LM4050

LM4050/LM4050Q Precision Micropower Shunt Voltage Reference

Literature Number: SNOS455D

LM4050/LM4050Q

Precision Micropower Shunt Voltage Reference

General Description

Ideal for space critical applications, the LM4050 precision voltage reference is available in the sub-miniature (3 mm x 1.3 mm) SOT-23 surface-mount package. The LM4050's design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4050 easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048V, 2.500V, 4.096V, 5.000V, 8.192V, and 10.000V. The minimum operating current increases from 60 μA for the LM4050-2.0 to 100 μA for the LM4050-10.0. All versions have a maximum operating current of 15 mA.

The LM4050 utilizes fuse and zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than $\pm 0.1\%$ (A grade) at 25°C. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents.

All grades and voltage options of the LM4050 are available in both an industrial temperature range (-40°C and +85°C) and an extended temperature range (-40°C and +125°C).

Features

- Small packages: SOT-23
- No output capacitor required
- Tolerates capacitive loads
- Fixed reverse breakdown voltages of 2.048V, 2.500V, 4.096V, 5.000V, 8.192V, and 10.000V

Key Specifications (LM4050-2.5)

 Output voltage tolerance (A grade, 25°C)

±0.1% (max)

Low output noise (10 Hz to 10 kHz)

41 $\mu V_{rms}(typ)$

■ Wide operating current range

60 μA to 15 mA

Industrial temperature range

 -40°C to $+85^{\circ}\text{C}$

■ Extended temperature range

-40°C to +125°C

■ Low temperature coefficient

50 ppm/°C (max)

■ LM4050QA/QB/QC are AEC-Q100 Grade 1 qualified and are manufactured on an automotive grade flow

Applications

- Portable, Battery-Powered Equipment
- Data Acquisition Systems
- Instrumentation
- Process Control
- Energy Management
- Product Testing
- Automotive
- Precision Audio Components

Connection Diagram

*This pin must be left floating or connected to pin 2.

Top View See NS Package Number MF03A

Ordering Information

Industrial Temperature Range (-40°C to +85°C)

Reverse Breakdown Voltage Tolerance at 25°C and Average Reverse	LM4050 Supplied as 1000 Units, Tape	LM4050 Supplied as 3000 Units, Tape
Breakdown	and Reel	and Reel
Voltage Temperature Coefficient		
	LM4050AIM3-2.0	LM4050AIM3X-2.0
	LM4050AIM3-2.5	LM4050AIM3X-2.5
	LM4050AIM3-4.1	LM4050AIM3X-4.1
±0.1%, 50 ppm/°C max (A grade)	LM4050AIM3-5.0	LM4050AIM3X-5.0
	LM4050AIM3-8.2	LM4050AIM3X-8.2
	LM4050AIM3-10	LM4050AIM3X-10
	LM4050BIM3-2.0	LM4050BIM3X-2.0
	LM4050BIM3-2.5	LM4050BIM3X-2.5
	LM4050BIM3-4.1	LM4050BIM3X-4.1
±0.2%, 50 ppm/°C max (B grade)	LM4050BIM3-5.0	LM4050BIM3X-5.0
	LM4050BIM3-8.2	LM4050BIM3X-8.2
	LM4050BIM3-10	LM4050BIM3X-10
	LM4050CIM3-2.0	LM4050CIM3X-2.0
	LM4050CIM3-2.5	LM4050CIM3X-2.5
	LM4050CIM3-4.1	LM4050CIM3X-4.1
±0.5%, 50 ppm/°C max (C grade)	LM4050CIM3-5.0	LM4050CIM3X-5.0
	LM4050CIM3-8.2	LM4050CIM3X-8.2
	LM4050CIM3-10	LM4050CIM3X-10

Extended Temperature Range (-40°C to +125°C)

Reverse Breakdown		
Voltage Tolerance at 25°C and Average Reverse		
Breakdown	and Reel	and Reel
Voltage Temperature Coefficient		
	LM4050AEM3-2.0	LM4050AEM3X-2.0
	LM4050AEM3-2.5	LM4050AEM3X-2.5
	LM4050AEM3-4.1	LM4050AEM3X-4.1
±0.1%, 50 ppm/°C max (A grade)	LM4050AEM3-5.0	LM4050AEM3X-5.0
	LM4050AEM3-8.2	LM4050AEM3X-8.2
	LM4050AEM3-10	LM4050AEM3X-10
	LM4050BEM3-2.0	LM4050BEM3X-2.0
	LM4050BEM3-2.5	LM4050BEM3X-2.5
	LM4050BEM3-4.1	LM4050BEM3X-4.1
±0.2%, 50 ppm/°C max (B grade)	LM4050BEM3-5.0	LM4050BEM3X-5.0
	LM4050BEM3-8.2	LM4050BEM3X-8.2
	LM4050BEM3-10	LM4050BEM3X-10
	LM4050CEM3-2.0	LM4050CEM3X-2.0
	LM4050CEM3-2.5	LM4050CEM3X-2.5
	LM4050CEM3-4.1	LM4050CEM3X-4.1
±0.5%, 50 ppm/°C max (C grade)	LM4050CEM3-5.0	LM4050CEM3X-5.0
	LM4050CEM3-8.2	LM4050CEM3X-8.2
	LM4050CEM3-10	LM4050CEM3X-10

Industrial Temperature Range (-40°C to +85°C)							
Reverse Breakdown /oltage Tolerance at 25°C and Average Reverse Breakdown Voltage Temperature Coefficient	LM4050Q Supplied as 1000 Units, Tape and Reel	LM4050Q Supplied as 3000 Units Tape and Reel					
	LM4050QAIM3-2.0	LM4050QAIM3X2.0					
	LM4050QAIM3-2.5	LM4050QAIM3X2.5					
	LM4050QAIM3-4.1	LM4050QAIM3X4.1					
±0.1%, 50 ppm/°C max (Q A grade)	LM4050QAIM3-5.0	LM4050QAIM3X5.0					
	LM4050QAIM3-8.2	LM4050QAIM3X8.2					
	LM4050QAIM3-10	LM4050QAIM3X10					
	LM4050QBIM3-2.0	LM4050QBIM3X2.0					
	LM4050QBIM3-2.5	LM4050QBIM3X2.5					
	LM4050QBIM3-4.1	LM4050QBIM3X4.1					
±0.2%, 50 ppm/°C max (Q B grade)	LM4050QBIM3-5.0	LM4050QBIM3X5.0					
	LM4050QBIM3-8.2	LM4050QBIM3X8.2					
	LM4050QBIM3-10	LM4050QBIM3X10					
	LM4050QCIM3-2.0	LM4050QCIM3X2.0					
	LM4050QCIM3-2.5	LM4050QCIM3X2.5					
	LM4050QCIM3-4.1	LM4050QCIM3X4.1					
±0.5%, 50 ppm/°C max (Q C grade)	LM4050QCIM3-5.0	LM4050QCIM3X5.0					
	LM4050QCIM3-8.2	LM4050QCIM3X8.2					
	LM4050QCIM3-10	LM4050QCIM3X10					

Extended Temperature Range (-40°C to +125°C)

Reverse Breakdown /oltage Tolerance at 25°C and Average Reverse Breakdown Voltage Temperature Coefficient	LM4050Q Supplied as 1000 Units, Tape and Reel	LM4050Q Supplied as 3000 Units, Tape and Reel		
Voltage Temperature Coemicient	LM4050QAEM3-2.0	LM4050QAEM3X2.0		
	LM4050QAEM3-2.5	LM4050QAEM3X2.5		
	LM4050QAEM3-4.1	LM4050QAEM3X4.1		
±0.1%, 50 ppm/°C max (Q A grade)	LM4050QAEM3-5.0	LM4050QAEM3X5.0		
	LM4050QAEM3-8.2	LM4050QAEM3X8.2		
	LM4050QAEM3-10	LM4050QAEM3X10		
	LM4050QBEM3-2.0	LM4050QBEM3X2.0		
	LM4050QBEM3-2.5	LM4050QBEM3X2.5		
	LM4050QBEM3-4.1	LM4050QBEM3X4.1		
±0.2%, 50 ppm/°C max (Q B grade)	LM4050QBEM3-5.0	LM4050QBEM3X5.0		
	LM4050QBEM3-8.2	LM4050QBEM3X8.2		
	LM4050QBEM3-10	LM4050QBEM3X10		
	LM4050QCEM3-2.0	LM4050QCEM3X2.0		
	LM4050QCEM3-2.5	LM4050QCEM3X2.5		
	LM4050QCEM3-4.1	LM4050QCEM3X4.1		
±0.5%, 50 ppm/°C max (Q C grade)	LM4050QCEM3-5.0	LM4050QCEM3X5.0		
	LM4050QCEM3-8.2	LM4050QCEM3X8.2		
	LM4050QCEM3-10	LM4050QCEM3X10		

SOT-23 Package Marking Information

Only three fields of marking are possible on the SOT-23's small surface. This table gives the meaning of the three fields.

Part Marking	Field Definition
RCA	First Field:
RDA	R = Reference
REA	Second Field:
RFA	N = 2.048V Voltage Option
RGA	C = 2.500V Voltage Option
RNA	D = 4.096V Voltage Option
RCB	E = 5.000V Voltage Option
RDB	F = 8.192V Voltage Option
REB	G = 10.000V Voltage Option
RFB	
RGB	Third Field:
RNB	
RCC	A–C = Initial Reverse Breakdown Voltage or Reference Voltage Tolerance
RDC	$A = \pm 0.1\%$, $B = \pm 0.2\%$, $C = +0.5\%$,
REC	
RFC	
RGC	
RNC	

200V

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

Reverse Current 20 mA
Forward Current 10 mA

Power Dissipation ($T_A = 25^{\circ}C$) (*Note 2*)

M3 Package 280 mW Storage Temperature -65°C to $+150^{\circ}\text{C}$

Lead Temperature

M3 Package Vapor phase (60 seconds) Infrared (15 seconds)

ESD Susceptibility

Human Body Model (Note 3)

Machine Model (Note 3)

See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

Operating Ratings (Note 2)

Temperature Range	$(T_{min} \le T_A \le T_{max})$
Industrial Temperature Range	-40°C ≤ T _A ≤ +85°C
Extended temperature Range	-40°C ≤ T _A ≤ +125°C
Reverse Current	
LM4050-2.0,	60 μA to 15 mA
LM4050-2.5	60 μA to 15 mA
LM4050-4.1	68 μA to 15 mA
LM4050-5.0	74 μA to 15 mA
LM4050-8.2	91 μA to 15 mA
LM4050-10.0	100 μA to 15 mA

LM4050-2.0 Electrical Characteristics

Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25°C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1\%$, $\pm 0.2\%$, and 0.5% respectively.

+215°C

+220°C

2 kV

Symbol	Parameter	Conditions	Typical (Note 4)	LM4050AIM3 LM4050AEM 3 Limits (Note 5)	LM4050BIM3 LM4050BEM 3 Limits (Note 5)	LM4050CIM 3 LM4050CEM 3 Limits (Note 5)	Units (Limit)
V _R	Reverse Breakdown Voltage	Ι _R = 100 μΑ	2.048				V
	Reverse Breakdown Voltage Tolerance (<i>Note 6</i>)	I _R = 100 μA Industrial Temp. Range Extended Temp. Range		±2.048 ±9.0112 ±12.288	±4.096 ±11.4688 ±14.7456	±10.24 ±14.7456 ±17.2032	mV (max) mV (max) mV (max)
I _{RMIN}	Minimum Operating Current		41	60 65	60 65	60 65	μΑ μΑ (max) μΑ (max)
$\Delta V_R/\Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient (Note 6)	$I_R = 10 \text{ mA}$ $I_R = 1 \text{ mA}$ $I_R = 100 \mu\text{A}$	±20 ±15 ±15	±50	±50	±50	ppm/°C ppm/°C ppm/°C (max
$\Delta V_R / \Delta I_R$	Reverse Breakdown Voltage Change with Operating Current Change (Note 7)	I _{RMIN} ≤ I _R ≤ 1 mA	0.3	0.8 1.2	0.8 1.2	0.8 1.2	mV mV (max) mV (max)
		1 mA ≤ I _R ≤ 15 mA	2.3	6.0 8.0	6.0 8.0	6.0 8.0	mV mV (max) mV (max)
Z _R	Reverse Dynamic Impedance	I _R = 1 mA, f = 120 Hz, I _{AC} = 0.1 I _R	0.3				Ω
e _N	Wideband Noise	I _R = 100 μA 10 Hz ≤ f ≤ 10 kHz	34				μV _{rms}

Symbol	Parameter	Conditions	Typical (Note 4)	LM4050AIM3 LM4050AEM 3 Limits (Note 5)	LM4050BIM3 LM4050BEM 3 Limits (Note 5)	LM4050CIM 3 LM4050CEM 3 Limits (<i>Note 5</i>)	Units (Limit)
ΔV _R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs T = 25°C ±0.1°C I _R = 100 μA	120				ppm
V _{HYST}	Thermal Hysteresis (<i>Note 8</i>)	$\Delta T = -40^{\circ}C$ to 125°C	0.7				mV

LM4050-2.5 Electrical Characteristics

Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25°C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1\%$, $\pm 0.2\%$, and 0.5% respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4050AI M3 LM4050AE M3 Limits (<i>Note 5</i>)	LM4050BI M3 LM4050BE M3 Limits (Note 5)	LM4050CI M3 LM4050CE M3 Limits (Note 5)	Units (Limit)
$\overline{V_R}$	Reverse Breakdown Voltage	I _R = 100 μA	2.500				V
	Reverse Breakdown Voltage Tolerance (<i>Note 6</i>)	I _R = 100 μA Industrial Temp. Range Extended Temp. Range		±2.5 ±11 ±15	±5.0 ±14 ±18	±13 ±21 ±25	mV (max) mV (max) mV (max)
I _{RMIN}	Minimum Operating Current		41	60 65	60 65	60 65	μΑ μΑ (max) μΑ (max)
$\Delta V_R/\Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient (<i>Note 6</i>)	$I_R = 10 \text{ mA}$ $I_R = 1 \text{ mA}$ $I_R = 100 \mu \text{A}$	±20 ±15 ±15	±50	±50	±50	ppm/°C ppm/°C ppm/°C (max)
$\Delta V_R/\Delta I_R$	Reverse Breakdown Voltage Change with Operating Current Change (<i>Note 7</i>)	I _{RMIN} ≤ I _R ≤ 1 mA	0.3	0.8 1.2	0.8 1.2	0.8 1.2	mV mV (max) mV (max)
		1 mA ≤ I _R ≤ 15 mA	2.3	6.0 8.0	6.0 8.0	6.0 8.0	mV mV (max) mV (max)
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA, } f = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_R$	0.3				Ω
e _N	Wideband Noise	$I_R = 100 \mu A$ 10 Hz $\leq f \leq 10 \text{ kHz}$	41				μV _{rms}
ΔV _R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs $T = 25^{\circ}\text{C} \pm 0.1^{\circ}\text{C}$ $I_R = 100 \mu\text{A}$	120				ppm
V _{HYST}	Thermal Hysteresis (Note 8)	$\Delta T = -40$ °C to 125°C	0.7				mV

LM4050-4.1 Electrical Characteristics

Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits $T_A = T_J = 25^{\circ}\text{C}$. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1\%$, $\pm 0.2\%$, and 0.5% respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4050AI M3 LM4050AE M3 Limits (Note 5)	LM4050BI M3 LM4050BE M3 Limits (<i>Note 5</i>)	LM4050CI M3 LM4050CE M3 Limits (Note 5)	Units (Limit)
$\overline{V_R}$	Reverse Breakdown Voltage	I _R = 100 μA	4.096				V
	Reverse Breakdown Voltage	I _R = 100 μA		±4.1	±8.2	±21	mV (max)
	Tolerance (Note 6)	Industrial Temp. Range Extended Temp. Range		±18 ±25	±22 ±29	±34 ±41	mV (max) mV (max)
I _{RMIN}	Minimum Operating Current		52	68	68	68	μΑ μΑ (max)
		Industrial Temp. Range Extended Temp. Range		73 78	73 78	73 78	μΑ (max) μΑ (max)
$\Delta V_R/\Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient (<i>Note 6</i>)	$I_R = 10 \text{ mA}$ $I_R = 1 \text{ mA}$ $I_R = 100 \mu\text{A}$	±30 ±20 ±20	±50	±50	±50	ppm/°C ppm/°C ppm/°C (max)
$\Delta V_R / \Delta I_R$	Reverse Breakdown Voltage Change with Operating Current Change (<i>Note 7</i>)	I _{RMIN} ≤ I _R ≤ 1 mA	0.2	0.9 1.2	0.9 1.2	0.9 1.2	mV mV (max) mV (max)
		1 mA ≤ I _R ≤ 15 mA	2.0	7.0 10.0	7.0 10.0	7.0 10.0	mV mV (max) mV (max)
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_R$	0.5				Ω
e _N	Wideband Noise	$I_{R} = 100 \mu\text{A}$ $10 \text{Hz} \le \text{f} \le 10 \text{kHz}$	93				μV _{rms}
ΔV _R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs $T = 25^{\circ}\text{C} \pm 0.1^{\circ}\text{C}$ $I_R = 100 \mu\text{A}$	120				ppm
V _{HYST}	Thermal Hysteresis (Note 8)	$\Delta T = -40^{\circ}C$ to 125°C	1.148				mV

LM4050-5.0 Electrical Characteristics

Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25°C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1\%$, $\pm 0.2\%$ and 0.5% respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4050AI M3 LM4050AE M3 Limits (Note 5)	LM4050BI M3 LM4050BE M3 Limits (Note 5)	LM4050CI M3 LM4050CE M3 Limits (Note 5)	Units (Limit)
V _R	Reverse Breakdown Voltage	I _R = 100 μA	5.000				V
	Reverse Breakdown Voltage	I _R = 100 μA		±5.0	±10	±25	mV (max)
	Tolerance (Note 6)	Industrial Temp. Range		±22	±27	±42	mV (max)
		Extended Temp. Range		±30	±35	±50	mV (max)
I _{RMIN}	Minimum Operating Current		56				μΑ
				74	74	74	μA (max)
		Industrial Temp. Range		80	80	80	μA (max)
		Extended Temp. Range		90	90	90	μA (max)
$\Delta V_R/\Delta T$	Average Reverse Breakdown	I _R = 10 mA	±30				ppm/°C
	Voltage Temperature	I _R = 1 mA	±20				ppm/°C
	Coefficient (Note 6)	I _R = 100 μA	±20	±50	±50	±50	ppm/°C (max)
$\Delta V_R / \Delta I_R$	Reverse Breakdown Voltage	I _{RMIN} ≤ I _R ≤ 1 mA	0.2				mV
	Change with Operating			1.0	1.0	1.0	mV (max)
	Current Change (Note 7)			1.4	1.4	1.4	mV (max)
		1 mA ≤ I _R ≤ 15 mA	2.0				mV
				8.0	8.0	8.0	mV (max)
				12.0	12.0	12.0	mV (max)
Z_R	Reverse Dynamic Impedance	I _R = 1 mA, f = 120 Hz,	0.5				Ω
		$I_{AC} = 0.1 I_{R}$					Ω (max)
e _N	Wideband Noise	I _R = 100 μA	93				μV_{rms}
		10 Hz ≤ f ≤ 10 kHz					
ΔV _R	Reverse Breakdown Voltage	t = 1000 hrs					
÷ ÷	Long Term Stability	T = 25°C ±0.1°C	120				ppm
		I _R = 100 μA					
V _{HYST}	Thermal Hysteresis (Note 8)	$\Delta T = -40^{\circ}C$ to 125°C	1.4				mV

LM4050-8.2 Electrical Characteristics

Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits $T_A = T_J = 25^{\circ}\text{C}$. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1\%$ and $\pm 0.2\%$ and 0.5% respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4050AI M3 LM4050AE M3 Limits (<i>Note 5</i>)	LM4050BI M3 LM4050BE M3 Limits (<i>Note 5</i>)	LM4050CI M3 LM4050CE M3 Limits (<i>Note 5</i>)	Units (Limit)
V _R	Reverse Breakdown Voltage	I _R = 150 μA	8.192				V
	Reverse Breakdown Voltage	I _R = 150 μA		±8.2	±16	±41	mV (max)
	Tolerance (Note 6)	Industrial Temp. Range		±35	±43	±68	mV (max)
		Extended Temp. Range		±49	±57	±82	mV (max)
I _{RMIN}	Minimum Operating Current		74				μΑ
				91	91	91	μA (max)
		Industrial Temp. Range		95	95	95	μA (max)
		Extended Temp. Range		100	100	100	μA (max)
$\Delta V_R / \Delta T$	Average Reverse Breakdown	I _R = 10 mA	±40				ppm/°C
	Voltage Temperature Coefficient (<i>Note 6</i>)	I _R = 1 mA	±20				ppm/°C
		I _R = 150 μA	±20	±50	±50	±50	ppm/°C (max)
$\Delta V_R / \Delta I_R$	Reverse Breakdown Voltage Change with Operating	I _{RMIN} ≤ I _R ≤ 1 mA	0.6				mV
				1.3	1.3	1.3	mV (max)
	Current Change (Note 7)			2.5	2.5	2.5	mV (max)
		1 mA ≤ I _R ≤ 15 mA	7.0				mV
				10.0	10.0	10.0	mV (max)
				18.0	18.0	18.0	mV (max)
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA, f} = 120 \text{ Hz,}$ $I_{AC} = 0.1 I_R$	0.6				Ω
e _N	Wideband Noise	I _R = 150 μA	150				μV _{rms}
		10 Hz ≤ f ≤ 10 kHz					
ΔV_{R}	Reverse Breakdown Voltage	t = 1000 hrs					
••	Long Term Stability	T = 25°C ±0.1°C I _B = 150 μA	120				ppm
V _{HYST}	Thermal Hysteresis (Note 8)	$\Delta T = -40$ °C to 125°C	2.3				mV

LM4050-10.0 Electrical Characteristics

Boldface limits apply for T_A = T_J = T_{MIN} to T_{MAX}; all other limits T_A = T_J = 25° C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of $\pm 0.1\%$ and $\pm 0.2\%$ and 0.5% respectively.

Symbol	Parameter	Conditions	Typical (Note 4)	LM4050AI M3 LM4050AE M3 Limits (Note 5)	LM4050BI M3 LM4050BE M3 Limits (Note 5)	LM4050CI M3 LM4050CE M3 Limits (Note 5)	Units (Limit)
V _R	Reverse Breakdown Voltage	I _R = 150 μA	10.00				V
	Reverse Breakdown Voltage Tolerance (<i>Note 6</i>)	I _R = 150 μA		±10	±20	±50	mV (max)
		Industrial Temp. Range		±43	±53	±83	mV (max)
		Extended Temp. Range		±60	±70	±100	mV (max)
I _{RMIN}	Minimum Operating Current		80				μΑ
				100	100	100	μΑ (max)
		Industrial Temp. Range		103	103	103	μΑ (max)
		Extended Temp. Range		110	110	110	μΑ (max)
$\Delta V_R / \Delta T$	Average Reverse Breakdown Voltage Temperature Coefficient (<i>Note 6</i>)	I _R = 10 mA	±40				ppm/°C
		I _R = 1 mA	±20				ppm/°C
		I _R = 150 μA	±20	±50	±50	±50	ppm/°C (max)
$\Delta V_R / \Delta I_R$	Reverse Breakdown Voltage Change with Operating Current Change (<i>Note 7</i>)	I _{RMIN} ≤ I _R ≤ 1 mA	0.8				mV
				1.5	1.5	1.5	mV (max)
				3.5	3.5	3.5	mV (max)
		1 mA ≤ I _R ≤ 15 mA	8.0				mV
				12.0	12.0	12.0	mV (max)
				23.0	23.0	23.0	mV (max)
Z _R	Reverse Dynamic Impedance	$I_R = 1 \text{ mA, } f = 120 \text{ Hz,}$	0.7				Ω
		$I_{AC} = 0.1 I_{R}$					
e _N	Wideband Noise	I _R = 150 μA	150				μV_{rms}
		10 Hz ≤ f ≤ 10 kHz					
ΔV _R	Reverse Breakdown Voltage Long Term Stability	t = 1000 hrs					
		T = 25°C ±0.1°C	120				ppm
		I _R = 150 μA					
V _{HYST}	Thermal Hysteresis (Note 8)	$\Delta T = -40$ °C to 125°C	2.8				mV

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.

Note 2: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{Jmax} (maximum junction temperature), θ_{JA} (junction to ambient thermal resistance), and T_A (ambient temperature). The maximum allowable power dissipation at any temperature is $PD_{max} = (T_{Jmax} - T_A)/\theta_{JA}$ or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4050, $T_{Jmax} = 125^{\circ}C$, and the typical thermal resistance (θ_{JA}), when board mounted, is 326°C/W for the SOT-23 package.

Note 3: The human body model is a 100 pF capacitor discharged through a 1.5 k Ω resistor into each pin. The machine model is a 200 pF capacitor discharged directly into each pin.

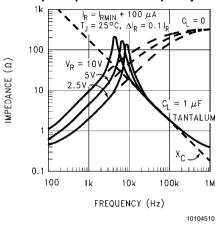
Note 4: Typicals are at $T_J = 25$ °C and represent most likely parametric norm.

Note 5: Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL.

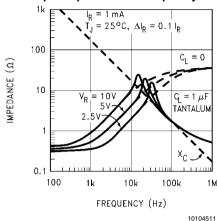
Note 6: The boldface (over-temperature) limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance $\pm [(\Delta V_R/\Delta T)(\max \Delta T)(V_R)]$. Where, $\Delta V_R/\Delta T$ is the V_R temperature coefficient, $\max \Delta T$ is the maximum difference in temperature from the reference point of 25°C to T_{MIN} or T_{MAX} , and V_R is the reverse breakdown voltage. The total over-temperature tolerance for the different grades in the industrial temperature range where $\max \Delta T = 65$ °C is shown below:

A-grade: $\pm 0.425\% = \pm 0.1\% \pm 50 \text{ ppm/°C} \times 65^{\circ}\text{C}$ B-grade: $\pm 0.525\% = \pm 0.2\% \pm 50 \text{ ppm/°C} \times 65^{\circ}\text{C}$

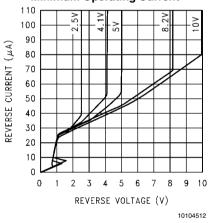
C-grade: $\pm 0.825\% = \pm 0.5\% \pm 50 \text{ ppm/}^{\circ}\text{C} \times 65^{\circ}\text{C}$

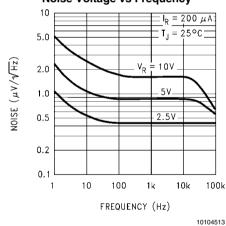

Therefore, as an example, the A-grade LM4050-2.5 has an over-temperature Reverse Breakdown Voltage tolerance of ±2.5V x 0.425% = ±11 mV.

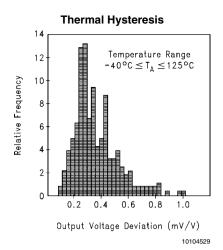
Note 7: Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately.


Note 8: Thermal hysteresis is defined as the difference in voltage measured at +25°C after cycling to temperature -40°C and the 25°C measurement after cycling to temperature +125°C.

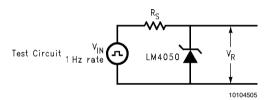
Typical Performance Characteristics

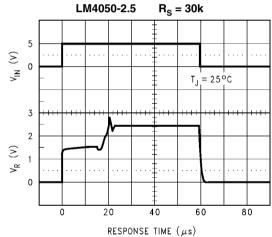

Output Impedance vs Frequency

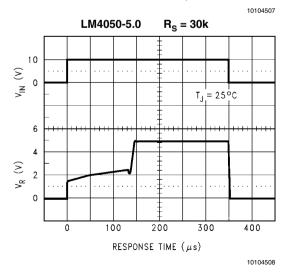

Output Impedance vs Frequency

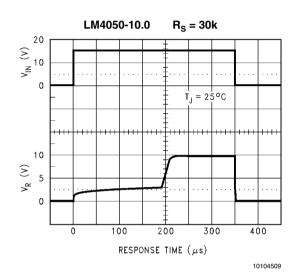


Reverse Characteristics and Minimum Operating Current

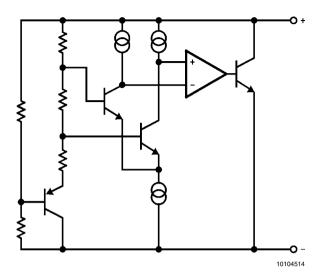



Noise Voltage vs Frequency





Start-Up Characteristics



Functional Block Diagram

Applications Information

The LM4050 is a precision micro-power curvature-corrected bandgap shunt voltage reference. For space critical applications, the LM4050 is available in the sub-miniature SOT-23 surface-mount package. The LM4050 has been designed for stable operation without the need of an external capacitor connected between the "+" pin and the "-" pin. If, however, a bypass capacitor is used, the LM4050 remains stable. Reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048V, 2.500V, 4.096V, 5.000V, 8.192V, and 10.000V. The minimum operating current increases from 60 μA for the LM4050-2.0 to 100 μA for the LM4050-10.0. All versions have a maximum operating current of 15 mA.

LM4050s in the SOT-23 packages have a parasitic Schottky diode between pin 2 (–) and pin 3 (Die attach interface contact). Therefore, pin 3 of the SOT-23 package must be left floating or connected to pin 2.

The 4.096V version allows single +5V 12-bit ADCs or DACs to operate with an LSB equal to 1 mV. For 12-bit ADCs or DACs that operate on supplies of 10V or greater, the 8.192V version gives 2 mV per LSB.

The typical thermal hysteresis specification is defined as the change in +25°C voltage measured after thermal cycling. The device is thermal cycled to temperature -40°C and then mea-

sured at 25°C. Next the device is thermal cycled to temperature +125°C and again measured at 25°C. The resulting V_{OUT} delta shift between the 25°C measurements is thermal hysteresis. Thermal hysteresis is common in precision references and is induced by thermal-mechanical package stress. Changes in environmental storage temperature, operating temperature and board mounting temperature are all factors that can contribute to thermal hysteresis.

In a conventional shunt regulator application (Figure 1) , an external series resistor ($\rm R_S$) is connected between the supply voltage and the LM4050. $\rm R_S$ determines the current that flows through the load ($\rm I_L$) and the LM4050 ($\rm I_Q$). Since load current and supply voltage may vary, $\rm R_S$ should be small enough to supply at least the maximum guaranteed $\rm I_{RMIN}$ (spec. table) to the LM4050 even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and $\rm I_L$ is at its minimum, $\rm R_S$ should be large enough so that the current flowing through the LM4050 is less than 15 mA.

 $\rm R_S$ is determined by the supply voltage, $(\rm V_S),$ the load and operating current, ($\rm I_L$ and $\rm I_Q),$ and the LM4050's reverse breakdown voltage, $\rm V_R.$

$$R_S = \frac{V_S - V_R}{I_L + I_Q}$$

Typical Applications

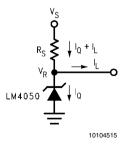


FIGURE 1. Shunt Regulator

*Tantalum

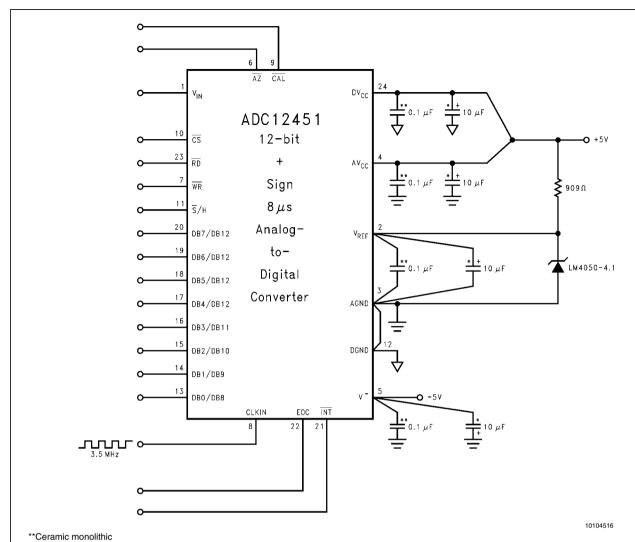


FIGURE 2. LM4050-4.1's Nominal 4.096 breakdown voltage gives ADC12451 1 mV/LSB

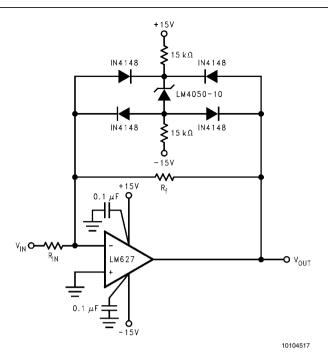


FIGURE 3. Bounded amplifier reduces saturation-induced delays and can prevent succeeding stage damage. Nominal clamping voltage is $\pm 11.5 \text{V}$ (LM4050's reverse breakdown voltage +2 diode V_{F}).

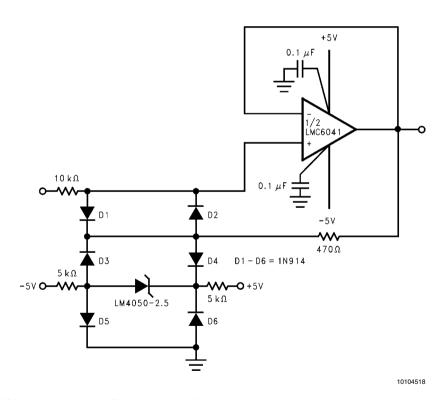


FIGURE 4. Protecting Op Amp input. The bounding voltage is $\pm 4V$ with the LM4050-2.5 (LM4050's reverse breakdown voltage + 3 diode V_F).

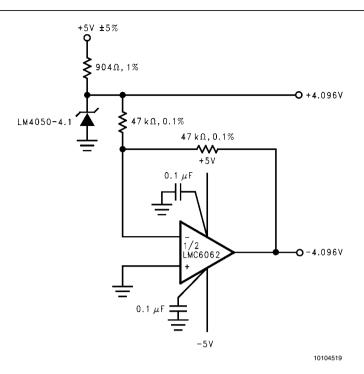


FIGURE 5. Precision ±4.096V Reference

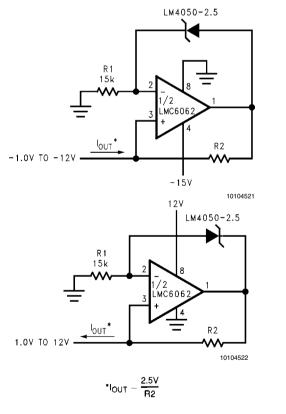
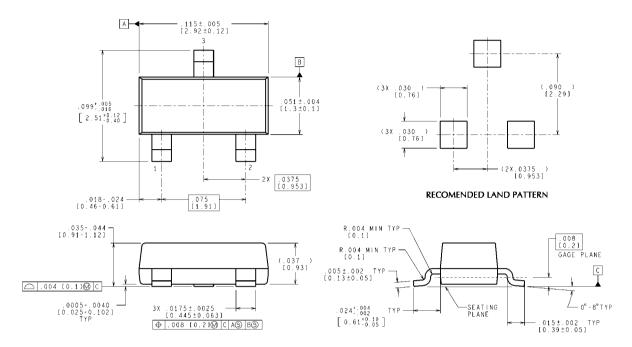



FIGURE 6. Precision 1 µA to 1 mA Current Sources

Physical Dimensions inches (millimeters) unless otherwise noted

CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS

MF03A (Rev B)

Plastic Surface Mount Package (M3) NS Package Number MF03A (JEDEC Registration TO-236AB)

Notes

TI/NATIONAL INTERIM IMPORTANT NOTICE

Texas Instruments has purchased National Semiconductor. As of Monday, September 26th, and until further notice, products sold or advertised under the National Semiconductor name or logo, and information, support and interactions concerning such products, remain subject to the preexisting National Semiconductor standard terms and conditions of sale, terms of use of website, and Notices (and/or terms previously agreed in writing with National Semiconductor, where applicable) and are not subject to any differing terms and notices applicable to other TI components, sales or websites. To the extent information on official TI and National websites and business social networking media, etc., pertains to both TI and National-branded products, both companies' instructions, warnings and limitations in the above-referenced terms of use apply.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Product	s	Applications		
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications	
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers	
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps	
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy	
DSP	dsp.ti.com	Industrial	www.ti.com/industrial	
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical	
Interface	interface.ti.com	Security	www.ti.com/security	
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics- defense	
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive	
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video	
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps	
RF/IF and ZigBee® Solutions	www.ti.com/lprf	TI E2E Community Home Page	e2e.ti.com	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright© 2011 Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated