DS26LS32AC,DS26LS32C,DS26LS32M,DS26LS33M

DS26LS32AC/DS26LS32C/DS26LS32M/DS26LS33M Quad Differential Line Receivers

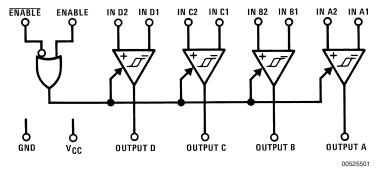
Literature Number: SNLS352B

DS26LS32AC/DS26LS32C/DS26LS32M/DS26LS33M Quad Differential Line Receivers

General Description

The DS26LS32 and DS26LS32A are quad differential line receivers designed to meet the RS-422, RS-423 and Federal Standards 1020 and 1030 for balanced and unbalanced digital data transmission.

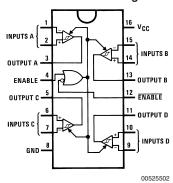
The DS26LS32 and DS26LS32A have an input sensitivity of 200 mV over the input voltage range of $\pm 7V$ and the DS26LS33 have an input sensitivity of 500 mV over the input voltage range of $\pm 15V$.


The DS26LS32A differ in function from the popular DS26LS32 and DS26LS33 in that input pull-up and pull-down resistors are included which prevent output oscillation on unused channels.

Each version provides an enable and disable function common to all four receivers and features TRI-STATE ® outputs with 8 mA sink capability. Constructed using low power Schottky processing, these devices are available over the full military and commerical operating temperature ranges.

Features

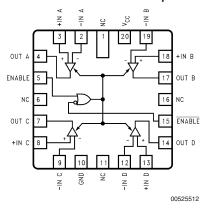
- High differential or common-mode input voltage ranges of ±7V on the DS26LS32 and DS26LS32A and ±15V on the DS26LS33
- ±0.2V sensitivity over the input voltage range on the DS26LS32 and DS26LS32A, ±0.5V sensitivity on the DS26LS33
- DS26LS32 and DS26LS32A meet all requirements of RS-422 and RS-423
- 6k minimum input impedance
- 100 mV input hysteresis on the DS26LS32 and DS26LS32A, 200 mV on the DS26LS33
- Operation from a single 5V supply
- TRI-STATE outputs, with choice of complementary output enables for receiving directly onto a data bus


Logic Diagram

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Connection Diagrams

Dual-In-Line Package



Top View

Order Number DS26LS32CM, DS26LS32CN, DS26LS32ACM, DS26LS32ACM, DS26LS33ACM or DS26LS33ACN

See NS Package Number M16A or N16E
For Complete Military Product Specifications,
refer to the appropriate SMD or MDS.
Order Number DS26LS32MJ/883, DS26LS32MW/883,
DS26LS32ME/883, DS26LS33MW/883
See NS Package Number E20A, J16A or W16A

20-Lead Ceramic Leadless Chip Carrier

Truth Table

ENABLE	ENABLE	Input	Output
0	1	X	Hi-Z
See		V _{ID} ≥ V _{TH} (Max)	1
Note Below		$V_{ID} \le V_{TH} \text{ (Min)}$	0

Hi-Z = TRI-STATE®

Note: Input conditions may be any combination not defined for ENABLE and $\overline{\text{ENABLE}}$.

Absolute Maximum Ratings (Note 3)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

	_,,
Supply Voltage	7V
Common-Mode Range	±25V
Differential Input Voltage	±25V
Enable Voltage	7V
Output Sink Current	50 mA
Maximum Power Dissipation (Note 1) at 25°C	
Cavity Package	1433 mW
Molded Dip Package	1362 mW
SO Package DS26LS32	1002 mW
DS26LS32A	1051 mW
Storage Temperature Range	−65°C to
	+165°C
Lead Temperature (Soldering, 4	

Operating Conditions

	Min	Max	Units
Supply Voltage, (V _{CC})			
DS26LS32M, DS26LS33M	4.5	5.5	V
(MIL)			
DS26LS32C	4.75	5.25	V
DS26LS32AC			
(COML)			
Temperature, (T _A)			
DS26LS32M, DS26LS33M	-55	+125	°C
(MIL)			
DS26LS32C	0	+70	°C
DS26LS32AC			
(COML)			

Note 1: Derate cavity package 9.6 mW/°C above 25°C; derate molded DIP package 10.9 mW/°C above 25°C.

Note 2: Derate SO Package 8.01 mW/°C for DS26LS32 8.41 mW/°C for DS26LS32A

260°C seconds)

Electrical Characteristics (Notes 4, 5, 6)

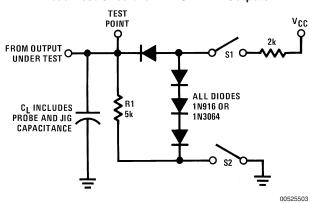
over the operating temperature range unless otherwise specified

Symbol	Parameter	Conditions				Тур	Max	Units
V _{TH}	Differential Input	$V_{OUT} = V_{OH}$	DS26LS32, DS26LS32A, -7V ≤ V _{CM} ≤ +7V			±0.07	0.2	V
	Voltage	or V _{OL}	DS26LS33, DS26LS33A, −15V ≤ V _{CM} +15V			±0.14	0.5	V
R _{IN}	Input Resistance	-15V ≤ V _{CM} ≤ -	+15V (One Input A	C GND)	6.0	8.5		kΩ
I _{IN}	Input Current (Under	$V_{IN} = 15V$, Oth	$er Input -15V \le V_{II}$	_N ≤ +15V			2.3	mA
	Test)	$V_{IN} = -15V, Or$	ther Input $-15V \le V$	/ _{IN} ≤ +15V			-2.8	mA
V _{OH}	Output High Voltage	$V_{CC} = MIN, \Delta V$	_{IN} = 1V,	Commercial	2.7	4.2		V
		$V_{\overline{\text{ENABLE}}} = 0.8V$	$I_{OH} = -440 \ \mu A$	Military	2.5	4.2		V
V _{OL}	Output Low Voltage	$V_{CC} = Min, \Delta V_{II}$	_N = -1V,	I _{OL} = 4 mA			0.4	V
		$V_{\overline{\text{ENABLE}}} = 0.8V$	1	I _{OL} = 8 mA			0.45	V
V_{IL}	Enable Low Voltage						0.8	V
V _{IH}	Enable High Voltage				2.0			V
V _I	Enable Clamp	$V_{CC} = Min, I_{IN} = -18 \text{ mA}$					-1.5	V
	Voltage							
Io	OFF-State (High	$V_{CC} = Max$ $V_{O} = 2.4V$				20	μΑ	
	Impedance) Output			V _O = 0.4V			-20	μΑ
	Current							
I _{IL}	Enable Low Current	$V_{IN} = 0.4V$					-0.36	mA
I _{IH}	Enable High Current	V _{IN} = 2.7V					20	μΑ
I _{sc}	Output Short-Circuit	$V_{O} = 0V, V_{CC} = Max, \Delta V_{IN} = 1V$		-15		-85	mA	
	Current							
I _{cc}	Power Supply	V _{CC} = Max, All	V _{IN} = GND,	DS26LS32, DS26LS32A		52	70	mA
	Current	Outputs Disabled		DS26LS33, DS26LS33A		57	80	mA
I ₁	Input High Current	V _{IN} = 5.5V					100	μΑ
V _{HYST}	Input Hysteresis	$T_A = 25^{\circ}C, V_{CC}$	25°C, V _{CC} = 5V, DS26LS32, DS26S32A			100		mV
		$V_{CM} = 0V$	= 0V DS26LS33, DS26LS33A			200		mV

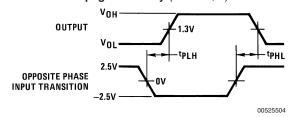
Note 3: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 4: All currents into device pins are shown as positive, all currents out of device pins are shown as negative, all voltages are referenced to ground, unless otherwise specified. All values shown as max or min are so classified on absolute value basis.

Note 5: All typical values are $V_{CC} = 5V$, $T_A = 25$ °C.


Note 6: Only one output at a time should be shorted.

Switching Characteristics V_{CC} = 5V, T_A = 25°C


Symbol	Parameter	Conditions	DS26LS32/DS26LS33			DS26LS32A/DS26LS33A			Units
			Min	Тур	Max	Min	Тур	Max	
t _{PLH}	Input to Output	$C_L = 15 pF$		17	25		23	35	ns
t_{PHL}				17	25		23	35	ns
t _{LZ}	ENABLE to Output	$C_L = 5 pF$		20	30		15	30	ns
t_{HZ}				15	22		20	25	ns
t _{ZL}	ENABLE to Output	$C_L = 15 pF$		15	22		14	22	ns
t _{zH}				15	22		15	22	ns

AC Test Circuit and Switching Time Waveforms

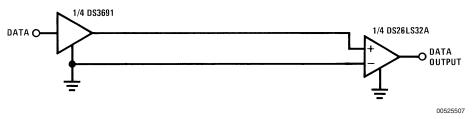

Load Test Circuit for TRI-STATE® Outputs

Propagation Delay (Notes 7, 9)

Enable and Disable Times (Notes 8, 9)

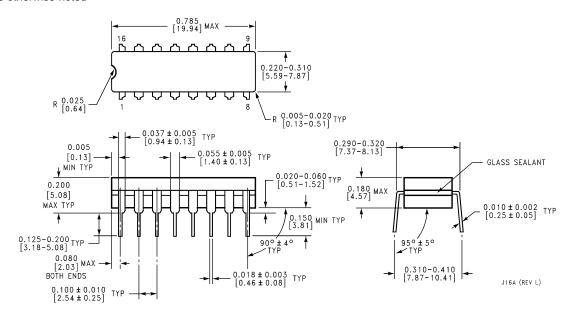

Note 7: Diagram shown for ENABLE low.

Note 8: S1 and S2 of load circuit are closed except where shown.

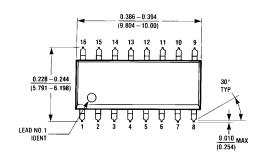

Note 9: Pulse generator for all pulses: Rate = 1.0 MHz; $Z_O = 50\Omega$; $t_f \le 6$ ns; $t_f \le 6.0$ ns.

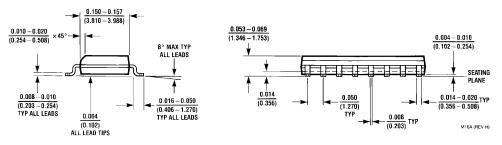
Typical Applications

Two-Wire Balanced Interface — RS-422

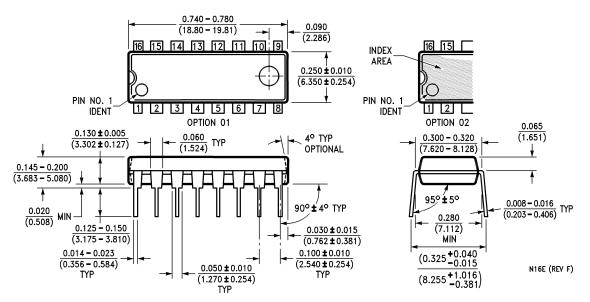


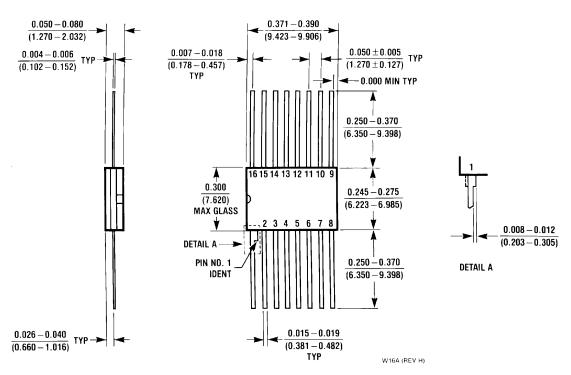
Single Wire with Driver Ground Reference—RS-423




Physical Dimensions inches (millimeters)

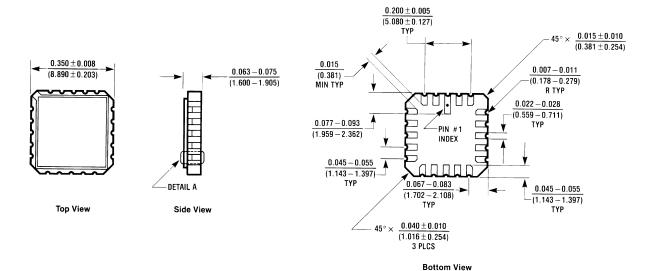
unless otherwise noted


Ceramic Dual-In-Line Package (J)
Order Number DS26LS32MJ/883 or DS26LS33MJ/883
NS Package Number J16A



Small Outline Package (M)
Order Number DS26LS32CM or DS26LS32ACM
NS Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)



Molded Dual-In-Line Package (N)
Order Number DS26LS32CN or DS26LS32ACN
NS Package Number N16E

16 Lead Ceramic Flatpak (W)
Order Number DS26LS32MW/883 or DS26LS33MW/883
NS Package Number W16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

0.003 (0.076) MIN TYP 0.022 (0.559) MAX TYP Detail A

E20A (REV D)

20 Lead Ceramic Leadless Chip Carrier (E) Order Number DS26LS32ME/883 NS Package Number E20A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor
Americas Customer
Support Center
Email: new.feedback@nsc.com

Email: new.feedback@nsc.c Tel: 1-800-272-9959

www.national.com

National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Wireless Connectivity

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications dataconverter.ti.com Computers and Peripherals www.ti.com/computers **Data Converters DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt www.ti.com/space-avionics-defense power.ti.com Space, Avionics and Defense Microcontrollers Video and Imaging microcontroller.ti.com www.ti.com/video www.ti-rfid.com **OMAP Mobile Processors** www.ti.com/omap

TI E2E Community Home Page

www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

e2e.ti.com