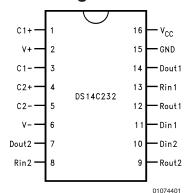


DS14C232

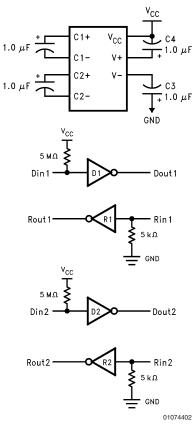
Low Power +5V Powered TIA/EIA-232 Dual Driver/Receiver

General Description


The DS14C232 is a low power dual driver/receiver featuring an onboard DC to DC converter, eliminating the need for $\pm 12 V$ power supplies. The device only requires a $\pm 5 V$ power supply. $I_{\rm CC}$ is specified at 3.0 mA maximum, making the device ideal for battery and power conscious applications. The drivers' slew rate is set internally and the receivers feature internal noise filtering, eliminating the need for external slew rate and filter capacitors. The device is designed to interface data terminal equipment (DTE) with data circuit-terminating equipment (DCE). The driver inputs and receiver outputs are TTL and CMOS compatible. DS14C232C driver outputs and receiver inputs meet TIA/EIA-232-E (RS-232) and CCITT V.28 standards.

Features

- Pin compatible with industry standard MAX232, LT1081, ICL232 and TSC232
- Single +5V power supply
- Low power—I_{CC} 3.0 mA maximum
- DS14C232C meets TIA/EIA-232-E (RS-232) and CCITT V.28 standards
- CMOS technology
- Receiver Noise Filter
- Package efficiency—2 drivers and 2 receivers
- Available in Plastic DIP, Narrow and Wide SOIC packages
- TIA/EIA-232 compatible extended temperature range option:


DS14C232T -40°C to +85°C DS14C232E/J: -55°C to +125°C

Connection Diagram

Order Number DS14C232CN, DS14C232CM, or DS14C232TM
See NS Package Number N16E, or M16A

Functional Diagram

Absolute Maximum Ratings (Note 1)

Specifications for the 883 version of this product are listed separately on the following pages.

0.3V)

 $(V^{+} + 0.3V)$ to $(V^{-} -$

Receiver Input Voltage ± 25 V Receiver Output Voltage -0.3V to (V_{CC} + 0.3V) Junction Temperature +150°C

Maximum Package Power Dissipation @ 25°C

(Note 6)

N Package 1698 mW M Package 1156 mW

Short Circuit Duration,

Driver Output Voltage

D_{OUT} Continuous

Storage Temp. Range -65°C to +150°C

Lead Temp. (Soldering, 4

sec.) +260°C

ESD Rating

(HBM, 1.5 kΩ, 100 pF) \geq 2.5 kV

Recommended Operating Conditions

Operating Free Air Temp.

 (T_A)

DS14C232C 0 +70 °C DS14C232T -40 +85 °C

Electrical Characteristics (Note 2)

Over recommended operating conditions, unless otherwise specified

Symbol	Parameter	Conditions		Min	Тур	Max	Units
DC TO	DC CONVERTER CHARACTERIS	STICS		'	•		
V ⁺	Positive Power Supply	$R_L = 3 \text{ k}\Omega$, C1–C4 = 1.0 μ F, $D_{IN} = 0.8 \text{V}$			9.0		V
V-	Negative Power Supply	$R_L = 3 kΩ$, C1–C4 = 1.0 μF, $D_{IN} = 2.0 V$			-8.5		V
I _{cc}	Supply (V _{CC}) Current	No Load			1.0	3.0	mA
DRIVER	CHARACTERISTICS						
V _{IH}	High Level Input Voltage			2		V _{CC}	V
V _{IL}	Low Level Input Voltage			GND		0.8	V
I _{IH}	High Level Input Current	$V_{IN} \ge 2.0V$		-10		+10	μΑ
I _{IL}	Low Level Input Current	$V_{IN} \le 0.8V$		-10		+10	μΑ
V _{OH}	High Level Output Voltage	$R_L = 3 \text{ k}\Omega$		5.0	8.0		V
V _{OL}	Low Level Output Voltage	$R_L = 3 \text{ k}\Omega$			-7.0	-5.0	V
I _{OS+}	Output High Short Circuit Current	$V_{O} = 0V, V_{IN} = 0.8V$	(Note 3)	-30	-15	-5.0	mA
I _{OS-}	Output Low Short Circuit Current	$V_O = 0V, V_{IN} = 2V$		5.0	11	30	mA
R _O	Output Resistance	$-2V \le V_O \le +2V,$ $V_{CC} = 0V = GND$		300			Ω
RECEIV	ER CHARACTERISTICS			'	'		
V _{TH}	Input High Threshold Voltage	V _{CC} = 5.0V			1.9	2.4	V
		$V_{CC} = 5.0V \pm 10\%$			1.9	2.6	V
V _{TL}	Input Low Threshold Voltage			0.8	1.5		V
V _{HY}	Hysteresis			0.2	0.4	1.0	V
R _{IN}	Input Resistance		-15V ≤ V _{IN} ≤ +15V	3.0	4.7	7.0	kΩ
I _{IN}	Input Current	V _{IN} = +15V		+2.14	+3.75	+5.0	mA
		$V_{IN} = +3V$]	+0.43	+0.64	+1.0	mA
		$V_{IN} = -3V$]	-1.0	-0.64	-0.43	mA
		V _{IN} = -15V	1	-5.0	-3.75	-2.14	mA
V _{OH}	High Level Output Voltage	$V_{IN} = -3V$, $I_{O} = -3.2$ mA	•	3.5	4.5		V

www.national.com 2

Electrical Characteristics (Note 2) (Continued)

Over recommended operating conditions, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
RECEIVER CHARACTERISTICS								
		$V_{IN} = -3V$, $I_{O} = -20 \mu A$	4.0	4.9		V		
V _{OL}	Low Level Output Voltage	$V_{IN} = +3V$, $I_{O} = +3.2 \text{ mA}$		0.15	0.4	V		

Switching Characteristics

Over recommended operating conditions, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Units		
DRIVER CHARACTERISTICS									
t _{PLH}	Propagation Delay Low to High	$R_L = 3 \text{ k}\Omega$ $C_L = 50 \text{ pF}$	Figure 1 and		1.0	4.0	μs		
t _{PHL}	Propagation Delay High to Low		Figure 2		1.0	4.0	μs		
t _{sk}	Skew It _{PLH} - t _{PHL} I				0.1	1.0	μs		
SR1	Output Slew Rate	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega, C_L = 50$ pF	(Note 7)	4.0		30	V/µs		
SR2	Output Slew Rate	$R_L = 3 \text{ k}\Omega, C_L = 2500 \text{ pF}$			4.5		V/µs		
RECEIVE	R CHARACTERISTICS			<u>'</u>	•				
t _{PLH}	Propagation Delay Low to High	Input Pulse Width > 10 μs			2.9	6.5	μs		
t _{PHL}	Propagation Delay High to Low	C _L = 50 pF			2.5	6.5	μs		
t _{sk}	Skew It _{PLH} - t _{PHL} I	(Figures 3, 4)			0.4	2.0	μs		
t _{nw}	Noise Pulse Width Rejected	(Figures 3, 4)			0.7	0.5	μs		

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground unless otherwise specified.

Note 3: IOS_ and IOS_ values are for one output at a time. If more than one output is shorted simultaneously, the device power dissipation may be exceeded.

Note 4: Receiver AC input waveform for test purposes: $t_r = t_f = 200$ ns, $V_{IH} = 3V$, $V_{IL} = -3V$, f = 30 kHz.

Note 5: All typicals are given for $V_{CC} = 5.0V$.

E Package

Short Circuit Duration, D_{OUT}

Note 6: Ratings apply to ambient temperature at +25°C. Above this temperature derate: N Package 15.6 mW/°C, and M Package 10.6 mW/°C.

2000 mW

Continuous

Note 7: Slew rate is defined as $\Delta V/\Delta t$, measured between $\pm 3V$ level.

Absolute Maximum Ratings (Note 1)

For complete Military Product Specifications, refer to the appropriate SMD or MDS.

Supply Voltage, V_{CC} -0.3V to 6V $(V_{CC} - 0.3)V$ to +14V V⁺ Pin V- Pin +0.3V to -14V Driver Input Voltage -0.3V to $(V_{CC} + 0.3V)$ Driver Output Voltage $(V^+ + 0.3V)$ to $(V^- - 0.3V)$ Receiver Input Voltage Receiver Output Voltage -0.3V to $(V_{CC} + 0.3V)$ Maximum Package Power Dissipation @ 25°C (Note 8) J Package 1520 mW

Storage Temp. Range -65°C to $+150^{\circ}\text{C}$ Lead Temp. (Soldering, 4 sec.) $+260^{\circ}\text{C}$ ESD Rating (HMB, 1.5 k Ω , 100 pF) $\geq 2.5 \text{ kV}$

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage, V _{CC}	4.5	5.5	V
Operating Free Air Temp. (T _A)			
DS14C232E/J	-55	+125	°C

3 www.national.com

Electrical Characteristics (Note 2)

Over recommended operating conditions, unless otherwise specified

Symbol	Parameter	Conditions		Min	Max	Units
DEVICE	CHARACTERISTICS (C1–C4 = 1.0 μF)			•	•	
I _{CC}	Supply (V _{CC}) Current	No Load			8.0	mA
DRIVER	CHARACTERISTICS					
V _{IH}	High Level Input Voltage			2		V
V _{IL}	Low Level Input Voltage				0.8	V
I _{IH}	High Level Input Current	$V_{IN} \ge 2.0V$			100	μΑ
I _{IL}	Low Level Input Current	$V_{IN} = 0V$			100	μΑ
V _{OH}	High Level Output Voltage	$R_L = 3 \text{ k}\Omega$		5.0		V
V _{OL}	Low Level Output Voltage	$R_L = 3 \text{ k}\Omega$			-5.0	V
I _{OS+}	Output High Short Circuit Current	$V_O = 0V$	(Note 3)	-25		mA
I _{os-}	Output Low Short Circuit Current	$V_O = 0V$			25	mA
Ro	Output Resistance	$-2V \le V_O \le +2V, T_A = 25^{\circ}C,$		300		Ω
		$V_{CC} = 0V = GND$				
RECEIVE	R CHARACTERISTICS (C1-C4 = 1.0 p	ıF)		•	•	
V _{TH}	Input High Threshold Voltage				3.0	V
V _{TL}	Input Low Threshold Voltage			0.2		V
V _{HY}	Hysteresis	T _A = 25°C, +125°C		0.1	1.0	V
		$T_A = -55^{\circ}C$		0.05	1.0	V
R _{IN}	Input Resistance	$V_{IN} = \pm 3V$ and $\pm 15V$, $T_A = 25^{\circ}C$		3.0	7.0	kΩ
V _{OH}	High Level Output Voltage	$I_{O} = -3.2 \text{ mA}$		3.5		V
		I _O = -20 μA		4.0		V
V _{OL}	Low Level Output Voltage	I _O = +3.2 mA			0.4	V

Switching Characteristics

Over recommended operating conditions, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Max	Units		
DRIVER CHARACTERISTICS (C1–C4 = 1.0 μF)								
t _{PLH}	Propagation Delay Low to High	$R_L = 3 \text{ k}\Omega, C_L = 50 \text{ pF}$	Figures 1, 2		4.0	μs		
t _{PHL}	Propagation Delay High to Low				4.0	μs		
t _{sk}	Skew It _{PLH} - t _{PHL} I				1.0	μs		
SR1	Output Slew Rate	$R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega, C_L = 2500 \text{ pF}$	(Note 7)	1.5	30	V/µs		
RECEIVER CHARACTERISTICS (C1–C4 = 1.0 μF)								
t _{PLH}	Propagation Delay Low to High	Input Pulse Width > 10 μs			8.0	μs		
t _{PHL}	Propagation Delay High to Low	C _L = 50 pF			8.0	μs		
t _{SK}	Skew It _{PLH} - t _{PHL} I	(Figures 3, 4)			2.0	μs		

Note 8: Ratings apply to ambient temperature at +25°C. Above this temperature derate: J Package 12.2 mW/°C and E Package 13.3 mW/°C.

www.national.com