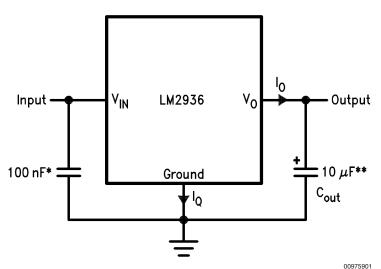
LM2936

LM2936 Ultra-Low Quiescent Current LDO Voltage Regulator

Literature Number: SNOSC48M

LM2936

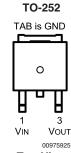
Ultra-Low Quiescent Current LDO Voltage Regulator

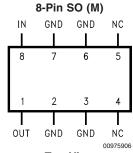

General Description

The LM2936 ultra-low quiescent current regulator features low dropout voltage and low current in the standby mode. With less than 15 μA quiescent current at a 100 μA load, the LM2936 is ideally suited for automotive and other battery operated systems. The LM2936 retains all of the features that are common to low dropout regulators including a low dropout PNP pass device, short circuit protection, reverse battery protection, and thermal shutdown. The LM2936 has a 40V maximum operating voltage limit, a $-40\,^{\circ}\text{C}$ to $+125\,^{\circ}\text{C}$ operating temperature range, and $\pm3\%$ output voltage tolerance over the entire output current, input voltage, and temperature range. The LM2936 is available in a TO-92 package, SO-8 and SOT–23 surface mount packages, and a TO-252 surface mount power package.

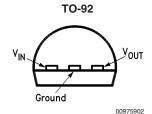
Features

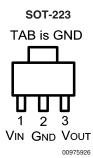
- Ultra low quiescent current ($I_Q \le 15 \mu A$ for $I_O = 100 \mu A$)
- Fixed 3.0V, 3.3V or 5.0V with 50 mA output
- ±2% Initial output tolerance
- ±3% Output tolerance over line, load, and temperature
- Dropout voltage typically 200 mV @ I_O = 50 mA
- Reverse battery protection
- -50V reverse transient protection
- Internal short circuit current limit
- Internal thermal shutdown protection
- 40V operating voltage limit
- 60V operating voltage limit for LM2936HV
- Shutdown Pin available with LM2936BM package

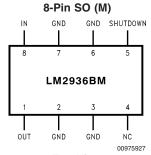

Typical Application


^{*} Required if regulator is located more than 2" from power supply filter capacitor.

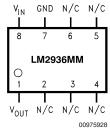
^{**} Required for stability. See Electrical Characteristics for required values. Must be rated over intended operating temperature range. Effective series resistance (ESR) is critical, see curve. Locate capacitor as close as possible to the regulator output and ground pins. Capacitance may be increased without bound


Connection Diagrams


Top View LM2936DT See NS Package Number TD03B


Top View LM2936M and LM2936HVMA See NS Package Number M08A

Bottom View
LM2936Z
See NS Package Number Z03A



Top View
LM2936MP
See NS Package Number MP04A

Top View LM2936BM and LM2936HVBMA See NS Package Number M08A

8-Pin Mini SOIC (MM)

Top View LM2936MM See NS Package Number MUA08A

Ordering Information

Output	•	Shutdown	Order	Package Type	Package Drawing	Transport Media	
Voltage	Voltage	Pin					
	-	Yes	LM2936BM-3.0	8-Lead SOIC	M08A	Rail	
	-	Yes	LM2936BMX-3.0	8-Lead SOIC	M08A	Tape/Reel	
	-	-	LM2936DT-3.0	TO-252	TD03B	Rail	
	-	-	LM2936DTX-3.0	TO-252	TD03B	Tape/Reel	
	Yes	Yes	LM2936HVBMA-3.0	8-Lead SOIC	M08A	Rail	
	Yes	Yes	LM2936HVBMAX3.0	8-Lead SOIC	M08A	Tape/Reel	
3.00V	-	-	LM2936M-3.0	8-Lead SOIC	M08A	Rail	
	-	-	LM2936MX-3.0	8-Lead SOIC	M08A	Tape/Reel	
	-	-	LM2936MP-3.0	SOT-223	MP04A	Tape/Reel	
	-	-	LM2936MPX-3.0	SOT-223	MP04A	Tape/Reel	
	-	-	LM2936MM-3.0	8-Lead Mini SOIC	MUA08A	Rail	
	-	-	LM2936MMX-3.0	8-Lead Mini SOIC	MUA08A	Tape/Reel	
	-	-	LM2936Z-3.0	TO-92	Z03A	Box	
	-	Yes	LM2936BM-3.3	8-Lead SOIC	M08A	Rail	
	-	Yes	LM2936BMX-3.3	8-Lead SOIC	M08A	Tape/Reel	
	-	-	LM2936DT-3.3	TO-252	TD03B	Rail	
	-	-	LM2936DTX-3.3	TO-252	TD03B	Tape/Reel	
3.30V	Yes	Yes	LM2936HVBMA-3.3	8-Lead SOIC	M08A	Rail	
	Yes	Yes	LM2936HVBMAX3.3	8-Lead SOIC	M08A	Tape/Reel	
	-	-	LM2936M-3.3	8-Lead SOIC	M08A	Rail	
	-	-	LM2936MX-3.3	8-Lead SOIC	M08A	Tape/Reel	
	-	-	LM2936MP-3.3	SOT-223	MP04A	Tape/Reel	
	-	-	LM2936MPX-3.3	SOT-223	MP04A	Tape/Reel	
	-	-	LM2936MM-3.3	8-Lead Mini- SOIC	MUA08A	Rail	
	-	-	LM2936MMX-3.3	8-Lead Mini- SOIC	MUA08A	Tape/Reel	
	-	-	LM2936Z-3.3	TO-92	Z03A	Box	
	-	Yes	LM2936BM-5.0	8-Lead SOIC	M08A	Rail	
	-	Yes	LM2936BMX-5.0	8-Lead SOIC	M08A	Tape/Reel	
	-	-	LM2936DT-5.0	TO-252	TD03B	Rail	
	-	-	LM2936DTX-5.0	TO-252	TD03B	Tape/Reel	
	Yes	Yes	LM2936HVBMA-5.0	8-Lead SOIC	M08A	Rail	
	Yes	Yes	LM2936HVBMAX5.0	8-Lead SOIC	M08A	Tape/Reel	
	Yes	-	LM2936HVMA-5.0	8-Lead SOIC	M08A	Rail	
5.00V	Yes	-	LM2936HVMAX-5.0	8-Lead SOIC	M08A	Tape/Reel	
	_		LM2936M-5.0	8-Lead SOIC	M08A	Rail	
	-	-	LM2936MX-5.0	8-Lead SOIC	M08A	Tape/Reel	
	-	-	LM2936MP-5.0	SOT-223	MP04A	Tape/Reel	
	_	_	LM2936MPX-5.0	SOT-223	MP04A	Tape/Reel	
	_	_	LM2936MM-5.0	8-Lead Mini-SOIC	MUA08A	Rail	
	-	-	LM2936MMX-5.0	8-Lead Mini-SOIC	MUA08A	Tape/Reel	
-	_	_	LM2936Z-5.0	TO-92	Z03A	Вох	

sec.)

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Input Voltage (Survival) +60V, -50V ESD Susceptibility (Note 2) 2000V Power Dissipation (Note 3) Internally limited Junction Temperature (T_{Jmax}) 150°C Storage Temperature Range -65°C to +150°C Lead Temperature (Soldering, 10 260°C

Operating Ratings

Operating Temperature Range -40°C to +125°C

Maximum Operating Input Voltage -

LM2936 +40V

Maximum Operating Input Voltage -

LM2936HV only +60V Maximum Shutdown Pin Voltage -0V to 40V

LM2936BM only

TO-92 (Z03A) θ_{JA} 195°C/W MSO-8 (MUA08A) θ_{JA} 200°C/W SO-8 (M08A) θ_{JA} 140°C/W SO-8 (M08A) θ_{JC} 45°C/W TO-252 (TD03B) θ_{JA} 136°C/W TO-252 (TD03B) θ_{JC} 6°C/W SOT-223 (MP04A) θ_{JA} 149°C/W SOT-223 (MP04A) θ_{JC} 36°C/W

Electrical Characteristics for LM2936-3.0

 $V_{IN} = 14V$, $I_{O} = 10$ mA, $T_{J} = 25$ °C, unless otherwise specified. **Boldface** limits apply over entire operating temperature range

Parameter	Conditions	Min (Note 5)	Typical (Note 4)	Max (Note 5)	Units
LM2936HV-3.0 Only	-	'		1	
Output Voltage	$5.5V \le V_{IN} \le 48V$,	2.910	2 000	2 000	V
	100 μA \leq I _O \leq 50 mA (Note 6)	2.910	3.000	3.090	V
Line Regulation	6V ≤ V _{IN} ≤ 60V, I _O = 1mA		10	30	mV
AII LM2936-3.0					
		2.940	3.000	3.060	
Output Voltage	$4.0V \le V_{IN} \le 26V$,	2.910	3.000	3.090	V
	100 μA \leq I _O \leq 50 mA (Note 6)				
Quiescent Current	$I_{O} = 100 \ \mu A, \ 8V \le V_{IN} \le 24V$		15	20	μA
	$I_{O} = 10 \text{ mA}, 8V \le V_{IN} \le 24V$		0.20	0.50	mA
	$I_{O} = 50 \text{ mA}, 8V \le V_{IN} \le 24V$		1.5	2.5	mA
Line Regulation	9V ≤ V _{IN} ≤ 16V		5	10	mV
	6V ≤ V _{IN} ≤ 40V, I _O = 1 mA		10	30	
Load Regulation	100 μA ≤ I _O ≤ 5 mA		10	30	mV
	5 mA ≤ I _O ≤ 50 mA		10	30	
Dropout Voltage	I _O = 100 μA		0.05	0.10	V
	I _O = 50 mA		0.20	0.40	V
Short Circuit Current	V _O = 0V	65	120	250	mA
Output Impedance	I _O = 30 mAdc and 10 mArms,		450		mΩ
	_f = 1000 Hz				
Output Noise Voltage	10 Hz-100 kHz		500		μV
Long Term Stability			20		mV/1000
					Hr
Ripple Rejection	V _{ripple} = 1V _{rms} , _{fripple} = 120 Hz	-40	-60		dB
Reverse Polarity	$R_L = 500\Omega$, $T = 1$ ms	-50	-80		V
Transient Input Voltage					
Output Voltage with	$V_{IN} = -15V, R_{L} = 500\Omega$		0.00	-0.30	V
Reverse Polarity Input					
Maximum Line Transient	$R_L = 500\Omega, V_O \le 3.30V, T = 40ms$	60			V

Electrical Characteristics for LM2936-3.0 (Continued)

 V_{IN} = 14V, I_{O} = 10 mA, T_{J} = 25°C, unless otherwise specified. **Boldface** limits apply over entire operating temperature range

Parameter	Conditions	Min (Note 5)	Typical (Note 4)	Max (Note 5)	Units
Output Bypass Capacitance (C _{OUT}) ESR	$C_{OUT} = 22\mu F$ $0.1 \text{mA} \le I_{OUT} \le 50 \text{mA}$	0.3		8	Ω
Shutdown Input – LM2936B	001				
Output Voltage, V _{OUT}	Output Off, V_{SD} =2.4V, R_{LOAD} = 500 Ω		0	0.010	V
Shutdown High	Output Off, $R_{LOAD} = 500\Omega$	2.00	1.1		V
Threshold Voltage, V _{IH}					
Shutdown Low	Output On, $R_{LOAD} = 500\Omega$		1.1	0.60	V
Threshold Voltage, V _{IL}					
Shutdown High	Output Off, $V_{SD} = 2.4V$, $R_{LOAD} = 500\Omega$		12		μΑ
Current, I _{IH}					
Quiescent Current	Output Off, $V_{SD} = 2.4V$, $R_{LOAD} = 500\Omega$		30		μΑ
	Includes I _{IH} Current				

Electrical Characteristics for LM2936-3.3

 $V_{IN} = 14V$, $I_O = 10$ mA, $T_J = 25$ °C, unless otherwise specified. **Boldface** limits apply over entire operating temperature range

Parameter	Conditions	Min (Note 5)	Typical (Note 4)	Max (Note 5)	Units
LM2936HV-3.3 Only			•		
Output Voltage	$5.5V \le V_{IN} \le 48V$, 100 μ A $\le I_O \le 50$ mA (Note 6)	3.201	3.300	3.399	V
Line Regulation	6V ≤ V _{IN} ≤ 60V, I _O = 1mA		10	30	mV
All LM2936-3.3		•		•	
		3.234	3.300	3.366	
Output Voltage	$4.0V \le V_{IN} \le 26V$, $100 \ \mu A \le I_O \le 50 \ mA \ (Note 6)$	3.201	3.300	3.399	V
Quiescent Current	$I_{O} = 100 \ \mu A, \ 8V \le V_{IN} \le 24V$		15	20	μA
	$I_{O} = 10 \text{ mA}, 8V \le V_{IN} \le 24V$		0.20	0.50	mA
	$I_{O} = 50 \text{ mA}, 8V \le V_{IN} \le 24V$		1.5	2.5	mA
Line Regulation	9V ≤ V _{IN} ≤ 16V		5	10	mV
	6V ≤ V _{IN} ≤ 40V, I _O = 1 mA		10	30	
Load Regulation	100 μA ≤ I _O ≤ 5 mA		10	30	mV
	5 mA ≤ I _O ≤ 50 mA		10	30	
Dropout Voltage	I _O = 100 μA		0.05	0.10	V
	I _O = 50 mA		0.20	0.40	V
Short Circuit Current	V _O = 0V	65	120	250	mA
Output Impedance	$I_O = 30$ mAdc and 10 mArms, f = 1000 Hz		450		mΩ
Output Noise Voltage	10 Hz-100 kHz		500		μV
Long Term Stability			20		mV/1000 Hr
Ripple Rejection	V _{ripple} = 1V _{rms} , _{fripple} = 120 Hz	-40	-60		dB
Reverse Polarity Transient Input Voltage	$R_L = 500\Omega$, $T = 1$ ms	-50	-80		V
Output Voltage with Reverse Polarity Input	$V_{IN} = -15V$, $R_L = 500\Omega$		0.00	-0.30	V
Maximum Line Transient	$R_L = 500\Omega, V_O \le 3.63V, T = 40ms$	60			V

Electrical Characteristics for LM2936-3.3 (Continued) $V_{IN} = 14V$, $I_O = 10$ mA, $T_J = 25$ °C, unless otherwise specified. Boldface limits apply over entire operating temperature range

Parameter	Conditions	Min (Note 5)	Typical (Note 4)	Max (Note 5)	Units
Output Bypass Capacitance (C _{OUT}) ESR	$C_{OUT} = 22\mu F$ $0.1 \text{mA} \le I_{OUT} \le 50 \text{mA}$	0.3		8	Ω
Shutdown Input – LM2936E					
Output Voltage, V _{OUT}	Output Off, V_{SD} =2.4V, R_{LOAD} = 500 Ω		0	0.010	V
Shutdown High	Output Off, $R_{LOAD} = 500\Omega$	2.00	1.1		V
Threshold Voltage, V _{IH}					
Shutdown Low	Output On, $R_{LOAD} = 500\Omega$		1.1	0.60	V
Threshold Voltage, V _{IL}					
Shutdown High	Output Off, $V_{SD} = 2.4V$, $R_{LOAD} = 500\Omega$		12		μA
Current, I _{IH}					
Quiescent Current	Output Off, $V_{SD} = 2.4V$, $R_{LOAD} = 500\Omega$		30		μA
	Includes I _{IH} Current				

Electrical Characteristics for LM2936-5.0

 $V_{\rm IN} = 14V$. $I_{\rm C} = 10$ mA, $T_{\rm L} = 25^{\circ}{\rm C}$, unless otherwise specified. **Boldface** limits apply over entire operating temperature range

Parameter	Conditions	Min (Note 5)	Typical (Note 4)	Max (Note 5)	Units
LM2936HV-5.0 Only		'	ı		
Output Voltage	$5.5V \le V_{IN} \le 48V$, 100 μ A $\le I_O \le 50$ mA (Note 6)	4.85	5.00	5.15	V
Line Regulation	6V ≤ V _{IN} ≤ 60V, I _O = 1mA		15	35	mV
All LM2936-5.0		·			
		4.90	5.00	5.10	
Output Voltage	$5.5V \le V_{IN} \le 26V$, 100 μ A $\le I_O \le 50$ mA (Note 6)	4.85	5.00	5.15	V
Quiescent Current	$I_{O} = 100 \ \mu A, \ 8V \le V_{IN} \le 24V$		9	15	μA
	$I_{O} = 10 \text{ mA}, 8V \le V_{IN} \le 24V$		0.20	0.50	mA
	$I_{O} = 50 \text{ mA}, 8V \le V_{IN} \le 24V$		1.5	2.5	mA
Line Regulation	9V ≤ V _{IN} ≤ 16V		5	10	mV
	6V ≤ V _{IN} ≤ 40V, I _O = 1 mA		10	30	
Load Regulation	100 μA ≤ I _O ≤ 5 mA		10	30	mV
	5 mA ≤ I _O ≤ 50 mA		10	30	
Dropout Voltage	I _O = 100 μA		0.05	0.10	V
	I _O = 50 mA		0.20	0.40	V
Short Circuit Current	V _O = 0V	65	120	250	mA
Output Impedance	$I_O = 30$ mAdc and 10 mArms, f = 1000 Hz		450		mΩ
Output Noise Voltage	10 Hz-100 kHz		500		μV
Long Term Stability			20		mV/1000 Hr
Ripple Rejection	V _{ripple} = 1V _{rms} , _{fripple} = 120 Hz	-40	-60		dB
Reverse Polarity Transient Input Voltage	$R_L = 500\Omega$, $T = 1$ ms	-50	-80		V
Output Voltage with Reverse Polarity Input	$V_{IN} = -15V, R_L = 500\Omega$		0.00	-0.30	V
Maximum Line Transient	$R_L = 500\Omega, V_O \le 5.5V, T = 40ms$	60			V

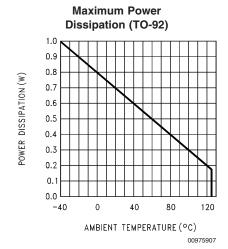
Electrical Characteristics for LM2936-5.0 (Continued)

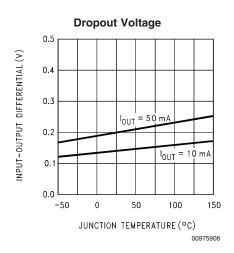
 $V_{IN} = 14V$, $I_{O} = 10$ mA, $T_{J} = 25$ °C, unless otherwise specified. **Boldface** limits apply over entire operating temperature range

Parameter	Conditions	Min (Note 5)	Typical (Note 4)	Max (Note 5)	Units
Output Bypass Capacitance (C _{OUT}) ESR	$C_{OUT} = 10\mu F$ $0.1\text{mA} \le I_{OUT} \le 50\text{mA}$	0.3		8	Ω
Shutdown Input - LM2936B	M-5.0 Only			•	<u> </u>
Output Voltage, V _{OUT}	Output Off, V_{SD} =2.4V, R_{LOAD} = 500 Ω		0	0.010	V
Shutdown High	Output Off, $R_{LOAD} = 500\Omega$	2.00	1.1		V
Threshold Voltage, V _{IH}					
Shutdown Low	Output On, $R_{LOAD} = 500\Omega$		1.1	0.60	V
Threshold Voltage, V _{IL}					
Shutdown High	Output Off, $V_{SD} = 2.4V$, $R_{LOAD} = 500\Omega$		12		μΑ
Current, I _{IH}					
Quiescent Current	Output Off, $V_{SD} = 2.4V$, $R_{LOAD} = 500\Omega$		30		μA
	Includes I _{IH} Current				

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. DC and AC electrical specifications do not apply when operating the device beyond its specified operating ratings.

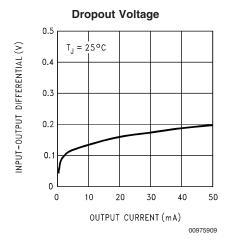
Note 2: Human body model, 100 pF discharge through a 1.5 k Ω resistor.

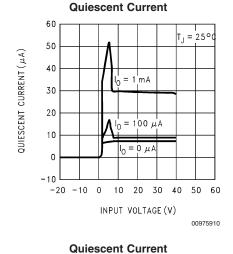

Note 3: The maximum power dissipation is a function of T_{Jmax} , θ_{JA} , and T_{A} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{Jmax} - T_A)/\theta_{JA}$. If this dissipation is exceeded, the die temperature will rise above 150°C and the LM2936 will go into thermal shutdown.

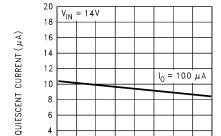

Note 4: Typicals are at 25°C (unless otherwise specified) and represent the most likely parametric norm.

Note 5: Datasheet min/max specification limits are guaranteed by design, test, or statistical analysis.

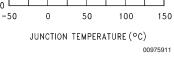
Note 6: To ensure constant junction temperature, pulse testing is used.

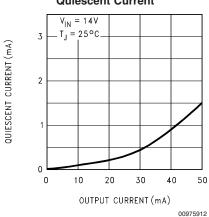

Typical Performance Characteristics

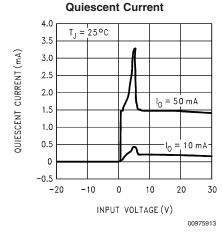


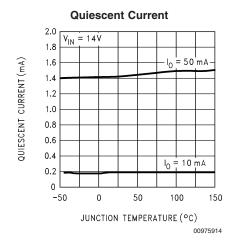


7

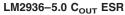

Typical Performance Characteristics (Continued)

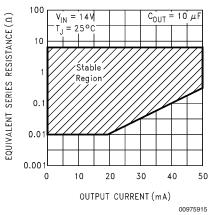


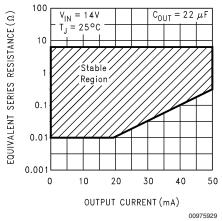




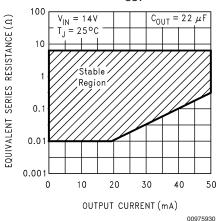
4 2 0 **Quiescent Current**

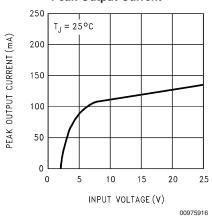


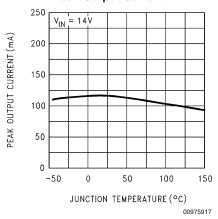


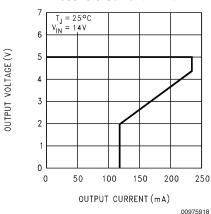


Typical Performance Characteristics (Continued)

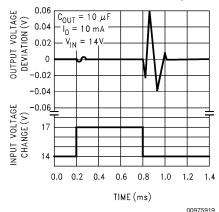



LM2936-3.0 $C_{\rm OUT}$ ESR

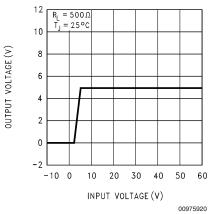

LM2936-3.3 $C_{\rm OUT}$ ESR


Peak Output Current

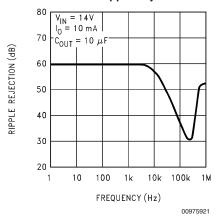
Peak Output Current



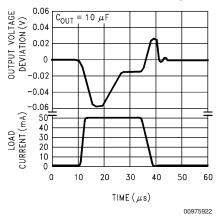
LM2936-5.0 Current Limit

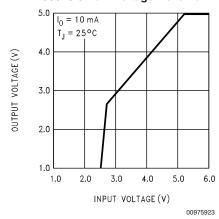

Typical Performance Characteristics (Continued)

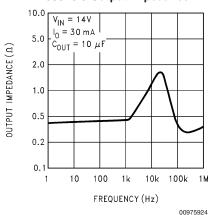
LM2936-5.0 Line Transient Response



Voltage Extremes


LM2936-5.0 Output at


LM2936-5.0 Ripple Rejection


LM2936-5.0 Load Transient Response

LM2936-5.0 Low Voltage Behavior

LM2936-5.0 Output Impedance

Applications Information

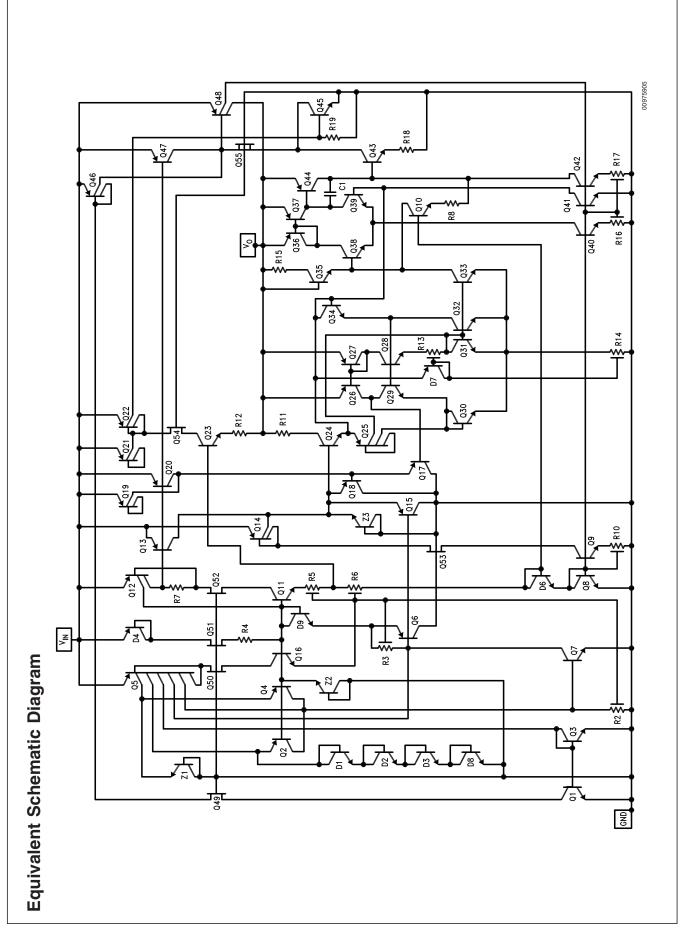
Unlike other PNP low dropout regulators, the LM2936 remains fully operational to 40V. Owing to power dissipation characteristics of the available packages, full output current cannot be guaranteed for all combinations of ambient temperature and input voltage. As an example, consider an LM2936Z–5.0 operating at 25°C ambient. Using the formula for maximum allowable power dissipation given in (Note 3) , we find that $P_{\rm Dmax}=641~\rm mW$ at 25°C. Including the small contribution of the quiescent current to total power dissipation the maximum input voltage (while still delivering 50 mA output current) is 17.3V. The LM2936Z–5.0 will go into thermal shutdown if it attempts to deliver full output current with an input voltage of more than 17.3V. Similarly, at 40V input and 25°C ambient the LM2936Z–5.0 can deliver 18 mA maximum

Under conditions of higher ambient temperatures, the voltage and current calculated in the previous examples will drop. For instance, at the maximum ambient of 125°C the LM2936Z–5.0 can only dissipate 128 mW, limiting the input voltage to 7.34V for a 50 mA load, or 3.5 mA output current for a 40V input.

The junction to ambient thermal resistance θ_{JA} rating has two distinct components: the junction to case thermal resistance rating θ_{JC} ; and the case to ambient thermal resistance rating θ_{CA} . The relationship is defined as: $\theta_{JA}=\theta_{JC}+\theta_{CA}$.

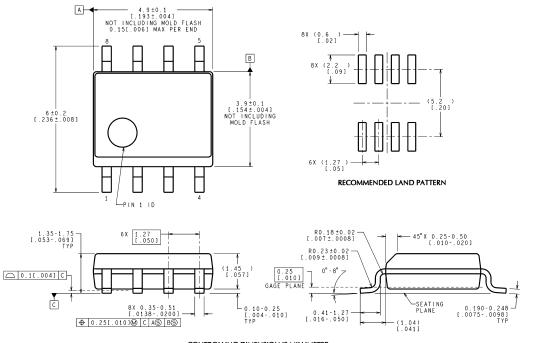
For the SO-8 and TO-252 surface mount packages the θ_{JA} rating can be improved by using the copper mounting pads on the printed circuit board as a thermal conductive path to extract heat from the package.

On the SO-8 package the four ground pins are thermally connected to the backside of the die. Adding approximately 0.04 square inches of 2 oz. copper pad area to these four pins will improve the $\theta_{\rm JA}$ rating to approximately 110°C/W. If this extra pad are is placed directly beneath the package there should not be any impact on board density.


On the TO-252 package the ground tab is thermally connected to the backside of the die. Adding 1 square inch of 2 oz. copper pad area directly under the ground tab will improve the $\theta_{\rm JA}$ rating to approximately 50°C/W.

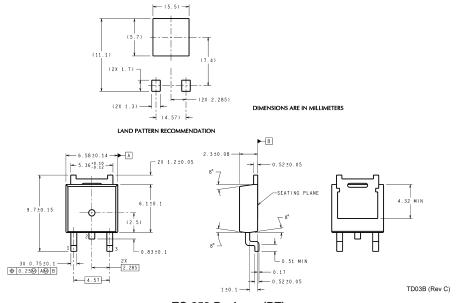
While the LM2936 has an internally set thermal shutdown point of typically 160°C, this is intended as a safety feature only. Continuous operation near the thermal shutdown temperature should be avoided as it may have a negative affect on the life of the device.

While the LM2936 maintains regulation to 60V, it will not withstand a short circuit above 40V because of safe operating area limitations in the internal PNP pass device. Above 60V the LM2936 will break down with catastrophic effects on the regulator and possibly the load as well. Do not use this device in a design where the input operating voltage may exceed 40V, or where transients are likely to exceed 60V.

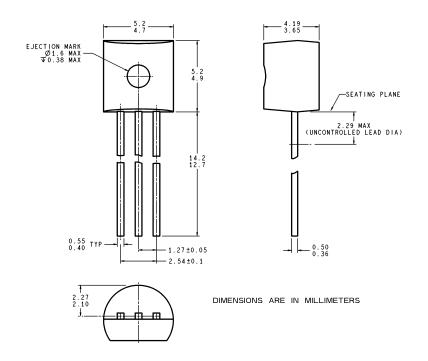

SHUTDOWN PIN

The LM2936BM has a pin for shutting down the regulator output. Applying a Logic Level High (>2.0V) to the Shutdown pin will cause the output to turn off. Leaving the Shutdown pin open, connecting it to Ground, or applying a Logic Level Low (<0.6V) will allow the regulator output to turn on.

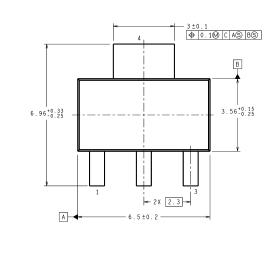
12

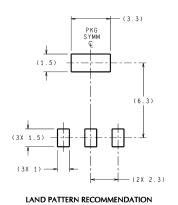

Physical Dimensions inches (millimeters) unless otherwise noted

CONTROLLING DIMENSION IS MILLIMETER
VALUES IN [] ARE INCHES
DIMENSIONS IN () FOR REFERENCE ONLY

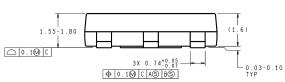

M08A (Rev L)

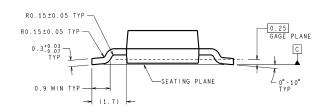
8-Lead Small Outline Molded Package (M) NS Package Number M08A



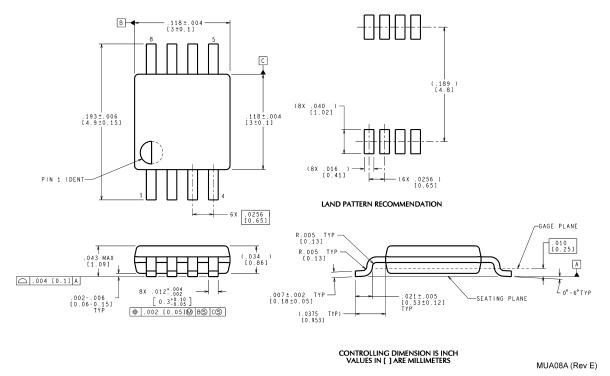

TO-252 Package (DT) NS Package Number TD03B

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)




3-Lead TO-92 Plastic Package (Z) NS Package Number Z03A

ZO3A (Rev G)



DIMENSIONS ARE IN MILLIMETERS

MP04A (Rev B)

SOT-223 Package (MP) NS Package Number MP04A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

8-Lead Mini SOIC package (MM) NS Package Number MUA08A

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor follows the provisions of the Product Stewardship Guide for Customers (CSP-9-111C2) and Banned Substances and Materials of Interest Specification (CSP-9-111S2) for regulatory environmental compliance. Details may be found at: www.national.com/quality/green.

Lead free products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

interface.ti.com

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Security

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors <u>www.ti.com/omap</u>

Interface

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page <u>e2e.ti.com</u>

www.ti.com/security