LM4882

LM4882 250mW Audio Power Amplifier with Shutdown Mode

Literature Number: SNAS005C

LM4882

OBSOLETE October 4, 2011

Boomer® Audio Power Amplifier Series

250mW Audio Power Amplifier with Shutdown Mode

General Description

The LM4882 is a single-ended audio power amplifier capable of delivering 250mW of continuous average power into an 8Ω load with 1% THD+N from a 5V power supply.

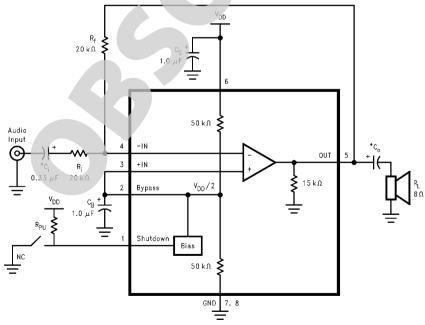
Boomer® audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components using surface mount packaging. Since the LM4882 does not require bootstrap capacitors or snubber networks, it is optimally suited for low-power portable systems.

The LM4882 features an externally controlled, low power consumption shutdown mode which is virtually clickless and popless, as well as an internal thermal shutdown protection mechanism.

The unity-gain stable LM4882 can be configured by external gain-setting resistors.

Applications

- Personal Computers
- Cellular Phones
- General Purpose Audio


Features

- MSOP surface mount packaging
- "Click and Pop" Suppression Circuitry
- Supply voltages from 2.4V–5.5V
- Operating Temperature –40°C to 85°C
- Unity-gain stable
- External gain configuration capability
- No bootstrap capacitors, or snubber circuits are necessary

Key Specifications

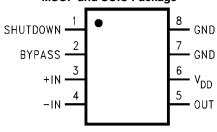
- THD+N at 1kHz at 250mW continuous average output power into 8Ω
- 1.0% (max)
- Output Power at 1% THD+N at 1kHz into 4Ω
 - Hz into 4Ω 380mW (typ)
- THD+N at 1kHz at 85mW continuous average output power into 32Ω
- 0.1% (typ)
- Shutdown Current 0.7µA (typ)

Typical Application

1000300

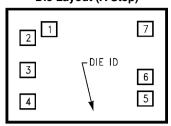
FIGURE 1. Typical Audio Amplifier Application Circuit

Boomer® is a registered trademark of National Semiconductor Corporation.


© 2011 National Semiconductor Corporation

100030

^{*}Refer to the Application Information Section for information concerning proper selection of the input and output coupling capacitors.


Connection Diagrams

MSOP and SOIC Package

Top View
Order Number LM4882MM or LM4882M
See NS Package Number MUA08A or M08A

Die Layout (A Step)

Order Number LM4882 MDA See NS Package Number MDA

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage 6.0 V
Storage Temperature -65°C to +150°C
Input Voltage -0.3V to V_{DD} + 0.3V
Power Dissipation (*Note 3*) Internally limited
ESD Susceptibility (*Note 4*) 2000V
PIn 5 1500V
Junction Temperature 150°C
Soldering Information

Small Outline Package

Vapor Phase (60 seconds) 215°C Infrared (15 seconds) 220°C See AN-450 "Surface Mounting and their Effects on Product Reliability" for other methods of soldering surface mount devices.

Thermal Resistance

 $\begin{array}{ll} \theta_{\text{JC}} \ (\text{MSOP}) & 56^{\circ}\text{C/W} \\ \theta_{\text{JA}} \ (\text{MSOP}) & 210^{\circ}\text{C/W} \\ \theta_{\text{JC}} \ (\text{SOP}) & 35^{\circ}\text{C/W} \\ \theta_{\text{JA}} \ (\text{SOP}) & 170^{\circ}\text{C/W} \end{array}$

Operating Ratings

Temperature Range

 $T_{MIN} \le T_A \le T_{MAX}$ $-40^{\circ}C \le T_A \le 85^{\circ}C$ Supply Voltage $2.4V \le V_{DD} \le 5.5V$

Electrical Characteristics (Note 1, Note 2)

The following specifications apply for $V_{DD} = 5V$ unless otherwise specified. Limits apply for $T_A = 25$ °C.

			LM4882		Units	
Symbol	Parameter	Conditions	Typical (Note 5)	Limit (Note 6)	(Limits)	
I _{DD}	Quiescent Current	$V_{IN} = 0V, I_O = 0A$	2	4.0	mA (max)	
I _{SD}	Shutdown Current	$V_{pin1} = V_{DD}$	0.5	5	μA (max)	
V _{os}	Offset Voltage	V _{IN} = 0V	5	50	mV (max)	
Po	Output Power	THD + N = 1% (max); $f = 1 \text{ kHz}$;				
		$R_L = 4\Omega$	380		mW	
		$R_L = 8\Omega$	270	250	mW (min)	
		$R_L = 32\Omega$	95		mW	
		THD + N = 10% ; f = 1 kHz				
		$R_L = 4\Omega$	480		mW	
		$R_L = 8\Omega$	325		mW	
		R _L = 32Ω	125		mW	
THD + N	Total Harmonic Distortion + Noise	$R_L = 8\Omega$, $P_O = 250$ mWrms;	0.5		%	
		$R_L = 32\Omega, P_O = 85 \text{ mWrms};$	0.1		%	
		f = 1 kHz				
PSRR	Power Supply Rejection Ratio	$V_{pin3} = 2.5V$, $V_{ripple} = 200$ mVrms, f = 120 Hz	50		dB	

Electrical Characteristics (Note 1, Note 2)

The following specifications apply for $V_{DD} = 3V$ unless otherwise specified. Limits apply for $T_A = 25$ °C.

			LM4	LM4882	
Symbol	Parameter	Conditions	Typical (Note 5)	Limit (Note 6)	Units (Limits)
I _{DD}	Quiescent Current	$V_{IN} = 0V$, $I_O = 0A$	1.2		mA
I_{SD}	Shutdown Current	$V_{pin1} = V_{DD}$	0.3		μΑ
V _{os}	Offset Voltage	$V_{IN} = 0V$	5		mV
Po	Output Power	THD + N = 1% (max); $f = 1 \text{ kHz}$			
		$R_L = 8\Omega$	80		mW
		$R_L = 32\Omega$	30		mW
		THD + N = 10%; $f = 1 \text{ kHz}$			
		$R_L = 8\Omega$	105		mW
		$R_L = 32\Omega$	40		mW

			LM4882		Units
Symbol	Parameter	Conditions	Typical (Note 5)	Limit (Note 6)	(Limits)
THD + N	Total Harmonic Distortion + Noise	$R_L = 8\Omega$, $P_O = 70$ mWrms;	0.25		%
		$R_L = 32\Omega$, $P_O = 30$ mWrms;	0.3		%
		f = 1 kHz			
PSRR	Power Supply Rejection Ratio	$V_{pin3} = 2.5V, V_{ripple} = 200 \text{ mVrms},$ f = 120 Hz	50		dB

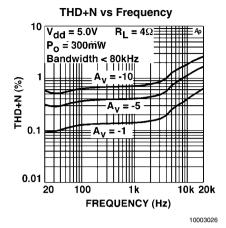
Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.

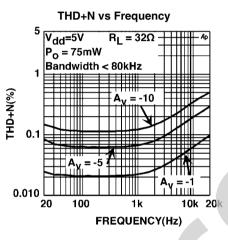
Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics tate DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

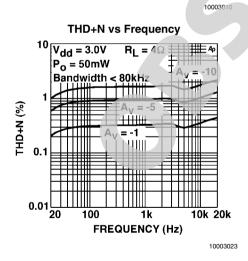
Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX} , θ_{JA} , and the ambient temperature T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A)/\theta_{JA}$. For the LM4882, $T_{JMAX} = 150^{\circ}C$, and the typical junction-to-ambient thermal resistance, when board mounted, is 210°C/W for the MUA08A Package and 170°C/W for the M08A Package.

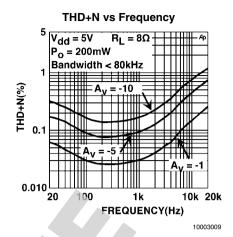
Note 4: Human body model, 100 pF discharged through a 1.5 k Ω resistor.

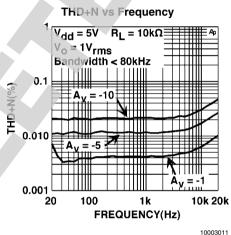
Note 5: Typicals are measured at 25°C and represent the parametric norm.

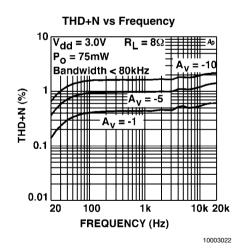

Note 6: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level).

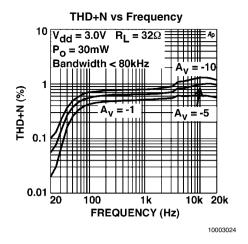

External Components Description

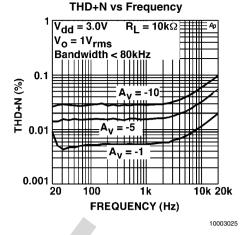

(Refer to Figure 1)

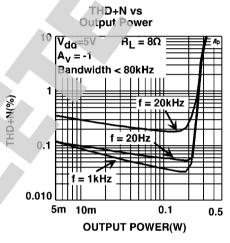

Components	Functional Description
1. R _i	Inverting input resistance which sets the closed-loop gain in conjunction with R _f . This resistor also forms a high pass
	filter with C_i at $f_c = 1 / (2\pi R_i C_i)$.
2. C _i	Input coupling capacitor which blocks the DC voltage at the amplifier's input terminals. Also creates a highpass filter
	with R_i at $f_c = 1 / (2\pi R_i C_i)$. Refer to the section, Proper Selection of External Components , for an explanation of how to determine the values of C_i .
3. R _f	Feedback resistance which sets closed-loop gain in conjunction with R _i .
4. C _S	Supply bypass capacitor which provides power supply filtering. Refer to the Application Information section for proper placement and selection of the supply bypass capacitor.
5. C _B	Bypass pin capacitor which provides half-supply filtering. Refer to the section, Proper Selection of External Components , for information concerning proper placement and selection of C _B .
6. C _O	Output coupling capacitor which blocks the DC voltage at the amplifier's output. Forms a high pass filter wth R _L at
	$f_{O} = 1 / (2\pi R_{L}C_{O}).$

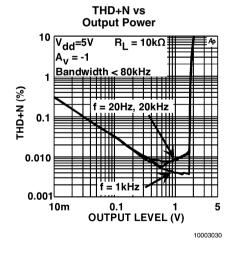

Typical Performance Characteristics

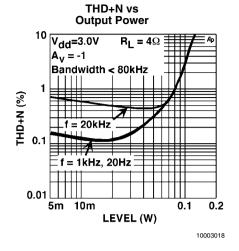


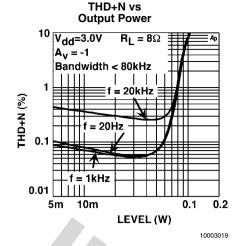


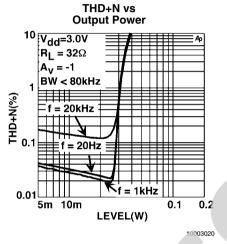


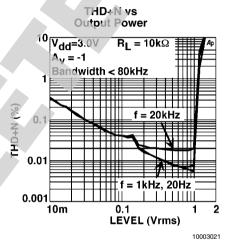


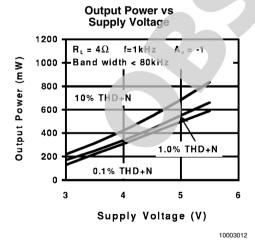


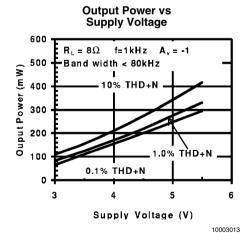


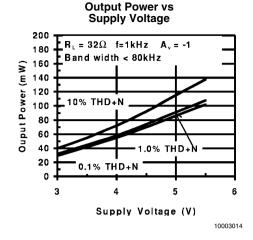

10003004

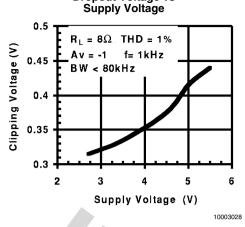


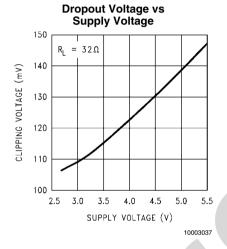

www.national.com 6

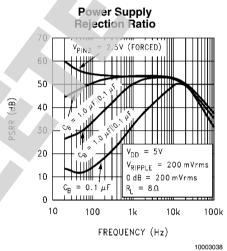

10003008

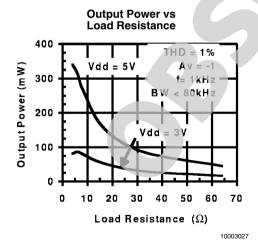


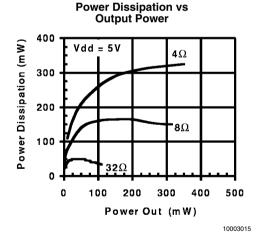


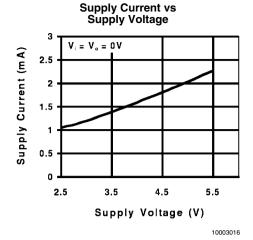


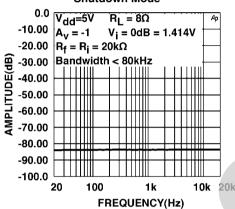


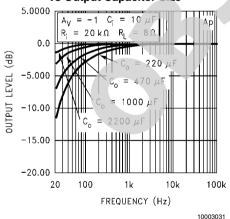


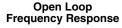




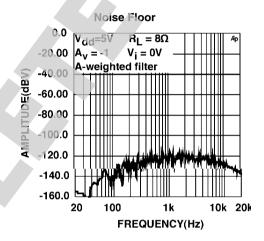

Dropout Voltage vs

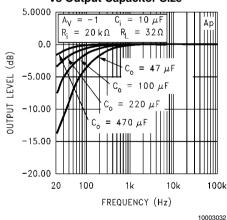




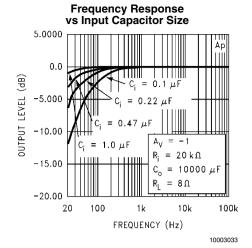

Output Attenuation in Shutdown Mode

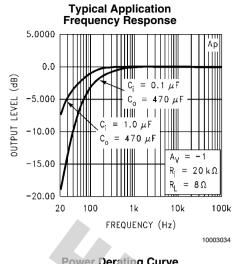
10003006

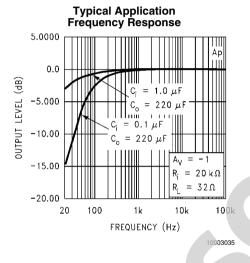

Frequency Response vs Output Capacitor Size

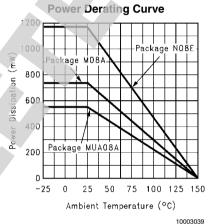


10003036




10003007


Frequency Response vs Output Capacitor Size



.....

Application Information

SHUTDOWN FUNCTION

In order to reduce power consumption while not in use, the LM4882 contains a shutdown pin to externally turn off the amplifier's bias circuitry. This shutdown features turns the amplifier off when a logic high is placed on the shutdown pin. The trigger point between a logic low and logic high level is typically half supply. It is best to switch between ground and supply to provide maximum device performance. By switching the shutdown pin to the V_{DD}, the LM4882 supply current draw will be minimized in idle mode. While the device will be disabled with shutdown pin voltages less than V DD, the idle current may be greater than the typical value of 0.5 µA. In either case, the shutdown pin should be tied to a definite voltage because leaving the pin floating may result in an unwanted shutdown condition. In many applications, a microcontroller or microprocessor output is used to control the shutdown circuitry which provides a quick smooth transition into shutdown. Another solution is to use a single-pole, singlethrow switch in conjunction with an external pull-up resistor. When the switch is closed, the shutdown pin is connected to ground and enables the amplifier. If the switch is open, then the external pull-up resistor will disable the LM4882. This scheme guarantees that the shutdown pin will not float which will prevent unwanted state changes.

POWER DISSIPATION

Power dissipation is a major concern when using any power amplifier and must be thoroughly understood to ensure a successful design. Equation 1 states the maximum power dissipation point for a single-ended amplifier operating at a given supply voltage and driving a specified output load.

$$P_{DMAX} = (V_{DD})^2/(2\pi^2R_L)$$
 (1)

Even with this internal power dissipation, the LM4882 does not require heat sinking over a large range of ambient temperature. From Equation 1, assuming a 5V power supply and an 4Ω load, the maximum power dissipation point is 316 mW. The maximum power dissipation point obtained must not be greater than the power dissipation that results from Equation 2:

$$P_{DMAX} = (T_{JMAX} - T_A)/\theta_{JA}$$
 (2)

For the LM4882 surface mount package, $\theta_{JA} = 210$ °C/W and $T_{IMAX} = 150$ °C. Depending on the ambient temperature, T_A , of the system surroundings, Equation 2 can be used to find the maximum internal power dissipation supported by the IC packaging. If the result of Equation 1 is greater than that of Equation 2, then either the supply voltage must be decreased, the load impedance increased or T A reduced. For the typical application of a 5V power supply, with an 4Ω load, the maximum ambient temperature possible without violating the maximum junction temperature is approximately 83°C provided that device operation is around the maximum power dissipation point. Power dissipation is a function of output power and thus, if typical operation is not around the maximum power dissipation point, the ambient temperature may be increased accordingly. Refer to the Typical Performance Characteristics curves for power dissipation information for lower output powers.

POWER SUPPLY BYPASSING

As with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. The capacitor location on both the bypass and power

supply pins should be as close to the device as possible. As displayed in the **Typical Performance Characteristics** section, the effect of a larger half supply bypass capacitor is improved low frequency PSRR due to increased half-supply stability. Typical applications employ a 5V regulator with 10 μF and a 0.1 μF bypass capacitors which aid in supply stability, but do not eliminate the need for bypassing the supply nodes of the LM4882. The selection of bypass capacitors, especially C_{B} , is thus dependent upon desired low frequency PSRR, click and pop performance as explained in the section, **Proper Selection of External Components** section, system cost, and size constraints.

PROPER SELECTION OF EXTERNAL COMPONENTS

Selection of external components when using integrated power amplifiers is critical to optimize device and system performance. While the LM4882 is tolerant of external component combinations, consideration to component values must be used to maximize overall system quality.

The LM4882 is unity gain stable and this gives a designer maximum system flexibility. The LM4882 should be used in low gain configurations to minimize THD+N values, and maximize the signal to noise ratio. Low gain configurations require large input signals to obtain a given output power. Input signals equal to or greater than 1 Vrms are available from sources such as audio codecs. Please refer to the section, Audio Power Amplifier Design, for a more complete explanation of proper gain selection.

Besides gain, one of the major considerations is the closed loop bandwidth of the amplifier. To a large extent, the bandwidth is dictated by the choice of external components shown in Figure 1. Both the input coupling capacitor, $C_{\rm i}$, and the output coupling capacitor, $C_{\rm o}$, form first order high pass filters which limit low frequency response. These values should be chosen based on needed frequency response for a few distinct reasons.

CLICK AND POP CIRCUITRY

The LM4882 contains circuitry to minimize turn-on and turn-off transients or "clicks and pops." In this case, turn-on refers to either power supply turn-on or the device coming out of shutdown mode. When the device is turning on, the amplifiers are internally muted. An internal current source ramps up the voltage of the bypass pin. Both the inputs and outputs track the voltage at the bypass pin. The device will remain muted until the bypass pin has reached its half supply voltage, $1/2\,V_{DD}.$ As soon as the bypass node is stable, the device will become fully operational, where the gain is set by the external resistors.

Although the bypass pin current source cannot be modified, the size of C_B can be changed to alter the device turn-on time and the level of "clicks and pops." By increasing the value of C_B , the level of turn-on pop can be reduced. However, the tradeoff for using a larger bypass capacitor is an increase in turn-on time for the device. There is a linear relationship between the size of C_B and the turn-on time. Here are some typical turn-on times for a given C_B :

Св	T _{ON}	
0.01 μF	20 ms	
0.1 μF	200 ms	
0.22 μF	420 ms	
0.47 μF	900 ms	

In order to eliminate "clicks and pops," all capacitors must be discharged before turn-on. Rapid on/off switching of the device or the shutdown function may cause the "click and pop" circuitry to not operate fully, resulting in increased "click and pop" noise.

The value of C_i will also reflect turn-on pops. Clearly, a certain size for C_i is needed to couple in low frequencies without excessive attenuation. But in many cases, the speakers used in portable systems have little ability to reproduce signals below 100 Hz to 150 Hz. In this case, using a large input and output coupling capacitor may not increase system performance. In most cases, choosing a small value of C_i in the range of 0.1 μF to 0.33 μF , along with C_B equal to 1.0 μF should produce a virtually clickless and popless turn-on. In cases where C_i is larger than 0.33 μF , it may be advantageous to increase the value of C_B . Again, it should be understood that increasing the value of C_B will reduce the "clicks and pops" at the expense of a longer device turn-on time.

AUDIO POWER AMPLIFIER DESIGN

Design a 250 mW/8Ω Audio Amplifier

Given:

A designer must first determine the needed supply rail to obtain the specified output power. Calculating the required supply rail involves knowing two parameters, V_{OPEAK} and also the dropout voltage. The latter is typically 530mV and can be found from the graphs in the **Typical Performance Characteristics.** V_{OPEAK} can be determined from Equation 3.

$$V_{\text{opeak}} = \sqrt{(2R_L P_0)}$$

(3)

For 250 mW of output power into an 8Ω load, the required V_{OPEAK} is 2 volts. A minimum supply rail of 4.55V results from adding V_{OPEAK} and V_{OD} . Since 5V is a standard supply voltage in most applications, it is chosen for the supply rail. Extra supply voltage creates headroom that allows the LM4882 to

reproduce peaks in excess of 300 mW without clipping the signal. At this time, the designer must make sure that the power supply choice along with the output impedance does not violate the conditions explained in the **Power Dissipation** section.

Once the power dissipation equations have been addressed, the required gain can be determined from Equation 4.

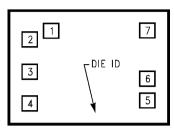
$$A_{V} \geq \sqrt{(P_{0}R_{L})}/(V_{1N}) = V_{orms}/V_{inrms}$$

$$(4)$$

$$A_{V} = R_{f}/R_{i} \qquad (5)$$

From Equation 4, the minimum gain is:

$$A_V = 1.4$$


Since the desired input impedance was 20 k Ω , and with a gain of 1.4, a value of 28 kΩ is designated for R_f, assuming 5% tolerance resistors. This combination results in a nominal gain of 1.4. The final design step is to address the bandwidth reguirements which must be stated as a pair of -3 dB frequency points. Five times away from a -3 dB point is 0.17 dB down from passband response assuming a single pole roll-off. As stated in the External Components section, both Ri in conjunction with C_i, and C_o with R_L, create first order highpass filters. Thus to obtain the desired frequency low response of 100 Hz within ±0.5 dB, both poles must be taken into consideration. The combination of two single order filters at the same frequency forms a second order response. This results in a signal which is down 0.34 dB at five times away from the single order filter -3 dB point. Thus, a frequency of 20 Hz is used in the following equations to ensure that the response is better than 0.5 dB down at 100 Hz.

$$C_i \ge 1 / (2\pi * 20 \text{ k}\Omega * 20 \text{ Hz}) = 0.397 \,\mu\text{F}$$
; use 0.39 μF .

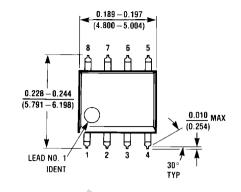
$$C_0 \ge 1 / (2\pi * 8\Omega * 20 \text{ Hz}) = 995 \mu\text{F}$$
; use 1000 μF .

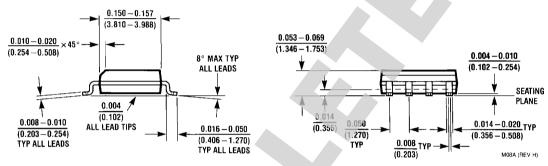
The high frequency pole is determined by the product of the desired high frequency pole, $\rm f_H$, and the closed-loop gain, A $_V$. With a closed-loop gain of 1.4 and $\rm f_H=100$ kHz, the resulting GBWP = 140 kHz which is much smaller than the LM4882 GBWP of 12.5Mhz. This figure displays that if a designer has a need to design an amplifier with a higher gain, the LM4882 can still be used without running into bandwidth limitations.

LM4882 MDA AUDIO POWER AMPLIFIER WITH SHUTDOWN MODE

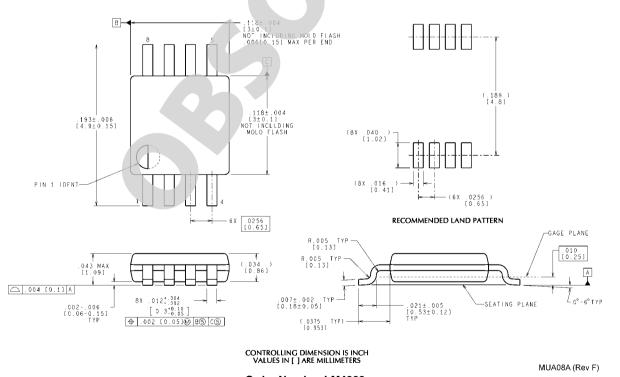
Die Layout (A - Step) 10003042

DIE/WAFER CHARACTERISTICS

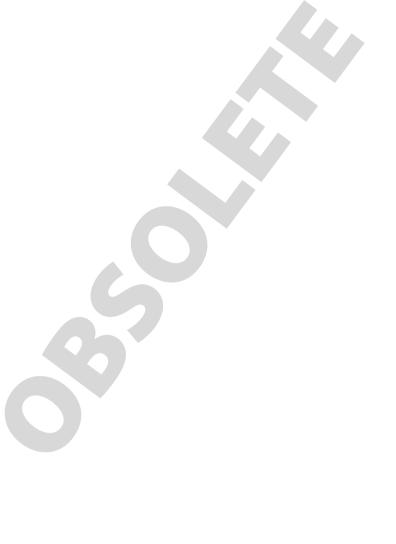

Fabrication At	tributes	General Die Information		
Physical Die Identification	LM4882A	Bond Pad Opening Size (min)	95µm x 95µm	
Die Step	А	Bond Pad Metalization	ALUMINUM	
Physical Attributes		Passivation	NITRIDE	
Wafer Diameter	150mm	Back Side Metal	Bare Back	
Dise Size (Drawn)	1016µm x 737µm 40mils x 29mils	Back Side Connection	GND	
Thickness	406µm Nominal		•	
Min Pitch	137µm Nominal			


Special Assembly Requirements:		
Note: Actual die size is rounded to the nearest m	cron.	

Die Bond Pad Coordinate Locations (A - Step)							
(Referenced to die center, coordinates in μm) NC = No Connection							
SIGNAL NAME	PAD# NUMBER	X/Y COORDINATES		PAD SIZE			
SIGNAL NAME	PAD# NUMBER	Х	Y	Х		Y	
SHUTDOWN	1	-238	237	95	х	95	
BYPASS	2	-376	186	95	х	95	
INPUT +	3	-376	-26	95	х	95	
INPUT -	4	-376	-237	95	х	95	
OUTPUT	5	376	-220	95	х	95	
VDD	6	376	-76	95	х	95	
GND	7	376	237	95	х	95	


IN U.S.A	
Tel #:	1 877 Dial Die 1 877 342 5343
Fax:	1 207 541 6140
IN EUROPE	
Tel:	49 (0) 8141 351492 / 1495
Fax:	49 (0) 8141 351470
IN ASIA PACIFIC	
Tel:	(852) 27371701
IN JAPAN	
Tel:	81 043 299 2308

Physical Dimensions inches (millimeters) unless otherwise noted



Order Number LM4882 NS Package Number M08A

Order Number LM4882 NS Package Number MUA08A

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www national com

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS, PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS. NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor **Americas Technical** Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

interface.ti.com

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Security

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Interface

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page <u>e2e.ti.com</u>

www.ti.com/security