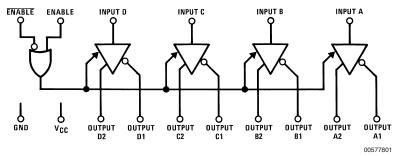
DS26LS31C,DS26LS31M

DS26LS31C/DS26LS31M Quad High Speed Differential Line Driver

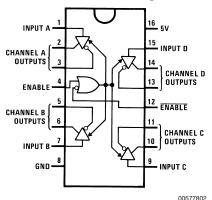
Literature Number: SNOSBK1B

DS26LS31C/DS26LS31M Quad High Speed Differential Line Driver

General Description


The DS26LS31 is a quad differential line driver designed for digital data transmission over balanced lines. The DS26LS31 meets all the requirements of EIA Standard RS-422 and Federal Standard 1020. It is designed to provide unipolar differential drive to twisted-pair or parallel-wire transmission lines.

The circuit provides an enable and disable function common to all four drivers. The DS26LS31 features TRI-STATE ® outputs and logically ANDed complementary outputs. The inputs are all LS compatible and are all one unit load.


Features

- Output skew—2.0 ns typical
- Input to output delay 10 ns typical
- Operation from single 5V supply
- Outputs won't load line when $V_{CC} = 0V$
- Four line drivers in one package for maximum package density
- Output short-circuit protection
- Complementary outputs
- Meets the requirements of EIA Standard RS-422
- Pin compatible with AM26LS31
- Available in military and commercial temperature range

Logic and Connection Diagrams

Dual-In-Line Package

Top View

Order Number DS26LS31CM, or DS26LS31CN
See NS Package M16A or N16E
For Complete Military Product Specifications,
refer to the appropriate SMD or MDS.

Order Number DS26LS31MJ/883, DS26LS31ME/883 or DS26LS31MW/883
See NS Package E20A, J16A or W16A

TRI-STATE® is a registered trademark of National Semiconductor Corporation

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage	7V
Input Voltage	7V
Output Voltage	5.5V
Output Voltage (Power OFF)	-0.25 to 6V
Maximum Power Dissination (Note 1) at 25°C	

Cavity Package 1509 mW Molded DIP Package 1476 mW SO Package 1051 mW

Operating Conditions

	Min	Max	Units
Supply Voltage, V_{CC}			
DS26LS31M	4.5	5.5	V
DS26LS31	4.75	5.25	V
Temperature, T_A			
DS26LS31M	-55	+125	°C
DS26LS31	0	+70	°C

Note 1: Derate cavity package 10.1 mW/°C above 25°C; derate molded DIP package 11.9 mW/°C above 25°C; derate SO package 8.41 mW/°C above

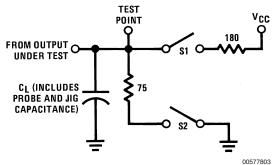
Electrical Characteristics (Notes 3, 4, 5)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{OH}	Output High Voltage	I _{OH} = -20 mA	2.5			V
V _{OL}	Output Low Voltage	I _{OL} = 20 mA			0.5	V
V _{IH}	Input High Voltage		2.0			V
V _{IL}	Input Low Voltage				0.8	V
I _{IL}	Input Low Current	V _{IN} = 0.4V		-40	-200	μΑ
I _{IH}	Input High Current	V _{IN} = 2.7V			20	μA
- I _I	Input Reverse Current	V _{IN} = 7V			0.1	mA
I _O	TRI-STATE Output Current	V _O = 2.5V			20	μA
		V _O = 0.5V			-20	μA
V _{CL}	Input Clamp Voltage	I _{IN} = -18 mA			-1.5	V
I _{sc}	Output Short-Circuit Current		-30		-150	mA
I _{CC}	Power Supply Current	All Outputs Disabled		35	60	mA
		or Active				

Switching Characteristics

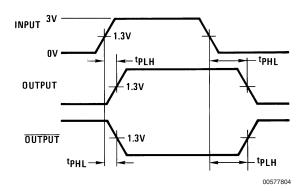
 $V_{CC} = 5V$, $T_A = 25$ °C

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PLH}	Input to Output	C _L = 30 pF		10	15	ns
t _{PHL}	Input to Output	C _L = 30 pF		10	15	ns
Skew	Output to Output	C _L = 30 pF		2.0	6.0	ns
t _{LZ}	Enable to Output	C _L = 10 pF, S2 Open		15	35	ns
t _{HZ}	Enable to Output	C _L = 10 pF, S1 Open		15	25	ns
t _{ZL}	Enable to Output	C _L = 30 pF, S2 Open		20	30	ns
t _{zH}	Enable to Output	C _L = 30 pF, S1 Open		20	30	ns


Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Electrical Characteristics" provide conditions for actual device operation.

Note 3: Unless otherwise specified min/max limits apply across the -55°C to +125°C temperature range for the DS726LS31M and across the 0°C to +70°C range for the DS26LS31. All typicals are given for V $_{CC}$ = 5V and T_A = 25 $^{\circ}C$.

Note 4: All currents into device pins are positive; all currents out of device pins are negative. All voltages are referenced to ground unless otherwise specified.


Note 5: Only one output at a time should be shorted.

AC Test Circuit and Switching Time Waveforms

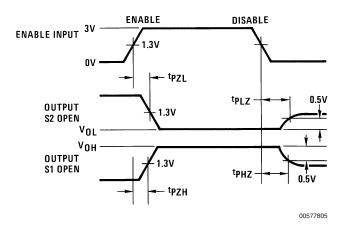
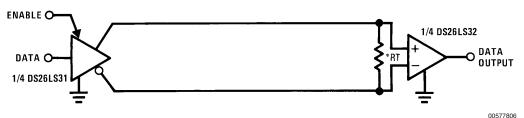

S1 and S2 of load circuit are closed except where shown.

FIGURE 1. AC Test Circuit

 $f=1~MHz,~t_r \leq 15~ns,~t_f \leq 6~ns$

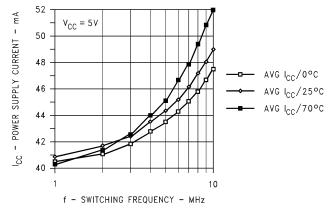
FIGURE 2. Propagation Delays



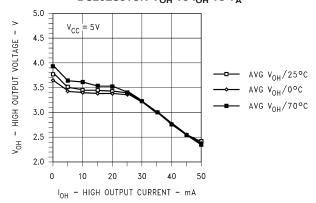
 $f=1~MHz,~t_{f}\leq15~ns,~t_{f}\leq6~ns$

FIGURE 3. Enable and Disable Times

Typical Applications


Two-Wire Balanced System, RS-422

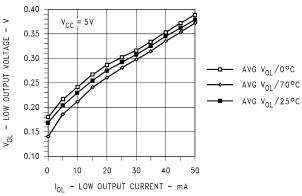
Note 6: R_T is optional although highly recommended to reduce reflection.


Typical Performance Characteristics

DS26LS31CN Unloaded I_C vs Frequency vs T_A

00577807

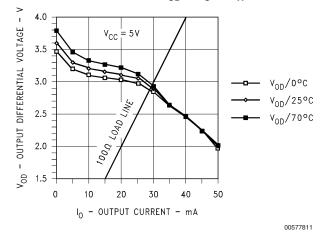
DS26LS31CN V_{OH} vs I_{OH} vs T_A

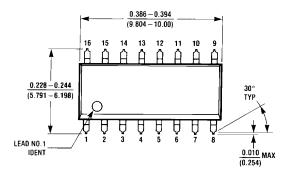


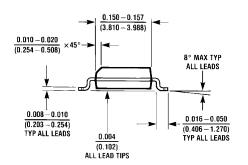
00577809

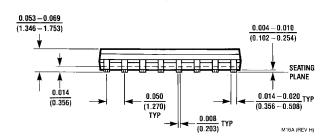
DS26LS31 I_{CC} vs V_{CC} vs T_A 43 - mA 42 41 POWER SUPPLY CURRENT 40 39 AVG/4.75V 38 AVG/5.0V 37 AVG/5.25V 35 ္ပ 33 30 40 50 T_A - AMBIENT TEMPERATURE - °C

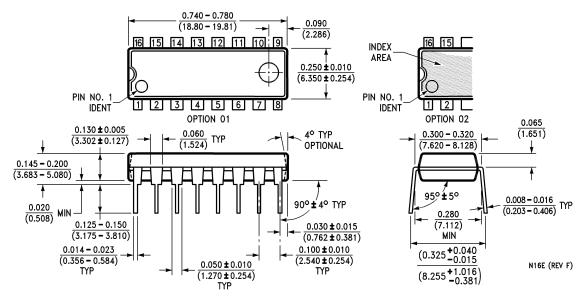
00577808

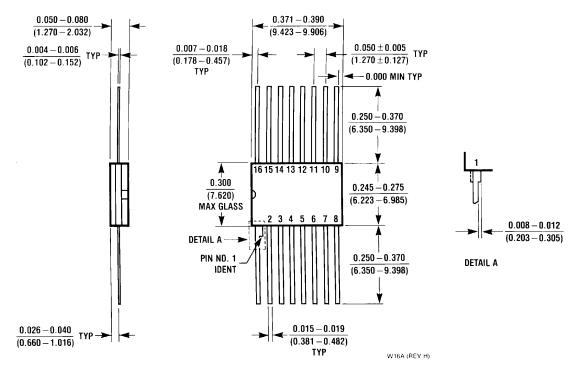

DS26LS31CN $V_{\rm OL}$ vs $I_{\rm OL}$ vs $T_{\rm A}$


00577810

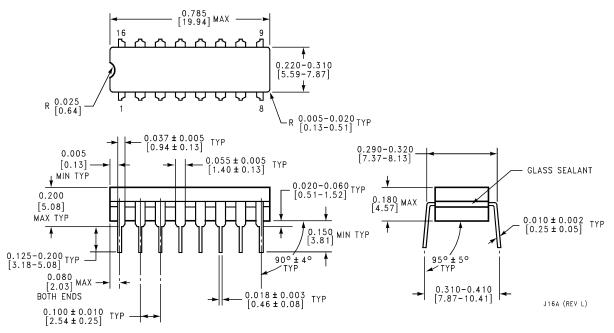

Typical Performance Characteristics (Continued)


DS26LS31CN $V_{\rm OD}$ vs $I_{\rm O}$ vs $T_{\rm A}$


Physical Dimensions inches (millimeters) unless otherwise noted

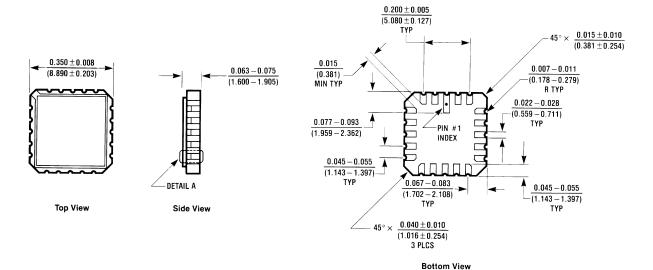


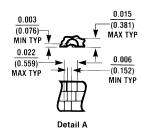
Small Outline Package (M) Order Number DS26LS31CM **NS Package Number M16A**



Molded Dual-In-Line Package (N) Order Number DS26LS31CN NS Package Number N16E

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)




16 Lead Ceramic Flatpak (F)
Order Number DS26LS31MW/883
NS Package Number W16A

16 Lead Ceramic Dual-in-Line Package (J)
Order Number DS26LS31MJ/883
NS Package Number J16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

E20A (REV D)

20 Lead Ceramic Leadless Chip Carrier (E) Order Number DS26LS31MJE/883 NS Package Number E20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor Americas Customer Support Center Email: new feedback@nsc.c

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Mobile Processors <u>www.ti.com/omap</u>

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated