

TSX561, TSX561A

Micropower, wide bandwidth (900 kHz) 16 V CMOS op amps

Datasheet - production data

Features

■ Low power consumption: 235 µA typ. at 5 V

■ Supply voltage: 3 V to 16 V

■ Gain bandwidth product: 900 kHz typ.

■ Low offset voltage:

600 μV max. for "A" version, 1 mV max. for standard version

■ Low input bias current: 1 pA typ.

High tolerance to ESD: 4 kV

■ Wide temperature range: -40 to +125 °C

Automotive qualification

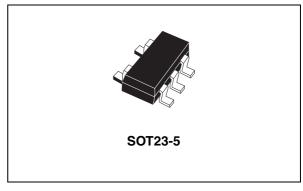
Package: SOT23-5

Applications

Industrial signal conditioning

Automotive signal conditioning

Active filtering


■ Medical instrumentation

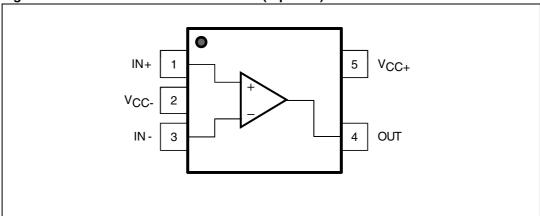
■ High impedance sensors

Description

The TSX56x series of operational amplifiers offers low voltage operation and rail-to-rail input and output. The TSX561 device is the single version, the TSX562 device the dual version and the TSX564 device the quad version, with pinouts compatible with industry standards. The TSX56x series offers an outstanding speed/power consumption ratio, 900 kHz gain

speed/power consumption ratio, 900 kHz gain bandwidth product while consuming only 250 µA at 16 V. The devices are housed in the smallest industrial packages.

These features make the TSX56x family ideal for sensor interfaces and industrial signal conditioning. The wide temperature range and high ESD tolerance ease use in harsh automotive applications.


Contents TSX561, TSX561A

Contents

1	Pacl	kage pin connections
2	Abs	olute maximum ratings and operating conditions4
3	Elec	trical characteristics5
4	Арр	lication information
	4.1	Operating voltages
	4.2	Rail-to-rail input 14
	4.3	Input offset voltage drift over temperature
	4.4	Long term input offset voltage drift
	4.5	PCB layouts
	4.6	Macromodel
5	Pacl	kage information
6	Orde	ering information19
7	Revi	sion history

1 Package pin connections

Figure 1. Pin connections for SOT23-5 (top view)

2 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings (AMR)

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage ⁽¹⁾	18	V
V _{id}	Differential input voltage ⁽²⁾	±V _{CC}	V
V _{in}	Input voltage ⁽³⁾	V _{CC-} - 0.2 to V _{CC+} + 0.2	V
I _{in}	Input current ⁽⁴⁾	10	mA
T _{stg}	Storage temperature	-65 to +150	°C
R _{thja}	Thermal resistance junction-to-ambient ⁽⁵⁾ , ⁽⁶⁾ SOT23-5	250	°C/W
T _j	Maximum junction temperature	150	°C
	HBM: human body model ⁽⁷⁾	4	kV
ESD	MM: machine model ⁽⁸⁾	200	V
	CDM: charged device model ⁽⁹⁾	1.5	kV
	Latch-up immunity	200	mA

- 1. All voltage values, except differential voltages, are with respect to network ground terminal.
- 2. Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.
- 3. V_{CC} V_{in} must not exceed 18 V, V_{in} must not exceed 18 V.
- 4. Input current must be limited by a resistor in series with the inputs.
- 5. Short-circuits can cause excessive heating and destructive dissipation.
- 6. Rth are typical values.
- 7. Human body model: 100 pF discharged through a 1.5 $k\Omega$ resistor between two pins of the device, done for all couples of pin combinations with other pins floating.
- Machine model: a 200 pF cap is charged to the specified voltage, then discharged directly between two
 pins of the device with no external series resistor (internal resistor < 5 Ω), done for all couples of pin
 combinations with other pins floating.
- Charged device model: all pins plus package are charged together to the specified voltage and then discharged directly to ground.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage	3 to 16	V
V _{icm}	Common mode input voltage range	V_{CC-} - 0.1 to V_{CC+} + 0.1	٧
T _{oper}	Operating free air temperature range	-40 to +125	°C

3 Electrical characteristics

Table 3. Electrical characteristics at V_{CC+} = +3.3 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L =10 k Ω connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	rmance	1		L		
		TSX56xA, T = 25 °C			600	
	0"	TSX56xA, -40 °C < T < 125 °C			1800	μV
V_{io}	Offset voltage	TSX56x, T = 25 °C			1	\/
		TSX56x, -40 °C < T < 125 °C			2.2	mV
ΔV _{io} /ΔΤ	Input offset voltage drift	-40 °C < T < 125 °C ⁽¹⁾		2	12	μV/°C
ı	Input offset current	T = 25 °C		1	100 ⁽³⁾	nΛ
I _{io}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	200 ⁽³⁾	pA
ı	Input bias current	T = 25 °C		1	100 ⁽³⁾	pA
I _{ib}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	200 ⁽³⁾	pΑ
	Common mode rejection ratio	T = 25 °C	63	80		
CMR1	$\begin{aligned} \text{CMR} &= 20 \text{ log } (\Delta \text{V}_{\text{ic}}/\Delta \text{V}_{\text{io}}) \\ (\text{V}_{\text{ic}} &= \text{-0.1 V to V}_{\text{CC}}\text{-1.5 V}, \\ \text{V}_{\text{out}} &= \text{V}_{\text{CC}}/2, \text{ R}_{\text{L}} > 1 \text{ M}\Omega) \end{aligned}$	-40 °C < T < 125 °C	59			dB
	Common mode rejection ratio $CMR = 20 \log (\Delta V_{ic}/\Delta V_{io})$ $(V_{ic} = -0.1 \text{ V to } V_{CC}+0.1 \text{ V,}$ $V_{out} = V_{CC}/2, R_L > 1 \text{ M}\Omega)$	T = 25 °C	47	66		
(V _i		-40 °C < T < 125 °C	45			dB
_	Large signal voltage gain	T = 25 °C	85			
A _{vd}	$(V_{out} = 0.5 \text{ V to } (V_{CC} - 0.5 \text{ V}),$ $R_L > 1 \text{ M}\Omega)$	-40 °C < T < 125 °C	83			dB
.,	High level output voltage	T = 25 °C			70	.,
V _{OH}	$(V_{OH} = V_{CC} - V_{out})$	-40 °C < T < 125 °C			100	mV
V	Low lovel output voltage	T = 25 °C			70	m\/
V_{OL}	Low level output voltage	-40 °C < T < 125 °C			100	mV
	1 (V V)	T = 25 °C	4.3	5.3		m Λ
	$I_{sink} (V_{out} = V_{CC})$	-40 °C < T < 125 °C	2.5			– mA
l _{out}	(V = 0 V)	T = 25 °C	3.3	4.3		mA
	I _{source} (V _{out} = 0 V)	-40 °C < T < 125 °C	2.5			IIIA
	Supply current	T = 25 °C		220	300	
I_{CC} (per channel, $V_{out} = V_{CC}/2$, $R_L > 1 MΩ$)		-40 °C < T < 125 °C			350	μA
AC perfo	rmance					
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$	600	800		kHz
F _u	Unity gain frequency	R_L = 10 kΩ, C_L = 100 pF		690		kHz
Фт	Phase margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		55		degree
⁴m	i nase margin	11L = 10 K24 OL = 100 pi		55		acç

Table 3. Electrical characteristics at V_{CC+} = +3.3 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L =10 k Ω connected to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
G _m	Gain margin	R_L = 10 kΩ, C_L = 100 pF		9		dB
SR	Slew rate	$R_L = 10 \text{ k}\Omega, \ C_L = 100 \text{ pF}, \ V_{out} = 0.5 \text{ V to V}_{CC} - 0.5 \text{ V}$		1		V/μs
∫e _n	Low-frequency peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		16		μV _{pp}
e _n	Equivalent input noise voltage density	f = 1 kHz f = 10 kHz		55 29		<u>nV</u> √Hz
THD+N	Total harmonic distortion + noise	Follower configuration, $\begin{split} f_{in} &= 1 \text{ kHz}, \\ R_L &= 100 \text{ k}\Omega \\ V_{icm} &= (V_{CC} \text{-}1.5 \text{ V})/2, \\ BW &= 22 \text{ kHz}, V_{out} = 1 \text{ V}_{pp} \end{split}$		0.004		%

Table 4. Electrical characteristics at V_{CC+} = +5 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L = 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	rmance					
		TSX56xA, T = 25 °C			600	\/
V	Offeet veltage	TSX56xA, -40 °C < T < 125 °C			1800	μV
V_{io}	Offset voltage	TSX56x, T = 25 °C			1	mV
		TSX56x, -40 °C < T < 125 °C			2.2	1110
$\Delta V_{io}/\Delta T$	Input offset voltage drift	-40 °C < T < 125 °C ⁽¹⁾		2	12	μV/°C
ΔV_{io}	Long term input offset voltage drift	T = 25 °C ⁽²⁾		5		$\frac{\text{nv}}{\sqrt{\text{month}}}$
-	Input offset current	T = 25 °C		1	100 ⁽³⁾	η.Λ
I _{io}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	200 ⁽³⁾	рA
1	Input bias current	T = 25 °C		1	100 ⁽³⁾	nΛ
l _{ib}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	200 ⁽³⁾	рA
	Common mode rejection ratio	T = 25 °C	66	84		
CMR1	$\begin{aligned} &\text{CMR} = 20 \text{ log } (\Delta \text{V}_{\text{ic}}/\Delta \text{V}_{\text{io}}) \\ &(\text{V}_{\text{ic}} = \text{-0.1 V to V}_{\text{CC}} \text{-1.5 V}, \\ &\text{V}_{\text{out}} = \text{V}_{\text{CC}}/2, \text{ R}_{\text{L}} > 1 \text{ M}\Omega) \end{aligned}$	-40 °C < T < 125 °C	63			dB
	Common mode rejection ratio	T = 25 °C	50	69		
CMR2	$\begin{aligned} & \text{CMR} = 20 \text{ log } (\Delta \text{V}_{i\text{C}}/\Delta \text{V}_{i\text{O}}) \\ & (\text{V}_{i\text{C}} = \text{-0.1 V to V}_{\text{CC}} + \text{0.1 V}, \\ & \text{V}_{\text{out}} = \text{V}_{\text{CC}}/2, \text{ R}_{\text{L}} > \text{1 M}\Omega) \end{aligned}$	-40 °C < T < 125 °C	47			dB
_	Large signal voltage gain	T = 25 °C	85			
A _{vd}	$(V_{out} = 0.5 \text{ V to } (V_{CC} - 0.5 \text{ V}),$ $R_L > 1 \text{ M}\Omega)$	-40 °C < T < 125 °C	83			dB

Table 4. Electrical characteristics at V_{CC+} = +5 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L = 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{OH}	High level output voltage (V _{OH} = V _{CC} - V _{out})	R_L = 10 kΩ T = 25 °C R_L = 10 kΩ -40 °C < T < 125 °C			70 100	mV
V_{OL}	Low level output voltage	$R_L = 10 \text{ k}\Omega \text{ T} = 25 \text{ °C}$ $R_L = 10 \text{ k}\Omega \text{ -40 °C} < T < 125 \text{ °C}$			70 100	mV
	1	V _{out} = V _{CC} , T = 25 °C	11	14		mA
	Isink	V _{out} = V _{CC} , -40 °C < T < 125 °C	8			IIIA
l _{out}	1	V _{out} = 0 V, T = 25 °C	9	12		mA
	Source	V _{out} = 0 V, -40 °C < T < 125 °C	7			IIIA
	Supply current	T = 25 °C		235	350	
I _{CC}	(per channel, $V_{out} = V_{CC}/2$, $R_L > 1 MΩ$)	-40 °C < T < 125 °C			400	μΑ
AC perfor	rmance					
GBP	Gain bandwidth product	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$	700	850		kHz
F _u	Unity gain frequency	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$		730		kHz
$\Phi_{\!m}$	Phase margin	R_L = 10 kΩ, C_L = 100 pF		55		degrees
G _m	Gain margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		9		dB
SR	Slew rate	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $V_{out} = 0.5 \text{ V}$ to V_{CC} - 0.5 V		1.1		V/µs
∫ e _n	Low-frequency peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		15		μV _{pp}
e _n	Equivalent input noise voltage density	f = 1 kHz f = 10 kHz		55 29		<u>nV</u> √Hz
THD+N	Total harmonic distortion + noise	Follower configuration, $f_{in} = 1 \text{ kHz}$, $R_L = 100 \text{ k}\Omega$, $V_{icm} = (V_{CC}-1.5 \text{ V})/2$, $P_{CC} = 1.5 \text{ V}$		0.002		%

Table 5. Electrical characteristics at V_{CC+} = +16 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L = 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified)

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
DC perfo	ormance		•		•	
		TSX56xA, T = 25 °C			600	.,
W	Office to called the	TSX56xA, -40 °C < T < 125 °C			1800	μV
V_{io}	Offset voltage	TSX56x, T = 25 °C			1	100
		TSX56x, -40 °C < T < 125 °C			2.2	mV
$\Delta V_{io}/\Delta T$	Input offset voltage drift	-40 °C < T < 125 °C ⁽¹⁾		2	12	μV/°C
ΔV_{io}	Long term input offset voltage drift	T = 25 °C ⁽²⁾		1.6		$\frac{\mu V}{\sqrt{month}}$
1	Input offset current	T = 25 °C		1	100 ⁽³⁾	nΛ
I _{io}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	200 ⁽³⁾	рA
L.	Input bias current	T = 25 °C		1	100 ⁽³⁾	рA
I _{ib}	$(V_{out} = V_{CC}/2)$	-40 °C < T < 125 °C		1	200 ⁽³⁾) PA
	Common mode rejection ratio CMR = 20 log $(\Delta V_{ic}/\Delta V_{io})$ $(V_{ic}$ = -0.1 V to V_{CC} - 1.5 V, V_{out} = $V_{CC}/2$, $R_L > 1$ M Ω)	T = 25 °C	76	95		
CMR1		-40 °C < T < 125 °C	72			dB
	Common mode rejection ratio	T = 25 °C	60	78		
CMR2	CMR = 20 log ($\Delta V_{ic}/\Delta V_{io}$) (V_{ic} = -0.1 V to V_{CC} + 0.1 V, V_{out} = $V_{CC}/2$, $R_L > 1 M\Omega$)	-40 °C < T < 125 °C	56			dB
	Common mode rejection ratio	T = 25 °C	76	90		
SVR	20 log ($\Delta V_{CC}/\Delta V_{io}$) ($V_{CC} = 3 \text{ V to } 16 \text{ V}$, $V_{out} = V_{icm} = V_{CC}/2$)	-40 °C < T < 125 °C	72			dB
_	Large signal voltage gain	T = 25 °C	85			
A_{vd}	$(V_{out} = 0.5 \text{ V to } (V_{CC} - 0.5 \text{ V}),$ R _L > 1 M Ω)	-40 °C < T < 125 °C	83			dB
V _{OH}	High level output voltage (V _{OH} = V _{CC} - V _{out})	R_L = 10 kΩ, T = 25 °C R_L = 10 kΩ, -40 °C < T < 125 °C			70 100	mV
V _{OL}	Low level output voltage	R_L = 10 kΩ T = 25 °C R_L = 10 kΩ -40 °C < T < 125 °C			70 100	mV
	1	V _{out} = V _{CC} , T = 25 °C	40	92		mA
1	Isink	V _{out} = V _{CC} , -40 °C < T < 125 °C	35			IIIA
l _{out}	1	V _{out} = 0 V, T = 25 °C	30	90		mA
	Isource	V _{out} = 0 V, -40 °C < T < 125 °C	25			IIIA
	Supply current	T = 25 °C		250	360	
I _{CC}	(per channel, $V_{out} = V_{CC}/2$, $R_L > 1 MΩ$)	-40 °C < T < 125 °C			400	μΑ

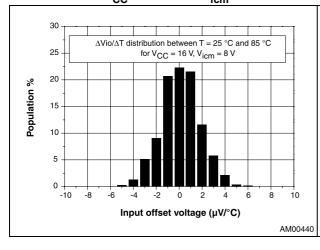
Table 5. Electrical characteristics at V_{CC+} = +16 V with V_{CC-} = 0 V, V_{icm} = $V_{CC}/2$, T_{amb} = 25 °C, and R_L = 10 k Ω connected to $V_{CC}/2$ (unless otherwise specified) (continued)

Symbol	Parameter Conditions		Min.	Тур.	Max.	Unit
AC perfo	ormance					
GBP	Gain bandwidth product	R_L = 10 kΩ, C_L = 100 pF	750	900		kHz
Fu	Unity gain frequency	$R_L = 10 \text{ k}Ω, C_L = 100 \text{ pF}$		750		kHz
Φ_{m}	Phase margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		55		degrees
G _m	Gain margin	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}$		9		dB
SR	Slew rate	$R_L = 10 \text{ k}\Omega, C_L = 100 \text{ pF}, V_{out} = 0.5 \text{ V to V}_{CC} - 0.5 \text{ V}$		1.1		V/µs
∫ e _n	Low-frequency peak-to-peak input noise	Bandwidth: f = 0.1 to 10 Hz		15		μV _{pp}
e _n	Equivalent input noise voltage density	f = 1 kHz f = 10 kHz		48 27		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
THD+N	Total harmonic distortion + noise	Follower configuration, $f_{in} = 1 \text{ kHz}$, $R_L = 100 \text{ k}\Omega$, $V_{icm} = (V_{CC} - 1.5 \text{ V})/2$, $BW = 22 \text{ kHz}$, $V_{out} = 5 \text{ V}_{pp}$		0.0005		%

^{1.} See Section 4.3: Input offset voltage drift over temperature on page 14.

^{2.} Typical value is based on the Vio drift observed after 1000 h at 125 °C extrapolated to 25 °C using the Arrhenius law and assuming an activation energy of 0.7 eV. The operational amplifier is aged in follower mode configuration.

^{3.} Guaranteed by design.


Figure 2. Supply current vs. supply voltage Figure 3. Input offset voltage distribution at $V_{icm} = V_{CC}/2$ $V_{CC} = 16 \text{ V}$ and $V_{icm} = 8 \text{ V}$

30 V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 8 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 10 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{icm} = 10 V V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{io} distribution at T= 25 °C for V_{CC} = 16 V, V_{io} distribution at T= 25 °C fo

300 275 T = 25 °C 250 225 Supply current (µA) 200 175 T = -40 °C T = 125 °C 150 125 100 $V_{icm} = V_{CC}/2$ 75 50 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Supply voltage (V)

Figure 4. Input offset voltage temperature coefficient distribution at $V_{CC} = 16 \text{ V}$ and $V_{icm} = 8 \text{ V}$

Figure 5. Input offset voltage vs. input common mode voltage at V_{CC} = 12 V

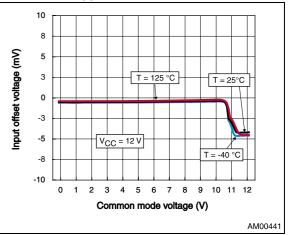
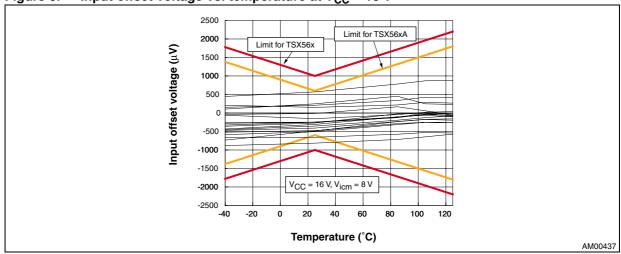



Figure 6. Input offset voltage vs. temperature at $V_{CC} = 16 \text{ V}$

10/20 Doc ID 023274 Rev 1

TSX561, TSX561A Electrical characteristics

Figure 7. Output current vs. output voltage Figure 8. Output current vs. output voltage at V_{CC} = 3.3 V at V_{CC} = 5 V

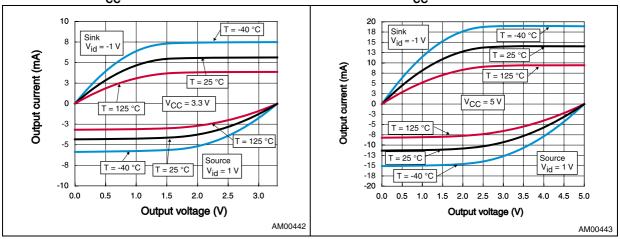


Figure 9. Output current vs. output voltage Figure 10. Bode diagram at V_{CC} = 3.3 V at V_{CC} = 16 V

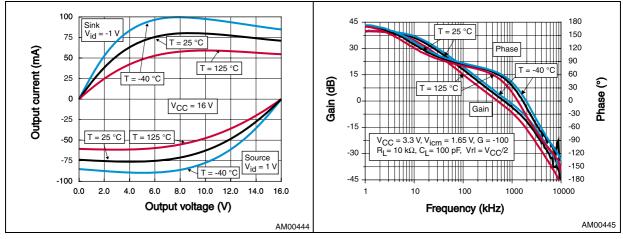


Figure 11. Bode diagram at $V_{CC} = 5 \text{ V}$ Figure 12. Bode diagram at $V_{CC} = 16 \text{ V}$

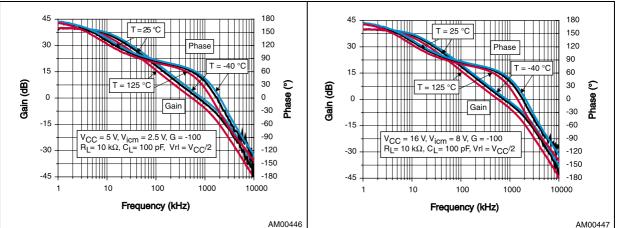


Figure 13. Phase margin vs. capacitive load at Figure 14. GBP vs. input common mode V_{CC} = 12 V voltage at V_{CC} = 12 V

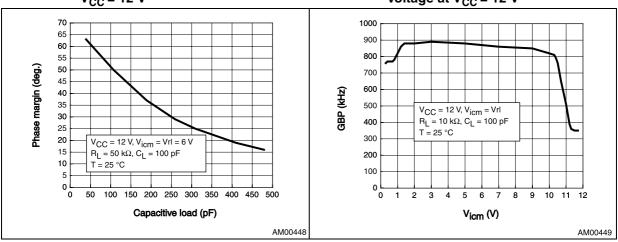


Figure 15. A_{vd} vs. input common mode voltage at $V_{CC} = 12 \text{ V}$

Figure 16. Slew rate vs. supply voltage

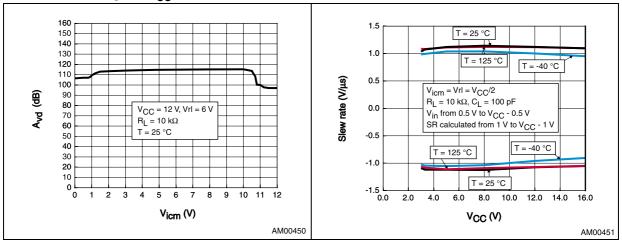
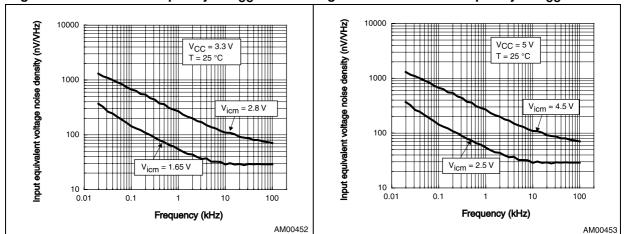



Figure 17. Noise vs. frequency at $V_{CC} = 3.3 \text{ V}$ Figure 18. Noise vs. frequency at $V_{CC} = 5 \text{ V}$

12/20 Doc ID 023274 Rev 1

TSX561, TSX561A Electrical characteristics

Figure 19. Noise vs. frequency at V_{CC} = 16 V Figure 20. Distortion + noise vs. output voltage amplitude

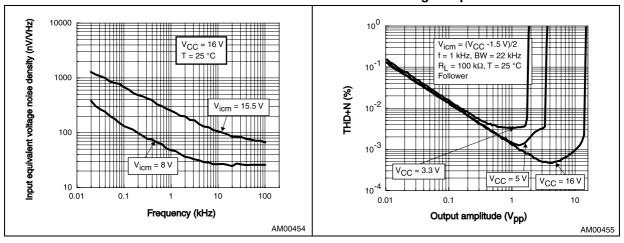
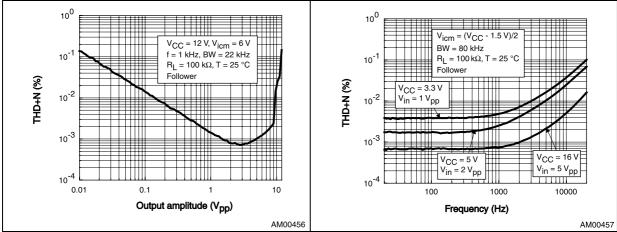



Figure 21. Distortion + noise vs. amplitude at $V_{icm} = V_{CC}/2$ and $V_{CC} = 12 \text{ V}$

Figure 22. Distortion + noise vs. frequency

4 Application information

4.1 Operating voltages

The amplifiers of the TSX56x series can operate from 3 to 16 V. Their parameters are fully specified at 3.3, 5 and 16 V power supplies. However, the parameters are very stable in the full V_{CC} range. Additionally, the main specifications are guaranteed in extended temperature ranges from -40 to +125 $^{\circ}$ C.

4.2 Rail-to-rail input

The TSX56x devices are built with two complementary PMOS and NMOS input differential pairs. The devices have a rail-to-rail input, and the input common mode range is extended from V_{CC_-} - 0.1 V to V_{CC_+} + 0.1 V. However, the performance of these devices is clearly optimized for the PMOS differential pairs (which means from V_{CC_-} - 0.1 V to V_{CC_+} - 1.5 V).

Beyond V_{CC+} - 1.5 V, the operational amplifiers are still functional but with degraded performance, as can be observed in the electrical characteristics section of this datasheet (mainly V_{io} , and GBP). These performances are suitable for a number of applications needing to be rail-to-rail.

The devices are designed to prevent phase reversal.

4.3 Input offset voltage drift over temperature

The maximum input voltage drift over the temperature variation is defined as the offset variation related to the offset value measured at 25 °C. The operational amplifier is one of the main circuits of the signal conditioning chain, and the amplifier input offset is a major contributor to the chain accuracy. The signal chain accuracy at 25 °C can be compensated during production at application level. The maximum input voltage drift over temperature enables the system designer to anticipate the effects of temperature variations.

The maximum input voltage drift over temperature is computed in *Equation 1*:

Equation 1

$$\frac{\Delta V_{io}}{\Delta T} = \max \left| \frac{V_{io}(T) - V_{io}(25^{\circ} C)}{T - 25^{\circ} C} \right|$$

with T = -40 °C and 125 °C.

The datasheet maximum value is guaranteed by measurement on a representative sample size ensuring a Cpk greater than 2.

4.4 Long term input offset voltage drift

In a product reliability evaluation, two types of stress acceleration are usable:

- Voltage acceleration, by changing the applied voltage
- Temperature acceleration, by changing the die temperature (below the maximum junction temperature allowed by the technology) with the ambient temperature.

The voltage acceleration has been defined based on the JEDEC results, and is defined by:

Equation 2

$$A_{FV} = e^{\beta \cdot (V_S - V_U)}$$

where:

A_{FV} is the voltage acceleration factor

β is the voltage acceleration constant in 1/V, constant technology parameter

 V_S is the stress voltage used for the accelerated test

 V_{IJ} is the use voltage for the application

The temperature acceleration is driven by the Arrhenius model, and is defined by:

Equation 3

$$A_{FT} = e^{\frac{E_a}{k} \cdot \left(\frac{1}{T_U} - \frac{1}{T_S}\right)}$$

where:

 A_{FT} is the temperature acceleration factor

E_a is the activation energy of the technology based on failure rate

k is the Boltzmann's constant

 T_U is the temperature of the die when V_U is used

 T_S is the temperature of the die under temperature stress

The final acceleration factor, A_F is the multiplication of these two acceleration factors, which is:

Equation 4

$$A_F = A_{FT} \times A_{FV}$$

Based on this A_F calculated following the defined usage temperature and usage voltage of the product, the 1000 h duration of the stress corresponds to a number of equivalent months of usage.

Equation 5

Months = $A_F \times 1000 \text{ h} \times 12 \text{ months} / (24 \text{ h} \times 365.25 \text{ days})$

For the operational amplifier, a follower stress condition is used for the reliability evaluation, with V_{CC} defined in function of the maximum operating voltage and the absolute maximum rating (as recommended by the JEDEC standards).

The V_{io} drift, in μ V, of the product after 1000 h duration of stress is tracked with parameters at different measurement conditions, as for example:

Equation 6

$$V_{CC} = max. V_{op}$$
 with $V_{icm} = V_{CC}/2$.

Finally, knowing the calculated number of months and with the measured drift value of the V_{io} (corresponding to the electrical characteristics of the respective table) after 1000 h duration of stress, the ratio of the V_{io} drift over the square of months, ΔV_{io} in $\mu V/\sqrt{n}$ nonth, is defined as the long term drift parameter, the parameter estimating the reliability performance of the product.

Equation 7

$$\Delta V_{io} = V_{io} drift / \sqrt{Months}$$

4.5 PCB layouts

For correct operation, it is advised to add 10 nF decoupling capacitors as close as possible to the power supply pins.

4.6 Macromodel

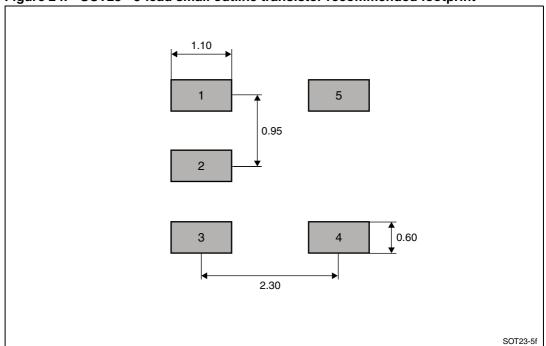
Accurate macromodels of the TSX56x are available on STMicroelectronics™ website at www.st.com. This model is a trade-off between accuracy and complexity (that is, time simulation) of the TSX56x operational amplifiers. It emulates the nominal performance of a typical device within the specified operating conditions mentioned in the datasheet. It also helps to validate a design approach and to select the right operational amplifier, *but it does not replace onboard measurements*.

TSX561, TSX561A **Package information**

Package information 5

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

Е (1) D 5x △ 0.10 C E1 SOT23-5


Figure 23. SOT23 - 5-lead small outline transistor package outline

Package information TSX561, TSX561A

Table 6. SOT23 - 5-lead small outline transistor package mechanical data

		Dimensions						
Symbol		Millimeters			Inches			
	Тур.	Min.	Max.	Тур.	Min.	Max.		
Α			1.45			0.057		
A1		0.00	0.15		0.000	0.006		
A2	1.15	0.90	1.30	0.045	0.035	0.051		
b		0.30	0.50		0.012	0.020		
С		0.08	0.22		0.003	0.009		
D	2.90			0.114				
E	2.80			0.110				
E1	1.60			0.063				
е	0.95			0.037				
e1	1.90			0.075				
L	0.45	0.30	0.60	0.018	0.012	0.024		
θ	4	0	8	4	0	8		
N		5			5			

Figure 24. SOT23 - 5-lead small outline transistor recommended footprint

6 Ordering information

Table 7. Order codes

Order code	Temperature range	Channel number	Package	Packing	Marking
TSX561ILT	-40 to 125 °C	1	SOT23-5	Tape and reel	K23
TSX561IYLT	-40 to 125 °C Automotive grade ⁽¹⁾	1	SOT23-5	Tape and reel	K116
TSX561AILT	-40 to 125 °C	1	SOT23-5	Tape and reel	K117
TSX561AIYLT	-40 to 125 °C Automotive grade ⁽¹⁾	1	SOT23-5	Tape and reel	K118

Qualification and characterization according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q 002 or equivalent are ongoing.

7 Revision history

Table 8. Document revision history

Date	Revision	Changes
06-Jun-2012	1	Initial release.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

20/20 Doc ID 023274 Rev 1