) then there are the following modes:

- STD MODE: V_{stbv} (PIN5) > 2.6 V, IB2(D1)=0
- HE MODE: V_{stbv} (PIN5) > 2.6 V, IB2(D1)=1
- PLAY MODE: V_{mute} (pin 4) > 2.6 V, IB1 (D2) = 1

The amplifier can always be switched off by putting V_{stby} to 0V, but with I^2C enabled it can be turn on only through I^2C (with $V_{stby} > 2.6$ V).

When I^2C is DISABLED: (I2C pin < 1.5 V) then there are the following modes:

- STD MODE: 2.6 V < ST-BY (PIN5) < 5 V
- HE MODE: V_{stby} (PIN5) > 7 V
- PLAY MODE: V_{mute} (pin 4) > 2.6 V

For both STD and HE MODE the play/mute mode can be set acting on V_{mute} pin.

In legacy mode (I^2C disabled), faults (diagnostics information) are available on HW pin CD-Out. CD-Out pin is active on a low value [CD-Out low = fault detected]. The faults detected are: short to ground or V_{CC} , short across the load.

8 Application suggestions

8.1 High efficiency introduction

Thanks to its operating principle, the TDA7577BLV obtains a substantial reduction of power dissipation from traditional class-AB amplifiers without being affected by the massive radiation effects and complex circuitry normally associated with class-D solutions.

The high efficiency operating principle is based on the use of bridge structures which are connected by means of a power switch (*Figure 1*). The switch, controlled by a logic circuit which senses the input signals, is closed at low volumes (output power steadily lower than 2.5 W) and the system acts like a "single bridge" with double load. In this case, the total power dissipation is a quarter of a double bridge.

Due to its structure, the highest efficiency level can be reached when symmetrical loads are applied on channels sharing the same switch.

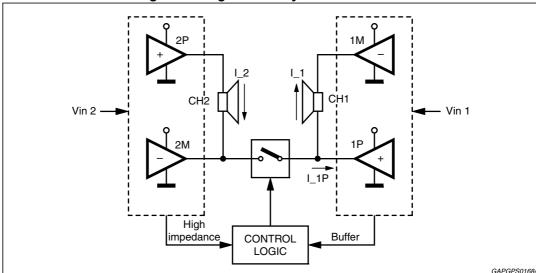


Figure 36. High efficiency - basic structure

When the power demand increases to more than 2.5 W, the system behavior is switched back to a standard double bridge in order to guarantee the maximum output power, while in the 6 V start-stop devices the High Efficiency mode is automatically disabled at low V_{CC} (7.3 V ± 0.3 V). No need to re-program it when Vcc goes back to normal levels.

In the range 2-4 W (@ V_{CC} = 14.4 V), with the High Efficiency mode, the dissipated power gets up to 50 % less than the value obtained with the standard mode.

26/38 DocID025375 Rev 1

TDA7577BLV I²C bus interface

9 I²C bus interface

Data transmission from microprocessor to the TDA7577BLV and vice versa takes place through the 2 wires I²C bus interface, consisting of the two lines SDA and SCL (pull-up resistors to positive supply voltage must be connected).

9.1 Data validity

As shown by Figure 37, the data on the SDA line must be stable during the high period of the clock

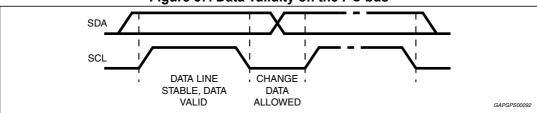
The HIGH and LOW state of the data line can only change when the clock signal on the SCL line is LOW.

9.2 Start and stop conditions

As shown by *Figure 38* a start condition is a HIGH to LOW transition of the SDA line while SCL is HIGH.

The stop condition is a LOW to HIGH transition of the SDA line while SCL is HIGH.

9.3 Byte format

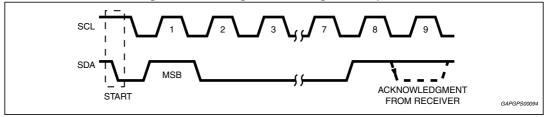

Every byte transferred to the SDA line must contain 8 bits. Each byte must be followed by an acknowledge bit. The MSB is transferred first.

9.4 Acknowledge

The transmitter^(*) puts a resistive HIGH level on the SDA line during the acknowledge clock pulse (see *Figure 39*). The receiver^(**) has to pull-down (LOW) the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during this clock pulse.

- (*) Transmitter
 - = master (µP) when it writes an address to the TDA7577BLV
 - = slave (TDA7577BLV) when the μP reads a data byte from TDA7577BLV
- (**) Receiver
 - = slave (TDA7577BLV) when the µP writes an address to the TDA7577BLV
 - = master (µP) when it reads a data byte from TDA7577BLV

Figure 37. Data validity on the I²C bus



I²C bus interface TDA7577BLV

Figure 39. Timing acknowledge clock pulse

9.5 I²C programming/reading sequences

A correct turn on/off sequence with respect to the diagnostic timings and producing no audible noises could be as follows (after battery connection):

- TURN-ON: (STANDBY OUT + DIAG ENABLE) --- 1 s (min) --- MUTING OUT
- TURN-OFF: MUTING IN --- 20 ms --- (DIAG DISABLE + STAND-BY IN)

Car Radio Installation: DIAG ENABLE (write) --- 200ms --- I²C read (repeat until All faults disappear).

- OFFSET TEST: Device in Play (no signal) --
- OFFSET ENABLE 30ms I²C reading

(repeat I²C reading until high-offset message disappears).

10 Software specifications

All the functions of the TDA7577BLV are activated by I^2C interface.

The bit 0 of the "ADDRESS BYTE" defines if the next bytes are write instruction (from μP to TDA7577BLV) or read instruction (from TDA7577BLV to μP).

Table 6. Address selection

Bit	Selection
A6	1
A5	1
A4	0
A3	1
A2	0
A1	В
A0	A
R/W	X

If R/W = 0, the μ P sends 2 "Instruction Bytes": IB1 and IB2.

Table 7. IB1

Bit	Instruction decoding bit
D7	Supply voltage mute high threshold (D7 = 1) Supply voltage mute low threshold (D7 = 0)
D6	Diagnostic enable (D6 = 1) Diagnostic defeat (D6 = 0)
D5	Offset Detection enable (D5 = 1) Offset Detection defeat (D5 = 0)
D4	Gain = 26 dB (D4 = 0) Gain = 16 dB (D4 = 1)
D3	0
D2	Mute (D2 = 0) Unmute (D2 = 1)
D1	0
D0	CD 2% (D0 = 0) CD 10% (D0 = 1)

Table 8. IB2

Bit	Instruction decoding bit
D7	Current Detection Threshold HIGH (D7 =0)
	Current Detection Threshold LOW (D7 =1)
D6	0
D5	Fast muting disable - (D5 = 0)
D3	Fast muting enable - (D5 = 1)
D4	Stand-by on - Amplifier not working - (D4 = 0)
D4	Stand-by off - Amplifier working - (D4 = 1)
D3	Power Amplifier Mode Diagnostic (D3 = 0);
D3	Line Driver Mode Diagnostic (D3 = 1)
D2	Current Detection Diagnostic Enabled (D2 = 1)
D2	Current Detection Diagnostic Defeat (D2 = 0)
D1	Power amplifier working in standard mode (D1 = 0)
	Power amplifier working in high efficiency mode (D1 = 1)
D0	0

If R/W = 1, the TDA7577BLV sends 2 "Diagnostics Bytes" to μ P: DB1 and DB2.

Table 9. DB1

Bit	Instruction	decoding bit			
D7	Thermal warning (if Tchip ≥ 150°C, D7 = 1)				
D6	Diag. cycle not activated or not terminated (D6 = 0) Diag. cycle terminated (D6 = 1)				
D5	Channel 1 Current detection IB2 (D0) = 0 Output peak current < 250 mA - Open load (D5 = 1) Output peak current > 500 mA - Normal load (D5 = 0)	Channel1 Current detection IB2 (D0) = 1 Output peak current < 125 mA - Open load (D5 = 1) Output peak current > 250 mA - Normal load (D5 = 0)			
D4	Channel 1 Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1)				
D3	Channel 1 Normal load (D3 = 0) Short load (D3 = 1)				
D2	Channel 1 Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Offset diag.: No output offset (D2 = 0) Output offset detection (D2 = 1)				
D1	Channel 1 No short to V_{cc} (D1 = 0) Short to V_{cc} (D1 = 1)				
D0	Channel 1 No short to GND (D0 = 0) Short to GND (D0 = 1)				

Table 10. DB2

Bit	Instruction	decoding bit				
Біі		decoding bit				
D7	Offset detection not activated (D7 = 0) Offset detection activated (D7 = 1)					
D6	Current sensor not activated (D6 = 0) Current sensor activated (D6 = 1)					
D5	Channel 2 Current detection IB2 (D0) = 0 Output peak current < 250 mA - Open load (D5 = 1) Output peak current > 500 mA - Normal load (D5 = 0)	Channel 2 Current detection IB2 (D0) = 1 Output peak current < 125 mA - Open load (D5 = 1) Output peak current > 250 mA - Normal load (D5 = 0)				
D4	Channel 2 Turn-on diagnostic (D4 = 0) Permanent diagnostic (D4 = 1)					
D3	Channel 2 Normal load (D3 = 0) Short load (D3 = 1)					
D2	Channel 2 Turn-on diag.: No open load (D2 = 0) Open load detection (D2 = 1) Permanent diag.: No output offset (D2 = 0) Output offset detection (D2 = 1)					
D1	Channel 2 No short to V_{cc} (D1 = 0) Short to V_{cc} (D1 = 1)					
D0	Channel 2 No short to GND (D0 = 0) Short to GND (D0 = 1)					

10.1 Examples of bytes sequence

1 - Turn-on diagnostic - Write operation

Start Address byte with D0 = 0	ACK	IB1 with D6 = 1	ACK	IB2	ACK	STOP
--------------------------------	-----	-----------------	-----	-----	-----	------

2 - Turn-on diagnostic - Read operation

Start Address byte with D0 = 1	ACK D	B1 ACK	DB2	ACK	STOP	
--------------------------------	-------	--------	-----	-----	------	--

The delay from 1 to 2 can be selected by software, starting from 1 ms

3a - Turn-on of the power amplifier with mute on, diagnostic defeat.

Start	Address byte with D0 = 0	ACK	IB1	ACK	IB2	ACK	STOP
			X000XXXX		XXX1XX1X		

3b - Turn-off of the power amplifier

ſ	Start	Address byte with D0 = 0	ACK	IB1	ACK	IB2	ACK	STOP
			•	X0XXXXXX		XXX0XXXX		

4 - Offset detection procedure enable

Start	Address byte with D0 = 0	ACK	IB1	ACK	IB2	ACK	STOP
			XX1XX1XX		XXX1XXXX		

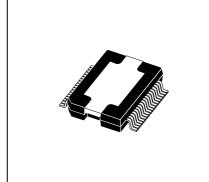
5 - Offset detection procedure stop and reading operation (the results are valid only for the offset detection bits (D2 of the bytes DB1, DB2).

	` `	,	,					
Start	Address byte with D0 = 1	ACK	DB1	ACK	DB2	ACK	STOP	l

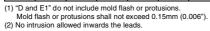
- The purpose of this test is to check if a D.C. offset (2 V typ.) is present on the outputs, produced by input capacitor with anomalous leakage current or humidity between pins.
- The delay from 4 to 5 can be selected by software, starting from 1 ms.

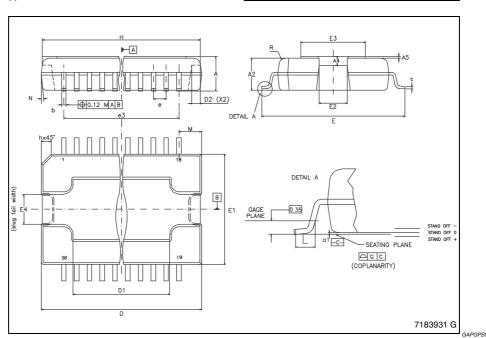
TDA7577BLV Package information

11 Package information


In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: www.st.com.

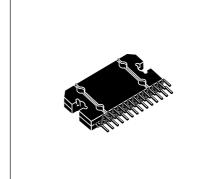
ECOPACK® is an ST trademark.


Figure 40. PowerSO36 (slug up) mechanical data and package dimensions

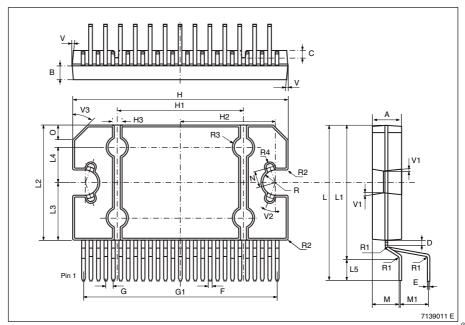

DIM		mm		inch			
DIM.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	3.270	-	3.410	0.1287	-	0.1343	
A2	3.100	-	3.180	0.1220	-	0.1252	
A4	0.800	-	1.000	0.0315	-	0.0394	
A5	-	0.200	-	-	0.0079	-	
a1	0.030	-	-0.040	0.0012	-	-0.0016	
b	0.220	-	0.380	0.0087	-	0.0150	
С	0.230	-	0.320	0.0091	-	0.0126	
D	15.800	-	16.000	0.6220	-	0.6299	
D1	9.400	-	9.800	0.3701	-	0.3858	
D2	-	1.000	-	-	0.0394	-	
E	13.900	-	14.500	0.5472	-	0.5709	
E1	10.900	-	11.100	0.4291	-	0.4370	
E2	-	-	2.900	-	-	0.1142	
E3	5.800	-	6.200	0.2283	-	0.2441	
E4	2.900	-	3.200	0.1142	-	0.1260	
е	-	0.650	-	-	0.0256	-	
e3	-	11.050	-	-	0.4350	-	
G	0	-	0.075	0	-	0.0031	
Н	15.500	-	15.900	0.6102	-	0.6260	
h	-	-	1.100	-	-	0.0433	
L	0.800	-	1.100	0.0315	-	0.0433	
N	-	-	10°	-	-	10°	
S	-	-	8°	-	-	8°	

OUTLINE AND MECHANICAL DATA

PowerSO36 (SLUG UP)



Package information TDA7577BLV


Figure 41. Flexiwatt27 (vertical) mechanical data and package dimensions

DIM.		mm		inch					
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.			
Α	4.45	4.50	4.65	0.175	0.177	0.183			
В	1.80	1.90	2.00	0.070	0.074	0.079			
С		1.40			0.055				
D	0.75	0.90	1.05	0.029	0.035	0.041			
Е	0.37	0.39	0.42	0.014	0.015	0.016			
F (1)			0.57			0.022			
G	0.80	1.00	1.20	0.031	0.040	0.047			
G1	25.75	26.00	26.25	1.014	1.023	1.033			
H (2)	28.90	29.23	29.30	1.139	1.150	1.153			
H1		17.00			0.669				
H2		12.80			0.503				
Н3		0.80			0.031				
L (2)	22.07	22.47	22.87	0.869	0.884	0.904			
L1	18.57	18.97	19.37	0.731	0.747	0.762			
L2 (2)	15.50	15.70	15.90	0.610	0.618	0.626			
L3	7.70	7.85	7.95	0.303	0.309	0.313			
L4		5			0.197				
L5		3.5			0.138				
M	3.70	4.00	4.30	0.145	0.157	0.169			
M1	3.60	4.00	4.40	0.142	0.157	0.173			
N		2.20			0.086				
0		2			0.079				
R		1.70			0.067				
R1		0.5			0.02				
R2		0.3			0.12				
R3		1.25			0.049				
R4		0.50			0.019				
٧			5° (Гур.)					
V1				Гур.)					
V2				Typ.)					
V3	45° (Typ.)								

OUTLINE AND MECHANICAL DATA

Flexiwatt27 (vertical)

34/38 DocID025375 Rev 1

TDA7577BLV Package information

Figure 42. Flexiwatt27 (horizontal) mechanical data and package dimensions

DIM. A B C C D E F (1) G G G1 H (2) H3 L (2) L1 L2 (2) L3 L4 L5 L6 M M1 M2 N P R R R1 R2 R3 R4	0.37 0.75 25.70 28.90 21.64 10.15 15.50 7.70 5.15 1.80 2.75	1.00 26.00 22.04 1.55 1.56 2.04 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65	0.42 0.57 1.25 26.30 29.30 29.30 29.30 29.30 29.30 5.85 2.10 3.50	0.014 0.0295 1.0118 1.139 0.852 0.40 0.610 0.303 0.203 0.070 0.108	inch TYP. 0.177 0.074 0.055 0.079 0.015 0.040 1.023 1.150 0.669 0.503 0.031 0.868 0.413 0.618 0.309 0.197 0.214	0.079	OUTLINE AND MECHANICAL DATA
B C D E F (1) G G1 H1 (2) L1 L2 (2) L3 L4 L5 L6 M M1 M2 N P R R1 R2 R3 R4	21.64 10.15 15.50 25.70 28.90 21.64 10.15 15.50 7.70 2.75	1.90 1.40 2.00 0.39 1.00 26.00 29.23 17.00 12.80 0.80 22.04 10.5 15.70 7.85 5 5.45 1.95 3.00 4.73 5.61 2.20 3.50	2.00 0.42 0.57 1.25 26.30 29.30 22.44 10.85 15.90 7.95 5.85 2.10	0.070 0.014 0.0295 1.0118 1.139 0.852 0.40 0.610 0.303 0.203 0.070	0.074 0.055 0.079 0.015 0.040 1.023 1.150 0.669 0.503 0.031 0.868 0.413 0.618 0.309 0.197 0.214	0.016 0.022 1.0354 1.153 0.883 0.427 0.626 0.313	
C D E F (1) G G G 1 H (2) C 1 H (2) C 1 H (2) C 1 L (2) L 1 L (2) L 3 L 4 L 5 L 6 M M 1 M (2) N P R R R 1 R 2 R 3 R 4 R 4	0.37 0.75 25.70 28.90 21.64 10.15 15.50 7.70 5.15 1.80 2.75	1.40 2.00 0.39 1.00 26.00 29.23 17.00 12.80 0.80 22.04 10.5 5 5.45 1.95 3.00 4.73 5.61 2.20 3.50	0.42 0.57 1.25 26.30 29.30 22.44 10.85 15.90 7.95	0.014 0.0295 1.0118 1.139 0.852 0.40 0.610 0.303 0.203 0.070	0.055 0.079 0.015 0.040 1.023 1.150 0.669 0.503 0.031 0.868 0.413 0.618 0.309 0.197 0.214	0.016 0.022 0.0492 1.0354 1.153 0.883 0.427 0.626 0.313	MECHANICAL DATA
D E F (1) G G 1 H (2) H3 L (2) L1 L2 (2) L3 L4 L5 L6 M M1 M2 N P R R R1 R2 R3 R4	0.75 25.70 28.90 21.64 10.15 15.50 7.70 5.15 1.80 2.75	2.00 0.39 1.00 26.00 29.23 17.00 12.80 0.80 22.04 10.5 5 5 5.45 1.95 3.00 4.73 5.61 2.20 3.50	0.57 1.25 26.30 29.30 22.44 10.85 15.90 7.95 5.85 2.10	0.0295 1.0118 1.139 0.852 0.40 0.610 0.303 0.203 0.070	0.079 0.015 0.040 1.023 1.150 0.669 0.503 0.031 0.868 0.413 0.618 0.309 0.197 0.214	0.022 0.0492 1.0354 1.153 0.883 0.427 0.626 0.313	
E F (1) G G1 H (2) H1 H2 H3 L (2) L1 L2 (2) L3 L4 L5 L6 M M1 M2 N P R R1 R2 R3 R4	0.75 25.70 28.90 21.64 10.15 15.50 7.70 5.15 1.80 2.75	0.39 1.00 26.00 29.23 17.00 12.80 0.80 22.04 10.5 15.70 7.85 5.45 1.95 3.00 4.73 5.61 2.20 3.50	0.57 1.25 26.30 29.30 22.44 10.85 15.90 7.95 5.85 2.10	0.0295 1.0118 1.139 0.852 0.40 0.610 0.303 0.203 0.070	0.015 0.040 1.023 1.150 0.669 0.503 0.031 0.868 0.413 0.618 0.309 0.197 0.214	0.022 0.0492 1.0354 1.153 0.883 0.427 0.626 0.313	
F (1) G G1 H (2) H1 H2 H3 L (2) L1 L2 (2) L3 L4 L5 L6 M M1 M2 N P R R1 R2 R3 R4	0.75 25.70 28.90 21.64 10.15 15.50 7.70 5.15 1.80 2.75	1.00 26.00 29.23 17.00 12.80 0.80 22.04 10.5 15.70 7.85 5 5.45 1.95 3.00 4.73 5.61 2.20 3.50	0.57 1.25 26.30 29.30 22.44 10.85 15.90 7.95 5.85 2.10	0.0295 1.0118 1.139 0.852 0.40 0.610 0.303 0.203 0.070	0.040 1.023 1.150 0.669 0.503 0.031 0.868 0.413 0.618 0.309 0.197 0.214	0.022 0.0492 1.0354 1.153 0.883 0.427 0.626 0.313	
G G1 H (2) H1 H2 H3 L (2) L1 L2 (2) L3 L4 L5 L6 M M1 M2 N P R R1 R2 R3 R4	25.70 28.90 21.64 10.15 15.50 7.70 5.15 1.80 2.75	26.00 29.23 17.00 12.80 0.80 22.04 10.5 15.70 7.85 5 5.45 1.95 3.00 4.73 5.61 2.20 3.50	22.44 10.85 15.90 7.95 5.85 2.10	1.0118 1.139 0.852 0.40 0.610 0.303 0.203 0.070	1.023 1.150 0.669 0.503 0.031 0.868 0.413 0.618 0.309 0.197 0.214	0.0492 1.0354 1.153 0.883 0.427 0.626 0.313	
G1 H (2) H1 H2 H3 L (2) L1 L2 (2) L3 L4 L5 L6 M M1 M2 N P R R1 R2 R3 R4	25.70 28.90 21.64 10.15 15.50 7.70 5.15 1.80 2.75	26.00 29.23 17.00 12.80 0.80 22.04 10.5 15.70 7.85 5 5.45 1.95 3.00 4.73 5.61 2.20 3.50	26.30 29.30 29.30 22.44 10.85 15.90 7.95 5.85 2.10	1.0118 1.139 0.852 0.40 0.610 0.303 0.203 0.070	1.023 1.150 0.669 0.503 0.031 0.868 0.413 0.618 0.309 0.197 0.214	1.0354 1.153 0.883 0.427 0.626 0.313	
H1 H2 H3 L(2) L1 L2(2) L3 L4 L5 L6 M 1 M2 N P R R1 R1 R2 R3 R4	21.64 10.15 15.50 7.70 5.15 1.80 2.75	17.00 12.80 0.80 22.04 10.5 15.70 7.85 5 5.45 1.95 3.00 4.73 5.61 2.20 3.50	22.44 10.85 15.90 7.95 5.85 2.10	0.852 0.40 0.610 0.303 0.203 0.070	0.669 0.503 0.031 0.868 0.413 0.618 0.309 0.197 0.214	0.883 0.427 0.626 0.313	
H2 H3 L (2) L1 L2 (2) L3 L4 L5 L6 M M1 M2 N P R R1 R2 R3 R4	10.15 15.50 7.70 5.15 1.80 2.75	12.80 0.80 22.04 10.5 15.70 7.85 5 5.45 1.95 3.00 4.73 5.61 2.20 3.50	10.85 15.90 7.95 5.85 2.10	0.40 0.610 0.303 0.203 0.070	0.503 0.031 0.868 0.413 0.618 0.309 0.197 0.214	0.427 0.626 0.313	
H3 L (2) L1 L2 (2) L3 L4 L5 L6 M M1 M2 N P R R1 R2 R3 R4	10.15 15.50 7.70 5.15 1.80 2.75	0.80 22.04 10.5 15.70 7.85 5 5.45 1.95 3.00 4.73 5.61 2.20	10.85 15.90 7.95 5.85 2.10	0.40 0.610 0.303 0.203 0.070	0.031 0.868 0.413 0.618 0.309 0.197 0.214	0.427 0.626 0.313	
L (2) L1 L2 (2) L3 L4 L5 L6 M M1 M2 N P R R1 R2 R3 R4	10.15 15.50 7.70 5.15 1.80 2.75	22.04 10.5 15.70 7.85 5 5.45 1.95 3.00 4.73 5.61 2.20 3.50	10.85 15.90 7.95 5.85 2.10	0.40 0.610 0.303 0.203 0.070	0.868 0.413 0.618 0.309 0.197 0.214	0.427 0.626 0.313	
L1 L2 (2) L3 L4 L5 L6 M M1 M2 N P R R1 R2 R3 R4	10.15 15.50 7.70 5.15 1.80 2.75	10.5 15.70 7.85 5 5.45 1.95 3.00 4.73 5.61 2.20 3.50	10.85 15.90 7.95 5.85 2.10	0.40 0.610 0.303 0.203 0.070	0.413 0.618 0.309 0.197 0.214	0.427 0.626 0.313	
L2 (2) L3 L4 L5 L6 M M1 M2 N P R R1 R2 R3 R4	15.50 7.70 5.15 1.80 2.75	15.70 7.85 5 5.45 1.95 3.00 4.73 5.61 2.20 3.50	15.90 7.95 5.85 2.10	0.610 0.303 0.203 0.070	0.618 0.309 0.197 0.214	0.626 0.313	
L3 L4 L5 L6 M M1 M2 N P R R1 R2 R3 R4	7.70 5.15 1.80 2.75	7.85 5 5.45 1.95 3.00 4.73 5.61 2.20 3.50	7.95 5.85 2.10	0.303 0.203 0.070	0.309 0.197 0.214	0.313	
L4 L5 L6 M M1 M2 N P R R1 R2 R3 R4	1.80 2.75	5 5.45 1.95 3.00 4.73 5.61 2.20 3.50	5.85 2.10	0.203 0.070	0.197 0.214		
L6 M M1 M2 N P R R1 R2 R3 R4	1.80 2.75	1.95 3.00 4.73 5.61 2.20 3.50	2.10	0.070		l 0.23 l	
M M1 M2 N P R R1 R2 R3 R4	2.75	3.00 4.73 5.61 2.20 3.50			10077		
M1 M2 N P R R1 R2 R3 R4		4.73 5.61 2.20 3.50	3.50	0.108		0.083	
M2 N P R R1 R2 R3 R4	3.20	5.61 2.20 3.50			0.118 0.186	0.138	
N P R R1 R2 R3 R4	3.20	2.20 3.50			0.186		
P R R1 R2 R3 R4	3.20	3.50	1		0.086		
R1 R2 R3 R4		4 = 0	3.80	0.126	0.138	0.15	
R2 R3 R4		1.70			0.067		
R3 R4		0.50			0.02		
R4		0.30			0.12		
		1.25 0.50			0.049		FI 1107
V		0.50	5° (Typ.)	0.02	L	Flexiwatt27
V1				Typ.)			(Horizontal)
V2				(Typ.)			(110112011111)
V3	bar protus			(Тур.)			
α							
13 L4 D			H3		H H	H2	
	_				G1 -		₩2 1

Package information TDA7577BLV

Figure 43. Flexiwatt27 (SMD) mechanical data and package dimensions

	MIN.	mm TYP.	MAX.	MIN.	inch TYP.	MAX.	
							OUTLINE AND
A B	4.45 2.12	4.50 2.22	4.65 2.32	0.1752 0.0835	0.1772 0.0874	0.1831	
C	2.12	1.40	2.32	0.0633	0.0574	0.0913	MECHANICAL DATA
D		2.00			0.0787		
E	0.36	0.40	0.44	0.0142	0.0157	0.0173	
F(**)	0.47	0.51	0.57	0.0185	0.0201	0.0224	
G(*)	0.75	1.00	1.25	0.0295	0.0394	0.0492	
G1	25.70	26.00	26.30	1.0118	1.0236	1.0354	
G2(*)	1.75	2.00	2.25	0.0689	0.0787	0.0886	
H(**)	28.85	29.23	29.40	1.1358	1.1508	1.1575	
H1		17.00			0.6693		
H2		12.80			0.5039		
НЗ		0.80			0.0315		_
L(**)	15.50	15.70	15.90	0.6102	0.6181	0.6260	
L1	7.70	7.85	7.95	0.3031	0.3091	0.3130	
L2	14.00	14.20	14.40	0.5512	0.5591	0.5669	
L3	11.80	12.00	12.20	0.4646	0.4724	0.4803	
L4	1.30	1.48	1.66	0.0512	0.0583	0.0654	
L5	2.42	2.50	2.58	0.0953	0.0984	0.1016	
L6	0.42	0.50	0.58	0.0165	0.0197	0.0228	
M		1.50			0.0591		
N	1.00	2.20	1.00	0.0510	0.0866	0.0654	~1 0%, \$\psi_{\psi}\$
N1	1.30	1.48	1.66	0.0512	0.0583	0.0654	***
N2(*) P(*)	2.73 4.73	2.83 4.83	2.93 4.93	0.1075 0.1862	0.1114	0.1154 0.1941	
P(")	4./3	1.70	4.93	0.1002	0.1902	0.1541	
R1		0.30			0.0669		
R2	0.35	0.40	0.45	0.0138	0.0118	0.0177	
R3	0.35	0.40	0.45	0.0138	0.0157	0.0177	
R4		0.50			0.0197		
T(*)	-0.08		0.10	-0.0031		0.0039	
aaa(*)		0.1			0.0039		
V		45°			45°		
V1		3°			3°		
1.60							Flavius H07
V2	3°	5°	7°	3°	5°	7°	Flexiwatt27
V3	12°	15°	7° 18°	3° 12°	15°	7° 18°	
V3 V4		15° 5°			15° 5°	_	Flexiwatt27 (SMD)
V3 V4 V5	12°	15° 5° 20°			15°	_	
V3 V4 V5 () Golden	12° parameters	15° 5° 20°	18°	12°	15° 5° 20°	_	
V3 V4 V5 () Golden	12° parameters	15° 5° 20°	18°	12°	15° 5° 20°	_	(SMD)
V3 V4 V5 () Golden	12° parameters	15° 5° 20°	18°	12°	15° 5° 20°	_	(SMD)
V3 V4 V5 () Golden	12° parameters	15° 5° 20°	18°	12°	15° 5° 20°	_	(SMD)
V3 V4 V5 () Golden	12° parameters	15° 5° 20°	18°	12° protrusion. sh or protrus	15° 5° 20°	_	(SMD) Detail "A" Rotated 90" CCW
V3 V4 V5 () Golden	12° parameters	15° 5° 20°	18°	12° protrusion. sh or protrus	15° 5° 20°	_	(SMD) Detail "A" Rotated 90" CCW
V3 V4 V5 () Golden	12° parameters	15° 5° 20°	18°	12° protrusion. sh or protrus	15° 5° 20°	_	(SMD) Detail "A" Rotated 90" CCW
V3 V4 V5 () Golden	parameters nsion "F" do nsions "H" a	15° 5° 20°	18°	protrusion.	15° 5° 20°	_	(SMD) Detail "A" Rotated 90° CCW L5 GALIGE PLANE SEATING PLANE
V3 V4 V5) Golden *) – Dime	parameters nsion "F" do nsions "H" a	15° 5° 20° pesn't included "L" included "L" included "L"	18°	protrusion.	15° 5° 20°	_	(SMD) Detail "A" Rotated 90" CCW L5 L6 V3
V3 V4 V5) Golden *) – Dime	parameters nsion "F" do nsions "H" a	15° 5° 20° pesn't included "L" included "L" included "L"	18°	protrusion.	15° 5° 20°	_	Detail "A" Rotated 90° CCW
V3 V4 V5) Golden *) – Dime	parameters nsion "F" do nsions "H" a	15° 5° 20° pesn't included "L" included "L" included "L"	18°	protrusion.	15° 5° 20°	_	Detail "A" Rotated 90° CCW
V3 V4 V5) Golden *) – Dime	parameters nsion "F" do nsions "H" a	15° 5° 20° pesn't included "L" included "L" included "L"	18°	protrusion.	15° 5° 20°	_	Detail "A" Rotated 90° CCW -L5 -V3 -V4 -V4 -V3 -V3 -V3 -V4 -V1
V3 V4 V5) Golden *) – Dime	parameters nsion "F" do nsions "H" a	15° 5° 20° pesn't included "L" included "L" included "L"	18°	protrusion.	15° 5° 20° sions.	_	Detail "A" Rotated 90° CCW O GAUGE PLANE SEATING PLANE N2 P O GAUGE PLANE SEATING PLANE SO GAUGE PLANE SO
V3 V4 V5) Golden *) – Dime	parameters nsion "F" do nsions "H" a	15° 5° 20° pesn't included "L" included "L" included "L"	18°	protrusion.	15° 5° 20° sions.	_	Detail "A" Rotated 90° CCW
V3 V4 V5) Golden *) – Dime – Dime	parameters nsion "F" do nsions "H" a	15° 5° 20° pesn't included "L" included "L" included "L"	18°	protrusion.	15° 5° 20° sions.	_	Detail "A" Rotated 90° CCW O GAUGE PLANE SEATING PLANE N2 P O GAUGE PLANE SEATING PLANE SO GAUGE PLANE SO
V3 V4 V5) Golden *) – Dime – Dime	parameters nsion "F" do nsions "H" a	15° 5° 20° pesn't included "L" included "L" included "L"	18°	protrusion.	15° 5° 20° sions.	18"	Detail "A" Rotated 90° CCW O GAUGE PLANE SEATING PLANE N2 P O GAUGE PLANE SEATING PLANE SO GAUGE PLANE SO
V3 V4 V5) Golden *) – Dime – Dime	parameters nsion "F" do nsions "H" a	15° 5° 20° pesn't included "L" included "L" included "L"	18°	protrusion.	15° 5° 20° sions.	_	Detail "A" Rotated 90° CCW O GAUGE PLANE SEATING PLANE N2 P O GAUGE PLANE SEATING PLANE SO GAUGE PLANE SO
V3 V4 V5) Golden *) – Dime – Dime	parameters nsion "F" do nsions "H" a	15° 5° 20° pesn't included "L" included "L" included "L"	18°	protrusion.	15° 5° 20° sions.	18"	(SMD) Detail "A" Rotated 90° CCW AD CAUGE PLANE SEATING PLANE N2 P N2 P SEATING PLANE SEAT
V3 V4 V5) Golden *) – Dime – Dime	parameters nsion "F" do nsions "H" a	15° 5° 20° pesn't included "L" included "L" included "L"	18°	protrusion. sh or protrus	15° 5° 20° sions.	18"	(SMD) Detail "A" Rotated 90° CCW AD CAUGE PLANE SEATING
V3 V4 V5) Golden *) – Dime – Dime	parameters nsion "F" do nsions "H" a	15° 5° 20° pesn't included "L" included "L" included "L"	18°	protrusion.	15° 5° 20° sions.	18"	(SMD) Detail "A" Rotated 90° CCW AD CAUGE PLANE SEATING PLANE N2 P N2 P SEATING PLANE SEAT
V3 V4 V5) Golden *) – Dime – Dime	parameters nsion "F" do nsions "H" a	15° 5° 20° pesn't included "L" included "L" included "L"	18°	protrusion. sh or protrus	15° 5° 20° sions.	18"	(SMD) Detail "A" Rotated 90° CCW AD CAUGE PLANE SEATING
V3 V4 V5) Golden *) – Dime – Dime	parameters nsion "F" do nsions "H" a	15° 5° 20° pesn't included "L" included "L" included "L"	18°	protrusion. sh or protrus	15° 5° 20° sions.	18"	(SMD) Detail "A" Rotated 90° CCW AD CAUGE PLANE SEATING
V3 V4 V5) Golden *) – Dime – Dime	parameters nsion 'F' dc nsions 'H' a	15° 5° 20° pesn't included "L"	18°	protrusion. sh or protrus	15° 5° 20° sions.	18"	(SMD) Detail 'A' Rotated 90° CCW AD GAUGE PLANE SEATING PLANE S
V3 V4 V5) Golden *) – Dime – Dime	parameters nsion 'F' dc nsions 'H' a	15° 5° 20° pesn't included "L" included "L" included "L"	le dam-bar de mold fla	protrusion. sh or protrus	15° 5° 20° sions.	18"	(SMD) Detail 'A' Rotated 90° CCW AD GAUGE PLANE SEATING PLANE S
V3 V4 V5) Golden *) – Dime – Dime	parameters nsion 'F' dc nsions 'H' a	15° 5° 20° 20° esen't include "L" include	le dam-bar de mold fla	protrusion. sh or protrus	15° 5° 20° sions.	18"	(SMD) Detail 'A' Rotated 90° CCW AD GAUGE PLANE SEATING PLANE S
V3 V4 V5) Golden O Dime	parameters nsion 'F' de nsions 'H' a	15° 5° 20° 20° esen't include "L" include	le dam-bar de mold fla	protrusion. sh or protrus	15° 5° 20° sions.	18"	(SMD) Detail "A" Rotated 90° CCW APPLANE SEATING PLANE S N2 P M S M S M S M S S M M S S
V3 V4 V5) Golden O Dime	12° parameters parameters asion "F" do ssions "H" a	15° 5° 20° 20° esen't include "L" include	le dam-bar de mold fla	protrusion. sh or protrus	15° 5° 20° sions.	18"	CSMD) Detail "A" Rotated 90° CCW LSI V4 THE SEATING PLANE SEA
V3 V4 V5) Golden O Dime	12° parameters parameters asion "F" do ssions "H" a	15° 5° 20° seen't included "L"	le dam-bar de mold fla	protrusion. sh or protrus	15° 5° 20° sions.	18"	(SMD) Detail "A" Rotated 90° CCW APPLANE SEATING PLANE S N2 P M S M S M S M S S M M S S
V3 V4 V5) Golden O Dime	12° parameters parameters asion "F" do ssions "H" a	15° 5° 20° pesn't included "L"	le dam-bar de mold fla	protrusion. sh or protrus	15° 5° 20° sions.	18"	CSMD) Detail "A" Rotated 90° CCW LSI V4 THE SEATING PLANE SEA
V3 V4 V5 O Golden O Dime	12° parameters parameters asion "F" do ssions "H" a	15° 5° 20° seen't included "L"	le dam-bar de mold fla	protrusion. sh or protrus	15° 5° 20° sions.	18"	CSMD) Detail "A" Rotated 90° CCW LSI V4 THE SEATING PLANE SEA

TDA7577BLV Revision history

12 Revision history

Table 11. Document revision history

Date	Revision	Changes
14-Oct-2013	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

38/38 DocID025375 Rev 1

