

DS8922/DS8922A/DS8923A TRI-STATE® RS-422 Dual Differential Line Driver and Receiver Pairs

General Description

The DS8922/22A and DS8923A are Dual Differential Line Driver and Receiver pairs. These devices are designed specifically for applications meeting the ST506, ST412 and ESDI Disk Drive Standards. In addition, the devices meet the requirements of the EIA Standard RS-422.

These devices offer an input sensitivity of 200 mV over a $\pm 7V$ common mode operating range. Hysteresis is incorporated (typically 70 mV) to improve noise margin for slowly changing input waveforms. An input fail-safe circuit is provided such that if the receiver inputs are open the output assumes the logical one state.

The DS8922A and DS8923A drivers are designed to provide unipolar differential drive to twisted pair or parallel wire transmission lines. Complementary outputs are logically ANDed and provide an output skew of 0.5 ns (typ.) with propagation delays of 12 ns.

Both devices feature TRI-STATE outputs. The DS8922/22A have independent control functions common to a driver and receiver pair. The DS8923A has separate driver and receiver control functions.

Power up/down circuitry is featured which will TRI-STATE the outputs and prevent erroneous glitches on the transmission lines during system power up or power down operation. The DS8922/22A and DS8923A are designed to be compatible with TTL and CMOS.

Features

- 12 ns typical propagation delay
- Output skew—±0.5 ns typical
- Meets the requirements of EIA Standard RS-422
- Complementary Driver Outputs
- High differential or common-mode input voltage ranges of ±7V
- ±0.2V receiver sensitivity over the input voltage range
- Receiver input fail-safe circuitry
- Receiver input hysteresis—70 mV typical
- Glitch free power up/down
- TRI-STATE outputs

Connection Diagrams

DS8922A Dual-In-Line

Order Number DS8922M, DS8922N, DS8922AM or DS8922AN See NS Package Number M16A or N16E

TRI-STATE® is a registered trademark of National Semiconductor Corp.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage 7V

Drive Input Voltage -0.5V to +7V

Output Voltage 5.5V

Receiver Output Sink Current 50 mA

Receiver Input Voltage ±10V

Differential Input Voltage ±12V

Maximum Package Power Dissipation @ +25°C

M Package 1300 mW N Package 1450 mW

Derate M Package 10.4 mW/°C above +25°C Derate N Package 11.6 mW/°C above +25°C

Storage Temperature Range -65°C to +165°C Lead Temp. (Soldering, 4 seconds) 260°C ESD Rating (HBM) 2000V+

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage	4.5	5.5	V
Temperature (T _A)	0	70	°C

DS8922/22A and DS8923A Electrical Characteristics(Notes 2, 3, 4)

Symbol		Conditions		Тур	Max	Units
RECEIVER						
V_{TH}	$-7V \le V_{CM} \le +7V$	$-7V \le V_{CM} \le +7V$		±35	+200	mV
V_{HYST}	$-7V \le V_{CM} \le +7V$	$-7V \le V_{CM} \le +7V$		70		mV
R _{IN}	$V_{IN} = -7V, +7V$ (Oth	er Input = GND)	4.0	6.0		kΩ
I _{IN}	V _{IN} = 10V	V _{IN} = 10V			3.25	mA
	$V_{IN} = -10V$				-3.25	mA
V _{OH}	$V_{CC} = MIN, I_{OH} = -$	$V_{CC} = MIN, I_{OH} = -400 \mu A$				V
V _{OL}	$V_{CC} = MAX, I_{OL} = 8$	V _{CC} = MAX, I _{OL} = 8 mA			0.5	V
I _{sc}	V _{CC} = MAX, V _{OUT} =	V _{CC} = MAX, V _{OUT} = 0V			-100	mA
DRIVER						
V _{OH}	$V_{CC} = MIN, I_{OH} = -2$	V _{CC} = MIN, I _{OH} = -20 mA				V
V_{OL}	$V_{CC} = MIN, I_{OL} = +2$	0 mA			0.5	V
I _{OFF}	V _{CC} = 0V, V _{OUT} = 5	5V			100	μΑ
IVTI–I VT I					0.4	V
VT						V
IV _{OS} -V _{OS} I					0.4	V
I _{sc}	V _{CC} = MAX, V _{OUT} =	V _{CC} = MAX, V _{OUT} = 0V			-150	mA
DRIVER and R	ECEIVER					
l _{oz}		V _{OUT} = 2.5V			50	μΑ
TRI-STATE	$V_{CC} = MAX$	$V_{OUT} = 0.4V$			-50	μΑ
Leakage						
I _{cc}	V _{CC} = MAX	ACTIVE			76	mA
		TRI-STATE			78	mA
DRIVER and E	NABLE INPUTS		•			
V _{IH}			2.0			V
V _{IL}					0.8	V
I _{IL}	$V_{CC} = MAX, V_{IN} = 0.4V$			-40	-200	μΑ
I _{IH}	V _{CC} = MAX, V _{IN} = 2	V _{CC} = MAX, V _{IN} = 2.7V			20	μΑ
I _I	V _{CC} = MAX, V _{IN} = 7	$V_{CC} = MAX, V_{IN} = 7.0V$			100	μΑ
V _{CL}	V _{CC} = MIN, I _{IN} = -18 mA				-1.5	V

Receiver Switching Characteristics

(Figures 1, 2, 3)

Parameter	Conditions	Min	Тур	Max		Units
				8922	8922A/23A	
T _{pLH}	CL = 30 pF		12	22.5	20	ns
T _{pHL}	CL = 30 pF		12	22.5	20	ns
IT _{pLH} -T _{pHL} I	CL = 30 pF		0.5	5	3.5	ns
Skew (Channel to Channel)	CL = 30 pF		0.5	3.0	2.0	ns
T_{pLZ}	CL = 15 pF S2 Open		15			ns
T _{pHZ}	CL = 15 pF S1 Open		15			ns
T_{pZL}	CL = 30 pF S2 Open		20			ns
T _{pZH}	CL = 30 pF S1 Open		20			ns

Driver Switching Characteristics

Parameter	Conditions	Min	Тур	Max		Units
				8922	8922A/23A	
SINGLE ENDED CHARACTE	RISTICS (Figures 4, 5, 6, 8)					
T _{pLH}	CL = 30 pF		12	15	15	ns
T_{pHL}	CL = 30 pF		12	15	15	ns
T _{TLH}	CL = 30 pF		5	10	10	ns
T _{THL}	CL = 30 pF		5	10	10	ns
IT _{pLH} -T _{pHL} I	CL = 30 pF		0.5			ns
Skew	CL = 30 pF (Note 5)		0.5	5	3.5	ns
Skew (Channel to Channel)			0.5	3.0	2.0	ns
T_{pLZ}	CL = 30 pF		15			ns
T_{pHZ}	CL = 30 pF		15			ns
T _{pZL}	CL = 30 pF		20			ns
T_{pZH}	CL = 30 pF		20			ns
DIFFERENTIAL SWITCHING	CHARACTERISTICS (Note	6), (Figure	4)			
T _{pLH}	CL = 30 pF		12	15	15	ns
T _{pHL}	CL = 30 pF		12	15	15	ns
IT _{pLH} -T _{pHL} I	CL = 30 pF		0.5	6.0	2.75	ns

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The Table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: All currents into device pins are shown as positive values; all currents out of the device are shown as negative; all voltages are referenced to ground unless otherwise specified. All values shown as max or min are classified on absolute value basis.

Note 3: All typical values are V_{CC} = 5V, T_A = 25°C.

Note 4: Only one output at a time should be shorted.

Note 5: Difference between complementary outputs at the 50% point.

Note 6: Differential Delays are defined as calculated results from single ended rise and fall time measurements. This approach in establishing AC performance specifications has been taken due to limitations of available Automatic Test Equipment (ATE).

The calculated ATE results assume a linear transition between measurement points and are a result of the following equations:

$$\mathsf{Tcp} = \frac{(\mathsf{Tfb} \times \mathsf{Trb}) - (\mathsf{Tra} \times \mathsf{Tfa})}{\mathsf{Trb} - \mathsf{Tra} - \mathsf{Tfa} + \mathsf{Tfb}}$$

Where:

Tcp = Crossing Point

Tra, Trb, Tfa and Tfb are time measurements with respect to the input.

www.national.com