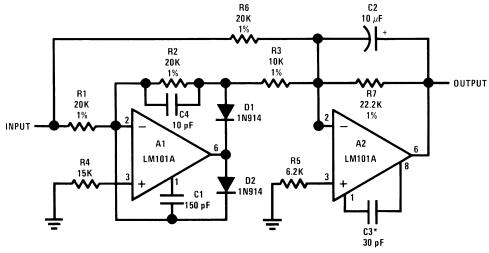


LM101A/LM201A/LM301A Operational Amplifiers

General Description

The LM101A series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. Advanced processing techniques make possible an order of magnitude reduction in input currents, and a redesign of the biasing circuitry reduces the temperature drift of input current. Improved specifications include:


- Offset voltage 3 mV maximum over temperature (LM101A/LM201A)
- Input current 100 nA maximum over temperature (LM101A/LM201A)
- Offset current 20 nA maximum over temperature (LM101A/LM201A)
- · Guaranteed drift characteristics
- Offsets guaranteed over entire common mode and supply voltage ranges
- Slew rate of 10V/µs as a summing amplifier
 This amplifier offers many features which make its application nearly foolproof: overload protection on the input

and output, no latch-up when the common mode range is exceeded, and freedom from oscillations and compensation with a single 30 pF capacitor. It has advantages over internally compensated amplifiers in that the frequency compensation can be tailored to the particular application. For example, in low frequency circuits it can be overcompensated for increased stability margin. Or the compensation can be optimized to give more than a factor of ten improvement in high frequency performance for most applications.

In addition, the device provides better accuracy and lower noise in high impedance circuitry. The low input currents also make it particularly well suited for long interval integrators or timers, sample and hold circuits and low frequency waveform generators. Further, replacing circuits where matched transistor pairs buffer the inputs of conventional IC op amps, it can give lower offset voltage and a drift at a lower cost.

The LM101A is guaranteed over a temperature range of -55°C to +125°C, the LM201A from -25°C to +85°C, and the LM301A from 0°C to +70°C.

Fast AC/DC Converter

Note 1: Feedforward compensation can be used to make a fast full wave rectifier without a filter.

00775233

Absolute Maximum Ratings (Note 2)

Distributors for availability and specifications.

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/

	LM101A/LM201A				
Supply Voltage	±22V	±18V			
Differential Input Voltage	±30V	±30V			
Input Voltage (Note 3)	±15V	±15V			
Output Short Circuit Duration (Note 4)	Continuous	Continuous			
Operating Ambient Temp. Range	-55°C to +125°C (LM101A)	0°C to +70°C			
	-25°C to +85°C (LM201A)				
T _J Max					
H-Package	150°C	100°C			
N-Package	150°C	100°C			
J-Package	150°C	100°C			
Power Dissipation at T _A = 25°C					
H-Package (Still Air)	500 mW	300 mW			
(400 LF/Min Air Flow)	1200 mW	700 mW			
N-Package	900 mW	500 mW			
J-Package	1000 mW	650 mW			
Thermal Resistance (Typical) θ_{jA}					
H-Package (Still Air)	165°C/W	165°C/W			
(400 LF/Min Air Flow)	67°C/W	67°C/W			
N Package	135°C/W	135°C/W			
J-Package	110°C/W	110°CmW			
(Typical) θ_{jC}					
H-Package	25°C/W	25°C/W			
Storage Temperature Range	−65°C to +150°C	−65°C to +150°C			
Lead Temperature (Soldering, 10 sec.)					
Metal Can or Ceramic	300°C	300°C			
Plastic	260°C	260°C			
ESD Tolerance (Note 7)	2000V	2000V			

Electrical Characteristics (Note 5)

 $T_A = T_J$

Parameter	Conditions		LM1	LM101A/LM201A		LM301A			Units
			Min	Тур	Max	Min	Тур	Max	
Input Offset Voltage	$T_A = 25^{\circ}C, R_S \le 50 \text{ k}\Omega$			0.7	2.0		2.0	7.5	mV
Input Offset Current	T _A = 25°C			1.5	10		3.0	50	nA
Input Bias Current	T _A = 25°C			30	75		70	250	nA
Input Resistance	T _A = 25°C		1.5	4.0		0.5	2.0		MΩ
Supply Current	$T_A = 25^{\circ}C$	V _S = ±20V		1.8	3.0				mA
		$V_S = \pm 15V$					1.8	3.0	mA
Large Signal Voltage Gain	$T_A = 25^{\circ}C$, $V_S = \pm 15V$ $V_{OUT} = \pm 10V$, $R_L \ge 2 \text{ k}\Omega$		50	160		25	160		V/mV
Input Offset Voltage	$R_S \le 50 \text{ k}\Omega$				3.0			10	mV
Average Temperature Coefficient	$R_S \le 50 \text{ k}\Omega$			3.0	15		6.0	30	μV/°C
of Input Offset Voltage									
Input Offset Current					20			70	nA
Average Temperature Coefficient	$25^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq \text{T}_{\text{MAX}}$			0.01	0.1		0.01	0.3	nA/°C
of Input Offset Current	$T_{MIN} \le T_A \le 25^{\circ}C$			0.02	0.2		0.02	0.6	nA/°C
Input Bias Current					0.1			0.3	μΑ

Electrical Characteristics (Note 5) (Continued)

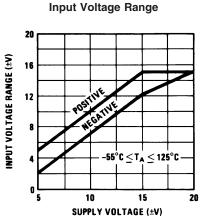
 $T_A = T_J$

Parameter	Conditions		LM101A/LM201A			LM301A		Units	
			Min	Тур	Max	Min	Тур	Max	
Supply Current	$T_A = T_{MAX}, V_S = \pm 20V$			1.2	2.5				mA
Large Signal Voltage Gain	$V_S = \pm 15V, V_{OUT} = \pm 10V$		25			15			V/mV
	$R_L \ge 2k$								
Output Voltage Swing	V _S = ±15V	$R_L = 10 \text{ k}\Omega$	±12	±14		±12	±14		V
		$R_L = 2 k\Omega$	±10	±13		±10	±13		V
Input Voltage Range	V _S = ±20V		±15						V
	V _S = ±15V			+15, -13		±12	+15, -13		V
Common-Mode Rejection Ratio	$R_S \le 50 \text{ k}\Omega$		80	96		70	90		dB
Supply Voltage Rejection Ratio	$R_S \le 50 \text{ k}\Omega$		80	96		70	96		dB

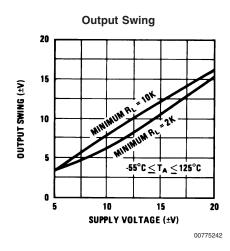
Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating ratings indicate for which the device is functional, but do no guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

Note 3: For supply voltages less than ±15V, the absolute maximum input voltage is equal to the supply voltage.

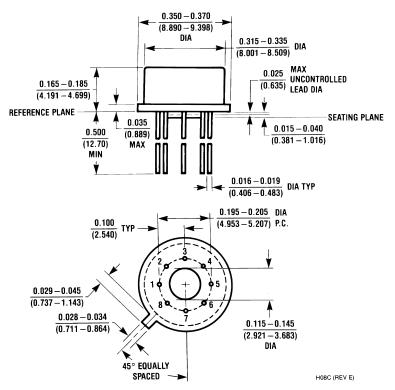
Note 4: Continuous short circuit is allowed for case temperatures to 125°C and ambient temperatures to 75°C for LM101A/LM201A, and 70°C and 55°C respectively for LM301A.

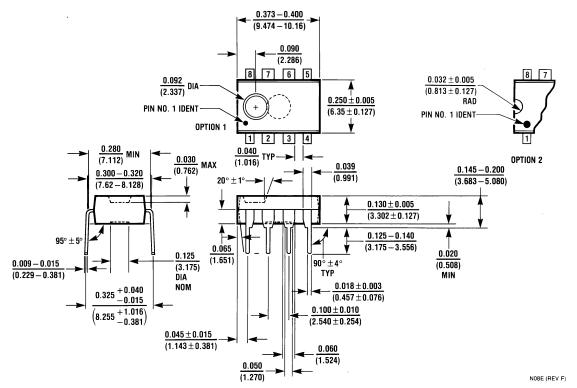

Note 5: Unless otherwise specified, these specifications apply for C1 = 30 pF, \pm 5V \leq V_S \leq \pm 20V and -55°C \leq T_A \leq +125°C (LM101A), \pm 5V \leq V_S \leq \pm 20V and -25°C \leq T_A \leq +85°C (LM201A), \pm 5V \leq V_S \leq \pm 15V and 0°C \leq T_A \leq +70°C (LM301A).

Note 6: Refer to RETS101AX for LM101A military specifications and RETS101X for LM101 military specifications.

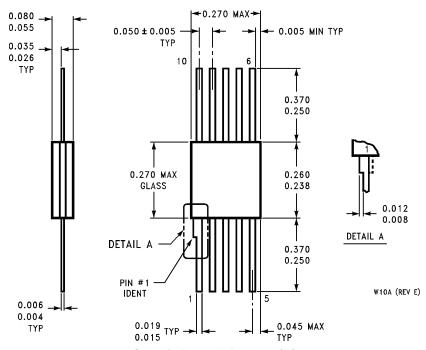

Note 7: Human body model, 100 pF discharged through 1.5 k Ω .

Typical Performance Characteristics


LM101A/LM201A



Physical Dimensions inches (millimeters) unless otherwise noted



Metal Can Package (H) Order Number LM101AH, LM101AH/883 LM201AH or LM301AH **NS Package Number H08C**

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Molded Dual-In-Line Package (N)
Order Number LM201AN or LM301AN
NS Package Number N08E

Ceramic Flatpack Package (W)
Order Number LM101AW/883 or LM101W/883
NS Package Number W10A