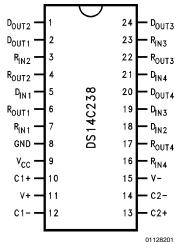
DS14C238

DS14C238 Single Supply TIA/EIA-232 4 x 4 Driver/Receiver

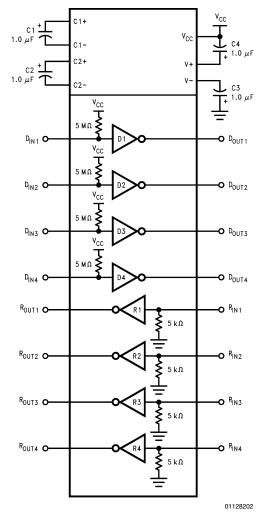
Literature Number: SNLS084B

DS14C238 Single Supply TIA/EIA-232 4 x 4 Driver/Receiver


General Description

The DS14C238 is a four driver, four receiver device which conforms to the TIA/EIA-232-E standard and CCITT V.28 recommendations. This device eliminates ±12V supplies by employing an internal DC-DC converter to generate the necessary output levels from a single +5V supply. Driver slew rate control and receiver noise filtering have also been internalized to eliminate the need for external slew rate control and noise filtering capacitors.

Features


- Conforms to TIA/EIA-232-E and CCITT V.28
- Internal DC-DC converter
- Operates with single +5V supply
- Low power requirement—I_{CC} 10 mA max
- Internal driver slew rate control
- Receiver noise filtering
- Operates above 120 kbits/sec
- Direct replacement for MAX238

Connection Diagram

Order Number DS14C238WM, DS14C238WMX See NS Package Number M24B

Functional Diagram

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

-0.3V) ±30V

Receiver Input Voltage ± 30 V Receiver Output Voltage -0.3V to (V_{CC} +0.3V) Junction Temperature +150°C

Maximum Package Power Dissipation @ +25°C (Note 6)
WM Package 1400 mW

Storage Temp. Range -65°C to +150°C

Lead Temp.

(Soldering, 4 Seconds) $+260^{\circ}$ C Short Circuit Duration (D_{OUT}) Continuous

ESD Rating

(HBM, 1.5 k Ω , 100 pF) \geq 2.0 kV

Recommended Operating Conditions

	Min	Max	Units		
Supply Voltage, V_{CC}	4.5	5.5	V		
Operating Free Air Temp. (T _A)					
DS14C238	0	+70	°C		

Electrical Characteristics (Note 2)

Over recommended operating conditions, unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
DEVICE (CHARACTERISTICS	•		•			
V+	Positive Power Supply	$R_L = 3 \text{ k}\Omega$, C1–C4 = 1.0 μF, $D_{IN} = 0.8 \text{V}$			9.0		V
V-	Negative Power Supply	$R_L = 3 \text{ k}\Omega, \text{ C1-C4} = 1.0$	μF, D _{IN} = 2.0V		-8.0		V
I _{CC}	Supply Current (V _{CC})	No Load			7.0	10	mA
DRIVER (CHARACTERISTICS						
V _{IH}	High Level Input Voltage			2.0		V _{CC}	V
V _{IL}	Low Level Input Voltage			GND		0.8	V
I _{IH}	High Level Input Current	V _{IN} ≥ 2.0V		-10		+10	μΑ
I _{IL}	Low Level Input Current	$V_{IN} \leq 0.8V$		-10		+10	μΑ
V _{OH}	High Level Output Voltage	$R_L = 3 \text{ k}\Omega$		5.0	7.4		V
V _{OL}	Low Level Output Voltage				-6.3	-5.0	V
I _{os} +	Output High Short	$V_{O} = 0V, V_{IN} = 0.8V$	(Note 3)	-30	-15	-5.0	mA
	Circuit Current						
I _{os} -	Output Low Short	$V_{O} = 0V, V_{IN} = 2.0V$		5.0	12	30	mA
	Circuit Current						
R _o	Output Resistance	$-2V \le V_O \le +2V, V_{CC} =$	GND = 0V	300			Ω
RECEIVE	R CHARACTERISTICS	•		•			
V _{TH}	Input High Threshold Voltage				1.9	2.4	V
V _{TL}	Input Low Threshold Voltage			0.8	1.5		V
V _{HY}	Hysteresis			0.2	0.4	1.0	V
R _{IN}	Input Resistance			3.0	4.5	7.0	kΩ
I _{IN}	Input Current V _{IN} = +15V		2.14	3.8	5.0	mA	
		$V_{IN} = +3V$		0.43	0.6	+1.0	mA
		$V_{IN} = -3V$		-1.0	-0.6	-0.43	mA
		V _{IN} = -15V		-5.0	-3.8	-2.14	mA
V _{OH}	High Level Output Voltage	$V_{IN} = -3V$, $I_{O} = -3.2$ mA		3.5	4.5		V
		$V_{IN} = -3V, I_{O} = -20 \mu A$		4.0	4.9		V
V _{OL}	Low Level Output Voltage	$V_{IN} = +3V, I_{O} = +2.0 \text{ mA}$			0.25	0.4	V

www.national.com 2

Switching Characteristics (Note 4)

Over recommended operating conditions, unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
DRIVER CHARACTERISTICS								
t _{PLH}	Propagation Delay LOW to HIGH	$R_L = 3 \text{ k}\Omega$		0.7	4.0	μs		
t _{PHL}	Propagation Delay HIGH to LOW	$C_L = 50 \text{ pF}$		0.6	4.0	μs		
t _{sk}	Skew It _{PLH} -t _{PHL} I	(Figures 1, 2)		0.1	1.0	μs		
SR1	Output Slew Rate	$R_L = 3k\Omega$ to 7 k Ω , $C_L = 50$ pF	4.0	15	30	V/µs		
SR2	Output Slew Rate	$R_L = 3 \text{ k}\Omega, C_L = 2500 \text{ pF}$	3.0	5.0		V/µs		
RECEIVER CHARACTERISTICS								
t _{PLH}	Propagation Delay LOW to HIGH	Input Pulse Width > 10 μs		2.0	6.5	μs		
t _{PHL}	Propagation Delay HIGH to LOW	$C_L = 50 \text{ pF}$		2.8	6.5	μs		
t _{SK}	Skew t _{PLH} -t _{PHL}	(Figures 3, 4)		0.8	2.0	μs		
t _{NW}	Noise Pulse Width Rejected	(Figures 3, 4)		2.5	1.0	μs		

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" specify conditions for device operation.

Note 6: Ratings apply to ambient temperature at +25°C. Above this temperature derate: WM package 13.5 mW/°C.

Parameter Measurement Information

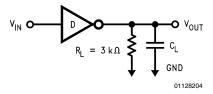


FIGURE 1. Driver Load Circuit

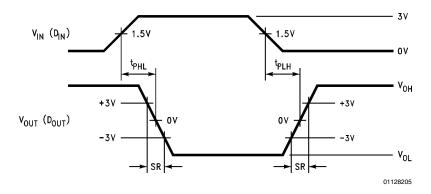


FIGURE 2. Driver Switching Waveform

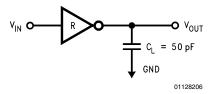


FIGURE 3. Receiver Load Circuit

3 www.national.com

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground unless otherwise specified.

Note 3: I_{OS}+ and I_{OS}- values are for one output at a time. If more than one output is shorted simultaneously, the device power dissipation may be exceeded.

Note 4: Receiver AC input waveform for test purposes: $t_r = t_f = 200$ ns, $V_{IH} = 3V$, $V_{IL} = -3V$, f = 64 kHz (128 kbits/sec). Driver AC input waveform for test purposes: $t_r = t_f \le 10$ ns, $V_{IH} = 3V$, $V_{IL} = 0V$, f = 64 kHz (128 kbits/sec).

Note 5: All typicals are given for $V_{CC} = 5.0 V$ and $T_A = +25 ^{\circ} C$.

Parameter Measurement Information (Continued)

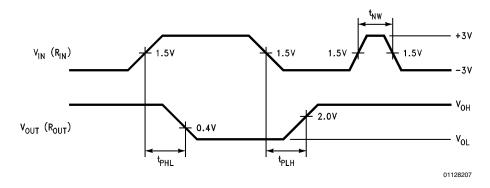


FIGURE 4. Receiver Propagation Delays and Noise Rejection

Pin Descriptions

 $m V_{cc}$ (pin 9)— Power supply pin for the device,

+5V (±10%).

V+ (pin 11) — Positive supply for TIA/EIA-232-E drivers. Recommended external capacitor: $C4 = 1.0 \mu F$ (6.3V). This supply is not intended to be loaded externally.

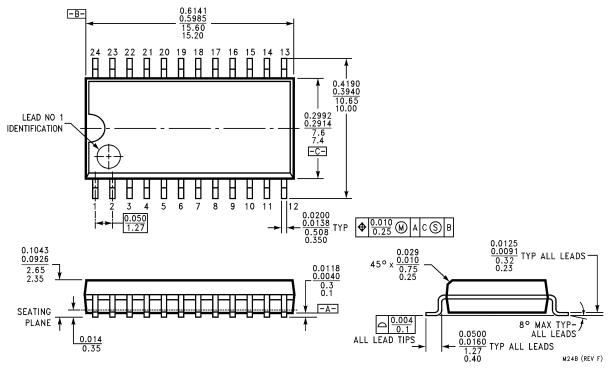
V– (pin 15) — Negative supply for TIA/EIA-232-E drivers. Recommended external capacitor: $C3 = 1.0 \, \mu F$ (16V). This supply is not intended to be loaded externally.

C1+, C1- (pins 10 and 12) - External capacitor connection pins. Recommended capacitor - 1.0 µF (6.3V).

C2+, C2- (pins 13 and 14) — External Capacitor connection pins. Recommended capacitor – 1.0 μF (16V).

 D_{IN} 1-4 (pins 5, 18, 19, and 21)— Driver input pins are TTL/CMOS compatible. Inputs of unused drivers may be left open, an internal pull-up resistor (500 k Ω minimum, typically 5 M Ω) pulls input to V_{CC}. Output will be LOW for open inputs.

D_{OUT} 1-4 (pins 2, 1, 24, and 20) — Driver output pins conform to TIA/EIA-232-E levels.


 R_{IN1} 1–4 (pins 3, 7, 23, and 16)— Receiver input pins accept TIA/EIA-232-E input voltages (±15V). Receivers feature a noise filter and guaranteed hysteresis of 200 mV. Unused receiver input pins may be left open. Internal input resistor (5 k Ω) pulls input LOW, providing a failsafe HIGH output.

R_{OUT} 1–4 (pins 4, 6, 22, and 17) — Receiver output pins are TTL/CMOS compatible. Receiver output HIGH voltage is specified for both CMOS and TTL load conditions.

GND (pin 8)—Ground Pin.

www.national.com

Physical Dimensions inches (millimeters) unless otherwise noted

Order Number DS14C238WM, DS14C238WMX **NS Package Number M24B**

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.national.com

National Semiconductor Europe

Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171

Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Response Group Tel: 65-2544466

Fax: 65-2504466 Email: ap.support@nsc.com

National Semiconductor Tel: 81-3-5639-7560 Fax: 81-3-5639-7507

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

interface.ti.com

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Security

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Interface

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page <u>e2e.ti.com</u>

www.ti.com/security