DS36C280

DS36C280 Slew Rate Controlled CMOS EIA-RS-485 Transceiver

Literature Number: SNLS097B

DS36C280

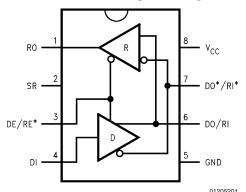
Slew Rate Controlled CMOS EIA-RS-485 Transceiver

General Description

The DS36C280 is a low power differential bus/line transceiver designed to meet the requirements of RS-485 Standard for multipoint data transmission. In addition, it is compatible with TIA/EIA-422-B.

The slew rate control feature allows the user to set the driver rise and fall times by using an external resistor. Controlled edge rates can reduce switching EMI.

The CMOS design offers significant power savings over its bipolar and ALS counterparts without sacrificing ruggedness against ESD damage. The device is ideal for use in battery powered or power conscious applications. $I_{\rm CC}$ is specified at 500 μA maximum.


The driver and receiver outputs feature TRI-STATE® capability. The driver outputs operate over the entire common mode range of -7V to +12V. Bus contention or fault situations are handled by a thermal shutdown circuit, which forces the driver outputs into the high impedance state.

The receiver incorporates a fail safe circuit which guarantees a high output state when the inputs are left open (Note 1).

Features

- 100% RS-485 compliant
 - Guaranteed RS-485 device interoperation
- Low power CMOS design: I_{CC} 500 µA max
- Adjustable slew rate control
 - Minimizes EMI affects
- Built-in power up/down glitch-free circuitry
 - Permits live transceiver insertion/displacement
- SOIC packages
- Industrial temperature range: -40°C to +85°C
- On-board thermal shutdown circuitry
 - Prevents damage to the device in the event of excessive power dissipation
- Wide common mode range: -7V to +12V
- Receiver open input fail-safe (Note 1)
- 1/4 unit load (DS36C280): ≥128 nodes
- ½ unit load (DS36C280T): ≥64 nodes
- ESD (human body model): ≥2 kV

Connection and Logic Diagram

Order Number DS36C280M, DS36C280TM See NS Package Number M08A

Truth Table

DRIVER SECTION						
DE/RE*	DI DO/RI		DO*/RI*			
Н	Н	Н	L			
Н	L	L	Н			
L	Х	Z	Z			
RECEIVER SECTION						
DE/RE*	R	I-RI*	RO			
L	≥+0.2V		Н			
L	≤-	-0.2V	L			
Н	X		Z			
L	OPEN	I (Note 1)	Н			

Note 1: Non-terminated, Open Inputs only

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC}) Input Voltage (DE/RE*, & DI) -0.5V to $(V_{CC} + 0.5V)$ Common Mode (V_{CM}) Driver Output/Receiver

Input ±15V Input Voltage (DO/RI,

DO*/RI*)

±14V Receiver Output Voltage -0.5V to $(V_{CC} + 0.5V)$

Maximum Package Power Dissipation @ +25°C

M Package 1190 mV,

9.5 mW/°C above +25°C derate

Storage Temperature Range -65°C to +150°C Lead Temperature +260°C (Soldering 4 sec.)

Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage (V_{CC})	+4.75	+5.0	+5.25	V
Bus Voltage	-7		+12	V
Operating Free Air Temp	perature ((T_A)		
DS36C280T	-40	+25	+85	°C
DS36C280	0	+25	+70	°C

Electrical Characteristics (Notes 3, 4)

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified

Symbol	Parameter	Conditions Reference		erence	Min	Тур	Max	Units	
DIFFERE	NTIAL DRIVER CHARACTE	RISTICS							
V _{OD1}	Differential Output Voltage	I _O = 0 mA (No Load)		(122)		1.5		5.0	V
V _{OD0}	Output Voltage	$I_O = 0 \text{ mA}$		1	422) 485)	0		5.0	V
V _{OD0*}	Output Voltage	(Output to GND)		(485)		0		5.0	V
V _{OD2}	Differential Output Voltage	$R_L = 50\Omega$		(422)	Figure 1	2.0	2.8		V
	(Termination Load)	$R_L = 27\Omega$		(485)		1.5	2.3	5.0	V
ΔV_{OD2}	Balance of V _{OD2}	$R_L = 27\Omega \text{ or } 50\Omega$		(N	ote 5)	-0.2	0.1	+0.2	V
	V _{OD2} − V _{OD2*}			(42	2, 485)				
V _{OD3}	Differential Output Voltage	R1 = 54Ω , R2 = 375Ω	2	Fi	gure 2	1.5	2.0	5.0	V
	(Full Load)	$V_{TEST} = -7V \text{ to } +12V$		1					
V _{oc}	Driver Common Mode	$R_L = 27\Omega$		(485)	Figure 1	0		3.0	V
	Output Voltage	$R_L = 50\Omega$		(422)		0		3.0	V
ΔV_{OC}	Balance of V _{OC}	$R_L = 27\Omega$ or		(Note 5)		-0.2		+0.2	V
	IV _{OC} - V _{OC*} I	$R_L = 50\Omega$		(422, 485)					
I _{OSD}	Driver Output Short-Circuit	$V_{O} = +12V$ $V_{O} = -7V$		(485)	Figure 4		200	+250	mA
	Current			(485)			-190	-250	mA
RECEIVE	ER CHARACTERISTICS	•							
V _{TH}	Differential Input High	$V_{\rm O} = V_{\rm OH}, I_{\rm O} = -0.4 \text{ mA}$					+0.035	+0.2	V
	Threshold Voltage	$-7V \le V_{CM} \le +12V$		(Note 6)					
V _{TL}	Differential Input Low	$V_{\rm O} = V_{\rm OL}, I_{\rm O} = 0.4 \text{ m}.$	A	(42	2, 485)	-0.2	-0.035		V
	Threshold Voltage	$-7V \le V_{CM} \le +12V$							
V _{HST}	Hysteresis	$V_{CM} = 0V$					70		mV
R _{IN}	Input Resistance	$-7V \le V_{CM} \le +12V$		DS3	6C280T	24	68		kΩ
R _{IN}	Input Resistance	$-7V \le V_{CM} \le +12V$		DS	36C280	48	68		kΩ
I _{IN}	Line Input Current	Other Input = 0V	DS36C280	V _{IN} = +	12V	0	0.19	0.25	mA
	(Note 8)	$DE = V_{IL}, RE^* = V_{IL}$		V _{IN} = -	7V	0	-0.1	-0.2	mA
		$V_{CC} = 4.75 \text{ to } 5.25$	DS36C280T	V _{IN} = +	12V	0	0.19	0.5	mA
		or 0V		V _{IN} = -	7V	0	-0.1	-0.4	mA
I _{ING}	Line Input Current	Other Input = 0V	DS36C280	V _{IN} = +	12V	0	0.19	0.25	mA
	Glitch (Note 8)	$DE = V_{IL}, RE^* = V_{IL}$		V _{IN} = -	7V	0	-0.1	-0.2	mA
		$V_{CC} = +3.0V$	DS36C280T	V _{IN} = +		0	0.19	0.5	mA
		or 0V T _A = 25°C		V _{IN} = -		0	-0.1	-0.4	mA
I _B	Input Balance Test	RS = 500Ω	1	(422)	(Note 10)			±400	mV

Electrical Characteristics (Notes 3, 4) (Continued)

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified

Symbol	Parameter	Conditions		Reference	Min	Тур	Max	Units
RECEIVER CHARACTERISTICS								
V _{OH}	High Level Output Voltage	$I_{OH} = -4 \text{ mA}, V_{ID} = +0.$	2V	RO	3.5	4.6		V
V _{OL}	Low Level Output Voltage	$I_{OL} = +4 \text{ mA}, V_{ID} = -0.2$	2V	Figure 11		0.3	0.5	V
I _{OSR}	Short Circuit Current	V _O = GND		RO	7	35	85	mA
I _{OZR}	TRI-STATE Leakage	$V_{\rm O} = 0.4 V$ to 2.4V					±1	μA
	Current							
DEVICE CHARACTERISTICS								
V_{IH}	High Level Input Voltage				2.0		V _{CC}	V
V_{IL}	Low Level Input Voltage	V _{IH} = V _{CC}		DE/RE*, DI	GND		0.8	V
I _{IH}	High Level Input Current						2	μA
I _{IL}	Low Level Input Current	V _{CC} = 5.0V	$V_{IL} = 0V$	ы			-2	μA
		$V_{CC} = +3.0V$	V _{IL} = UV				-2	μA
		SR = 0V		SR			-1	mA
I _{CCR}	Power Supply Current	Driver OFF, Receiver ON		V		200	500	μA
I _{CCD}	(No Load)	Driver ON, Receiver OF	F	V _{CC}		200	500	μA

Switching Characteristics (Notes 4, 9, 11)

Over Supply Voltage and Operating Temperature ranges, unless otherwise specified

Symbol	ol Parameter Conditions Reference		Min	Тур	Max	Units	
DRIVER C	HARACTERISTICS	•			•		
t _{PHLD}	Differential Propagation Delay High to Low	$R_L = 54\Omega$, $C_L = 100 pF$	Figures 5, 6	10	399	1000	ns
t _{PLHD}	Differential Propagation Delay Low to High			10	400	1000	ns
t _{SKD}	Differential Skew It _{PHLD} - t _{PLHD} I			0	1	10	ns
t _r	Rise Time	SR = Open			2870		ns
t_{f}	Fall Time				3070		ns
t _r	Rise Time	SR = 100 kΩ			1590		ns
t _f	Fall Time				1640		ns
t _r	Rise Time	SR = Short		100	337	1000	ns
t _f	Fall Time			100	348	1000	ns
t _{PHZ}	Disable Time High to Z	C _L = 15 pF	Figures 7, 8		1100	2000	ns
t _{PLZ}	Disable Time Low to Z		Figures 9, 10		500	800	ns
t _{PZH}	Enable Time Z to High	C _L = 100 pF	Figures 7, 8		300	500	ns
t _{PZL}	Enable Time Z to Low	Figures 9, 10			300	500	ns
RECEIVER	CHARACTERISTICS				•	•	•
t _{PHL}	Propagation Delay High to Low	C _L = 15 pF		30	210	400	ns
t _{PLH}	Propagation Delay Low to High		Figures 12, 13	30	190	400	ns
t _{sk}	Skew, It _{PHL} - t _{PLH} I			0	20	50	ns
t _{PLZ}	Output Disable Time	C _L = 15 pF			50	150	ns
t _{PHZ}			Figure 14 15 10		55	150	ns
t _{PZL}	Output Enable Time	1	Figures 14, 15, 16		40	150	ns
t _{PZH}					45	150	ns

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" specifies conditions of device operation.

Switching Characteristics (Notes 4, 9, 11) (Continued)

Note 3: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except V_{OD1} and V_{OD2}.

Note 4: All typicals are given for: $V_{CC} = +5.0V$, $T_A = +25^{\circ}C$.

 $\textbf{Note 5: } \textbf{Delta} \ |V_{OD2}| \ \text{and } \textbf{Delta} \ |V_{OC}| \ \text{are changes in magnitude of } V_{OD2} \ \text{and } V_{OC}, \ \text{respectively, that occur when input changes state.}$

Note 6: Threshold parameter limits specified as an algebraic value rather than by magnitude.

Note 7: Hysteresis defined as $V_{HST} = V_{TH} - V_{TL}$.

Note 8: I_{IN} includes the receiver input current and driver TRI-STATE leakage current.

Note 9: C_L includes probe and jig capacitance.

Note 10: For complete details of test, see RS-485.

Note 11: SR = GND for all Switching Characteristics unless otherwise specified.

Parameter Measurement Information

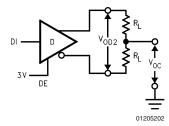


FIGURE 1. Driver $\rm V_{\rm OD2}$ and $\rm V_{\rm OC}$

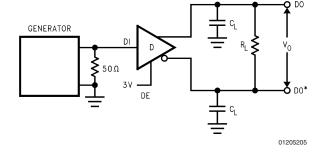


FIGURE 5. Driver Differential Propagation Delay Test Circuit

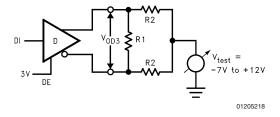


FIGURE 2. Driver $V_{\rm OD3}$

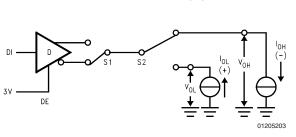


FIGURE 3. Driver $\rm V_{OH}$ and $\rm V_{OL}$

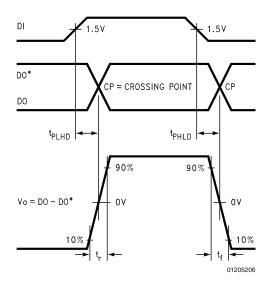


FIGURE 6. Driver Differential Propagation Delays and Differential Rise and Fall Times

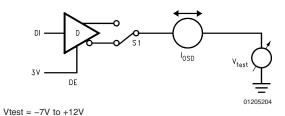


FIGURE 4. Driver I_{OSD}

Parameter Measurement Information (Continued)

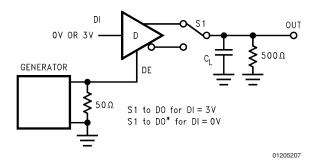


FIGURE 7. TRI-STATE Test Circuit (t_{PZH} , t_{PHZ})

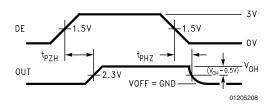


FIGURE 8. TRI-STATE Waveforms (t_{PZH} , t_{PHZ})

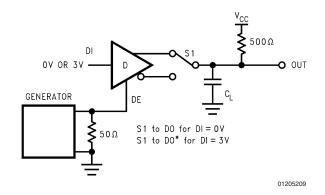


FIGURE 9. TRI-STATE Test Circuit ($t_{\rm PZL},\,t_{\rm PLZ}$)

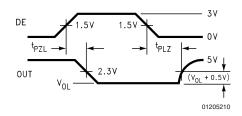


FIGURE 10. TRI-STATE Waveforms (t_{PZL} , t_{PLZ})

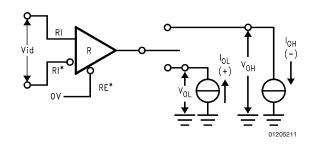


FIGURE 11. Receiver $V_{\rm OH}$ and $V_{\rm OL}$

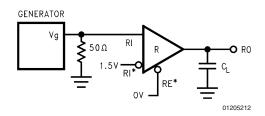


FIGURE 12. Receiver Differential Propagation Delay Test Circuit

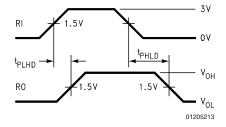


FIGURE 13. Receiver Differential Propagation Delay Waveforms

Parameter Measurement Information (Continued)

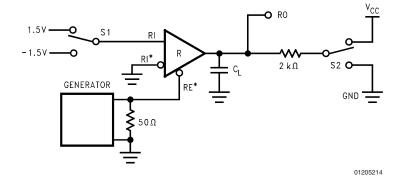


FIGURE 14. Receiver TRI-STATE Test Circuit

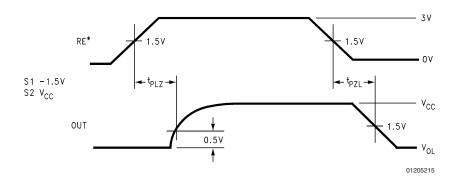


FIGURE 15. Receiver Enable and Disable Waveforms ($t_{\text{PLZ}},\,t_{\text{PZL}}$)

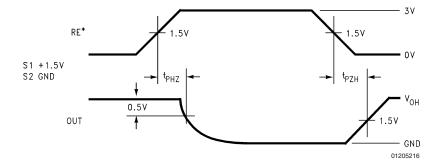


FIGURE 16. Receiver Enable and Disable Waveforms ($t_{\text{PHZ}},\,t_{\text{PZH}}$)

Typical Application Information

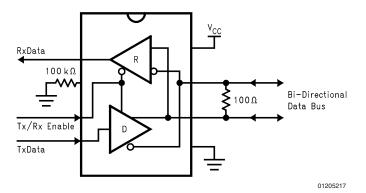


FIGURE 17. Typical Pin Connection

TABLE 1. Device Pin Descriptions

Pin	Name	Description
#		
1	RO	Receiver Output: When DE/RE* (Receiver Enable) is LOW, the receiver is enabled (ON), if DO/RI ≥
		DO*/RI* by 200 mV, RO will be HIGH. If DO/RI ≤ DO*/RI* by 200 mV, RO will be LOW. Additionally RO will
		be HIGH for OPEN (Non-terminated) inputs.
2	SR	Slew Rate Control: A resistor connected to Ground controls the Driver Output rising and falling edge rates.
3	DE/RE*	Combined Driver and Receiver Output Enable: When signal is LOW the receiver output is enabled and the
		driver outputs are in TRI-STATE (OFF). When signal is HIGH, the receiver output is in TRI-STATE (OFF)
		and the driver outputs are enabled.
4	DI	Driver Input: When DE/RE* is HIGH, the driver is enabled, if DI is LOW, then DO/RI will be LOW and
		DO*/RI* will be HIGH. If DI is HIGH, then DO/RI is HIGH and DO*/RI* is LOW.
5	GND	Ground Connection
6	DO/RI	Driver Output/Receiver Input, 485 Bus Pin.
7	DO*/RI*	Driver Output/Receiver Input, 485 Bus Pin.
8	V _{CC}	Positive Power Supply Connection: Recommended operating range for V _{CC} is +4.75V to +5.25V.

Unit Load

A unit load for a RS-485 receiver is defined by the input current versus the input voltage curve. The gray shaded region is the defined operating range from -7V to +12V. The top border extending from -3V at 0 mA to +12V at +1 mA is defined as one unit load. Likewise, the bottom border extending from +5V at 0 mA to -7V at -0.8 mA is also defined as one unit load (see Figure 18). A RS-485 driver is capable of driving up to 32 unit loads. This allows upto 32 nodes on a single bus. Although sufficient for many applications, it is sometime desirable to have even more nodes. For example an aircraft that has 32 rows with 4 seats per row could benefit from having 128 nodes on one bus. This would allow signals to be transferred to and from each individual seat to 1 main station. Usually there is one or two less seats in the last row of the aircraft near the restrooms and food storage area. This frees the node for the main station.

The DS36C278, the DS36C279, and the DS36C280 all have ½ unit load and ¼ unit load (UL) options available. These devices will allow upto 64 nodes or 128 nodes guaranteed over temperature depending upon which option is selected. The ½ UL option is available in industrial temperature and the ¼ UL is available in commercial temperature.

First, for a ½ UL device the top and bottom borders shown in Figure 18 are scaled. Both 0 mA reference points at +5V and

-3V stay the same. The other reference points are +12V at +0.5 mA for the top border and -7V at -0.4 mA for the bottom border (see *Figure 18*). Second, for a $^{1}/_{4}$ UL device the top and bottom borders shown in *Figure 18* are scaled also. Again, both 0 mA reference points at +5V and -3V stay the same. The other reference points are +12V at +0.25 mA for the top border and -7V at -0.2 mA for the bottom border (see *Figure 18*).

The advantage of the ½ UL and ¼ UL devices is the increased number of nodes on one bus. In a single master multi-slave type of application were the number of slaves exceeds 32, the DS36C278/279/280 may save in the cost of extra devices like repeaters, extra media like cable, and/or extra components like resistors.

The DS36C279 and DS36C280 have addition feature which offer more advantages. The DS36C279 has an automatic sleep mode function for power conscious applications. The DS36C280 has a slew rate control for EMI conscious applications. Refer to the sleep mode and slew rate control portion of the application information section in the corresponding datasheet for more information on these features.

Unit Load (Continued)

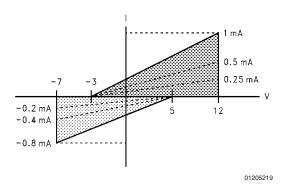


FIGURE 18. Input Current vs Input Voltage Operating Range

tion fixed edge rate devices. The slew rate control may be adjusted with or without any external components. The DS36C280 offers both low power (I $_{\rm CC}$ 500 μA max) and low EMI for an RS-485 interface.

The slew rate control is located at pin two of the device and only controls the driver output edges. The slew rate control pin (SR) may be left open or shorted to ground, with or without a resistor. When the SR pin is shorted to ground without a resistor, the driver output edges will transition typically 350 ns. When the SR pin is left open, the driver output edges will transition typically 3 µs. When the SR pin is shorted to ground with a resistor, the driver output edges will transition between 350 ns and 3 µs depending on the resistor value. Refer to the slew rate versus resistor value curve in this datasheet for determining resistor values and expected typical slew rate value. Please note, when slowing the edge rates of the device (see *Figure 19*) will decrease the maximum data rate also.

Slew Rate Control

The DS36C280 features an adjustable slew rate control. This feature allows more control over EMI levels than tradi-

Differential Rise/Fall Time vs Slew Rate Resistor

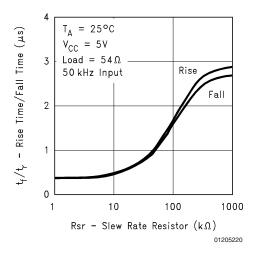
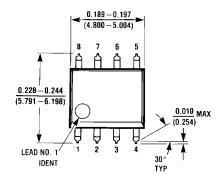
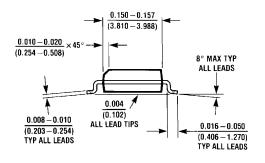
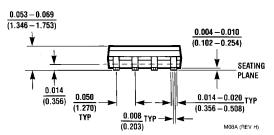





FIGURE 19. Slew Rate Resistor vs Rise/Fall Time

Physical Dimensions inches (millimeters) unless otherwise noted

8-Lead (0.150" Wide) Molded Small Outline Package, JEDEC Order Number DS36C280M or DS36C280TM **NS Package Number M08A**

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

National Semiconductor **Americas Customer** Support Center

Email: new.feedback@nsc.com

Tel: 1-800-272-9959

Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790

Europe Customer Support Center

National Semiconductor

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com **National Semiconductor** Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	Applications
----------	--------------

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated