

LM7321/LM7321Q Single/ LM7322/LM7322Q Dual Railto-Rail Input/Output

January 5, 2012

±15V, High Output Current and Unlimited Capacitive Load Operational Amplifier

General Description

The LM7321/LM7321Q/LM7322/LM7322Q are rail-to-rail input and output amplifiers with wide operating voltages and high output currents. The LM7321/LM7321Q/LM7322/LM7322Q are efficient, achieving 18 V/µs slew rate and 20 MHz unity gain bandwidth while requiring only 1 mA of supply current per op amp. The LM7321/LM7321Q/LM7322/LM7322Q performance is fully specified for operation at 2.7V, ±5V and ±15V.

The LM7321/LM7321Q/LM7322/LM7322Q are designed to drive unlimited capacitive loads without oscillations. All LM7321/LM7321Q and LM7322/LM732Q parts are tested at -40°C, 125°C, and 25°C, with modern automatic test equipment. High performance from -40°C to 125°C, detailed specifications, and extensive testing makes them suitable for industrial, automotive, and communications applications.

Greater than rail-to-rail input common mode voltage range with 50 dB of common mode rejection across this wide voltage range, allows both high side and low side sensing. Most device parameters are insensitive to power supply voltage, and this makes the parts easier to use where supply voltage may vary, such as automotive electrical systems and battery powered equipment. These amplifiers have true rail-to-rail output and can supply a respectable amount of current (15 mA) with minimal head-room from either rail (300 mV) at low distortion (0.05% THD+Noise). There are several package options for each part. Standard SOIC versions of both parts make upgrading existing designs easy. LM7322LM7322Q are offered in a space saving 8-Pin MSOP package. The LM7321/ LM7321Q are offered in small SOT23-5 package, which makes it easy to place this part close to sensors for better circuit performance.

Features

■ Wide supply voltage range

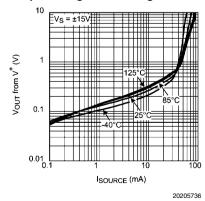
 $(V_S = \pm 15, T_A = 25^{\circ}C, Typical values unless specified.)$

Output current	+65 mA/–100 mA
Gain bandwidth product	20 MHz
Slew rate	18 V/μs
Capacitive load tolerance	Unlimited
Input common mode voltage	0.3V beyond rails
	/

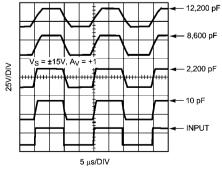
Input voltage noise
 Input current noise
 15 nV/√Hz
 1.3 pA/√Hz

■ Supply current/channel 1.1 mA
■ Distortion THD+Noise -86 dB
■ Temperature range -40°C to 125°C

■ Tested at -40°C, 25°C and 125°C at 2.7V, ±5V, ±15V.


■ LM7321Q/LM7322Q are Automotive Grade products that are AEC-Q100 Grade 1 qualified.

Applications


- Driving MOSFETs and power transistors
- Capacitive proximity sensors
- Driving analog optocouplers
- High side sensing
- Below ground current sensing
- Photodiode biasing
- Driving varactor diodes in PLLs
- Wide voltage range power supplies
- Automotive
- International power supplies

Typical Performance Characteristics

Output Swing vs. Sourcing Current

Large Signal Step Response

20205749

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

Storage Temperature Range -65°C to 150°C

Voltage at Input/Output pins

Junction Temperature (*Note 4*) 150°C Soldering Information:

Infrared or Convection (20 sec.) 235°C

260°C

Operating Ratings

Wave Soldering (10 sec.)

Supply Voltage ($V_S = V^+ - V^-$) 2.5V to 32V Temperature Range (*Note 4*) -40°C to 125°C

Package Thermal Resistance, θ_{JA} , (Note 4)

5-Pin SOT-23 325°C/W 8-Pin MSOP 235°C/W 8-Pin SOIC 165°C/W

2.7V Electrical Characteristics (Note 5)

Unless otherwise specified, all limits guaranteed for T_A = 25°C, V^+ = 2.7V, V^- = 0V, V_{CM} = 0.5V, V_{OUT} = 1.35V, and $R_L > 1$ M Ω to 1.35V. **Boldface** limits apply at the temperature extremes.

V + +0.8V, V - -0.8V

Symbol	Parameter	Condition		Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units	
V _{OS}	Input Offset Voltage	V _{CM} = 0.5V & V _{CM} = 2.2V		-5 -6	±0.7	+5 +6	mV	
TC V _{OS}	Input Offset Voltage Temperature Drift	V _{CM} = 0.5V & V _{CM} = 2.2V (<i>Note 8</i>)			±2		μV/C	
I _B		V _{CM} = 0.5V (<i>Note 9</i>)		-2.0 -2.5	-1.2			
	Input Bias Current	V _{CM} = 2.2V (<i>Note 9</i>)			0.45	1.0 1.5	μA	
I _{os}	Input Offset Current	$V_{CM} = 0.5V \text{ and } V_{CM} = 2.2$	V		20	200 300	nA	
	Common Mode Rejection Ratio	0V ≤ V _{CM} ≤ 1.0V		70 60	100		dB	
CMRR	Common wode nejection natio	0V ≤ V _{CM} ≤ 2.7V		55 50	70		uв	
PSRR	Power Supply Rejection Ratio	$2.7V \le V_S \le 30V$		78 74	104		dB	
CMVD	Common Marko Vallena Barra	CMRR > 50 dB		-0.3	-0.1 0.0	V		
CMVR	Common Mode Voltage Range		2.8 2.7	3.0				
Λ.	Open Leen Veltege Cein	$0.5V \le V_0 \le 2.2V$ R _L = 10 k Ω to 1.35V		65 62	72		- dB	
A _{VOL}	Open Loop Voltage Gain	$0.5V \le V_0 \le 2.2V$ $R_L = 2 k\Omega$ to 1.35V		59 55	66		ав	
	Output Voltage Swing	$R_L = 10 \text{ k}\Omega \text{ to } 1.35\text{V}$ $V_{ID} = 100 \text{ mV}$			50	150 160		
	High	$R_L = 2 \text{ k}\Omega \text{ to } 1.35\text{V}$ $V_{ID} = 100 \text{ mV}$			100	250 280	mV from	
V _{OUT}	Output Voltage Swing	$R_L = 10 \text{ k}\Omega \text{ to } 1.35\text{V}$ $V_{ID} = -100 \text{ mV}$			20	120 150	either rail	
	Low	$R_L = 2 \text{ k}\Omega \text{ to } 1.35\text{V}$ $V_{ID} = -100 \text{ mV}$			40	120 150		

Symbol	Parameter	Condition	Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
	V _{ID}	Sourcing V _{ID} = 200 mV, V _{OUT} = 0V (<i>Note 3</i>)	30 20	48		_
l _{OUT}	Output Current	Sinking $V_{ID} = -200 \text{ mV}, V_{OUT} = 2.7 \text{V (Note 3)}$	40 30	65		Units mA V/µs MHz nV/√Hz pA/√Hz dB
I _S	O	LM7321		0.95	1.3 1.9	4
	Supply Current	LM7322	2.0	2.5 3.8	ma	
SR	Slew Rate (Note 10)	$A_V = +1$, $V_I = 2V$ Step		8.5		V/µs
f _u	Unity Gain Frequency	$R_L = 2 \text{ k}\Omega, C_L = 20 \text{ pF}$		7.5		MHz
GBW	Gain Bandwidth	f = 50 kHz		16		MHz
e _n	Input Referred Voltage Noise Density	f = 2 kHz		11.9		nV/√Hz
i _n	Input Referred Current Noise Density	f = 2 kHz		0.5		pA/√Hz
THD+N	Total Harmonic Distortion + Noise	V^{+} = 1.9V, V^{-} = -0.8V f = 1 kHz, R_{L} = 100 kΩ, A_{V} = +2 V_{OUT} = 210 m V_{PP}		-77		dB
CT Rej.	Crosstalk Rejection	f = 100 kHz, Driver R_L = 10 kΩ		60		dB

±5V Electrical Characteristics (Note 5)

Unless otherwise specified, all limited guaranteed for $T_A = 25^{\circ}C$, $V^+ = 5V$, $V^- = -5V$, $V_{CM} = 0V$, $V_{OUT} = 0V$, and $R_L > 1$ M Ω to 0V. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition	Condition		Typ (Note 6)	Max (Note 7)	Units	
V _{OS}	Input Offset Voltage	$V_{CM} = -4.5V$ and $V_{CM} = 4.5V$		−5 −6	±0.7	+5 +6	mV	
TC V _{OS}	Input Offset Voltage Temperature Drift	$V_{CM} = -4.5V$ and $V_{CM} = 4.5$ (<i>Note 8</i>)	5V		±2		μV/°C	
	Input Bios Current	V _{CM} = -4.5V (<i>Note 9</i>)		-2.0 -2.5	-1.2			
I _B	Input Bias Current	V _{CM} = 4.5V (<i>Note 9</i>)			0.45	1.0 1.5	μΑ	
I _{os}	Input Offset Current	$V_{CM} = -4.5V$ and $V_{CM} = 4.5$	5V		20	200 300	nA	
OMBB	Common Mode Rejection Ratio	$-5V \le V_{CM} \le 3V$		80 70	100		dB	
CMRR	Common wode nejection natio	$-5V \le V_{CM} \le 5V$		65 62	80		иБ	
PSRR	Power Supply Rejection Ratio	$2.7V \le V_S \le 30V, V_{CM} = -4$	1.5V	78 74	104		dB	
CMVR	Common Mode Voltage Range	CMRR > 50 dB			-5.3	−5.1 −5.0	V	
CIVIVA	Common wode voltage hange	CIMINN > 50 UB		5.1 5.0	5.3		V	
Δ.	On and I am Walks are Online	$-4V \le V_O \le 4V$ R _L = 10 k Ω to 0V		74 70	80			
A _{VOL}	Open Loop Voltage Gain	$-4V \le V_O \le 4V$ R _L = 2 k Ω to 0V		68 65	74		- dB	

Symbol	Parameter	Condition		Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
		$R_L = 10 \text{ k}\Omega \text{ to 0V}$	$R_L = 10 \text{ k}\Omega \text{ to 0V}$		100	250	
	Output Voltage Swing	V _{ID} = 100 mV				280	
	High	$R_L = 2 k\Omega$ to 0V			160	350	
V _{OUT}		V _{ID} = 100 mV				450	mV from
V OUT		$R_L = 10 \text{ k}\Omega \text{ to 0V}$			35	200	either rail
	Output Voltage Swing	$V_{ID} = -100 \text{ mV}$				250	
	Low	$R_L = 2 k\Omega$ to 0V			80	200	
		$V_{ID} = -100 \text{ mV}$				250	
		Sourcing	<u> </u>				
I _{OUT}	Output Current	$V_{ID} = 200 \text{ mV}, V_{OUT} = -5V \text{ (Note 3)}$		20			mA
1001		Sinking		50	85		
		$V_{ID} = -200 \text{ mV}, V_{OUT} = 5V$	(Note 3)	30			
	Supply Current	V _{CM} = -4.5V	LM7321		1.0	1.3	
Is			<u> </u>		0.0	2	mA
			LM7322		2.3	2.8 3.8	
SR	Slew Rate (Note 10)	A _V = +1, V _I = 8V Step			12.3	0.0	V/µs
$\overline{f_u}$	Unity Gain Frequency	$R_L = 2 \text{ k}\Omega, C_L = 20 \text{ pF}$			9		MHz
GBW	Gain Bandwidth	f = 50 kHz			16		MHz
e _n	Input Referred Voltage Noise Density	f = 2 kHz			14.3		nV/√Hz
i _n	Input Referred Current Noise Density	f = 2 kHz			1.35		pA/√Hz
THD+N	Total Harmonic Distortion + Noise	$f = 1 \text{ kHz}, R_L = 100 \text{ k}\Omega, A_V = +2$ $V_{OUT} = 8 \text{ V}_{PP}$			-79		dB
CT Rej.	Crosstalk Rejection	f = 100 kHz, Driver R _i = 10) kΩ		60		dB

±15V Electrical Characteristics (Note 5)

Unless otherwise specified, all limited guaranteed for $T_A = 25^{\circ}C$, $V^+ = 15V$, $V^- = -15V$, $V_{CM} = 0V$, $V_{OUT} = 0V$, and $R_L > 1M\Omega$ to 15V. **Boldface** limits apply at the temperature extremes.

Symbol	Parameter	Condition		Min (<i>Note 7</i>)	Typ (<i>Note 6</i>)	Max (<i>Note 7</i>)	Units
V _{OS}	Input Offset Voltage	$V_{CM} = -14.5V$ and $V_{CM} = 14$	4.5V	-6 -8	±0.7	+6 +8	mV
TC V _{OS}	Input Offset Voltage Temperature Drift	$V_{CM} = -14.5V$ and $V_{CM} = 14$ (<i>Note 8</i>)	4.5V		±2		μV/°C
1	January Diag Comment	V _{CM} = -14.5V (<i>Note 9</i>)		−2 −2.5	-1.1		4
I _B	Input Bias Current	V _{CM} = 14.5V (<i>Note 9</i>)			0.45	1.0 1.5	μA
I _{os}	Input Offset Current	$V_{CM} = -14.5V$ and $V_{CM} = 14$	4.5V		30	300 500	nA
CMDD	Common Made Dejection Detic	-15V ≤ V _{CM} ≤ 12V		80 75	100		٩D
CMRR	Common Mode Rejection Ratio	-15V ≤ V _{CM} ≤ 15V		72 70	80		dB
PSRR	Power Supply Rejection Ratio	$2.7V \le V_S \le 30V, V_{CM} = -1$	4.5V	78 74	100		dB
CMVR		CMRR > 50 dB			-15.3	-15.1 -15	
	Common Mode Voltage Range			15.1 15	15.3		V

Symbol	Parameter	Condition		Min (Note 7)	Typ (Note 6)	Max (Note 7)	Units
		$-13V \le V_O \le 13V$		75	85		
٨	Open Loop Voltage Gain	$R_L = 10 \text{ k}\Omega \text{ to 0V}$		70			dB
A _{VOL}	Open Loop Vollage Gain	$-13V \le V_O \le 13V$		70	78		I UB
		$R_L = 2 k\Omega$ to 0V		65			
		$R_L = 10 \text{ k}\Omega \text{ to 0V}$			150	300	
	Output Voltage Swing	V _{ID} = 100 mV				350	
	High	$R_L = 2 k\Omega$ to 0V			250	550	
V_{OUT}		V _{ID} = 100 mV	$V_{ID} = 100 \text{ mV}$ $R_L = 10 \text{ k}\Omega \text{ to 0V}$			650	mV from
*001		<u> </u>			60	200	either rail
	Output Voltage Swing	$V_{ID} = -100 \text{ mV}$ $R_{L} = 2 \text{ k}\Omega \text{ to 0V}$				250	
	Low				130	300	
		$V_{ID} = -100 \text{ mV}$				400	
		Sourcing $V_{ID} = 200 \text{ mV}, V_{OUT} = -15 \text{V} (\textit{Note 3})$ Sinking $V_{ID} = -200 \text{ mV}, V_{OUT} = 15 \text{V} (\textit{Note 3})$		40	65		
I _{OUT}	Output Current				400		mA
				60	100		
		V _{ID} = 200 mV, V _{OUI} = 10			1.1	1.7	
	Supply Current	LM7321				2.4	
I _S		$V_{CM} = -14.5V$	L M7000		2.5	4	mA mA
			LM7322			5.6	
SR	Slew Rate	$A_{V} = +1, V_{I} = 20V \text{ Step}$			18		V/µs
	(Note 10)			-	44.0		
f _u	Unity Gain Frequency	$R_L = 2 k\Omega$, $C_L = 20 pF$			11.3		MHz
GBW	Gain Bandwidth	f = 50 kHz			20		MHz
e _n	Input Referred Voltage Noise Density	f = 2 kHz			15		nV/√Hz
i _n	Input Referred Current Noise Density	f = 2 kHz			1.3		pA/√Hz
THD+N	Total Harmonic Distortion +Noise	$f = 1 \text{ kHz}, R_L 100 \text{ k}\Omega,$			-86		dB
	Total Halffloriic Distortion +Noise	$A_V = +2, V_{OUT} = 23 V_{PP}$		-86			an
CT Rej.	Crosstalk Rejection	f = 100 kHz, Driver R _L = 1	0 kΩ		60		dB

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Rating indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

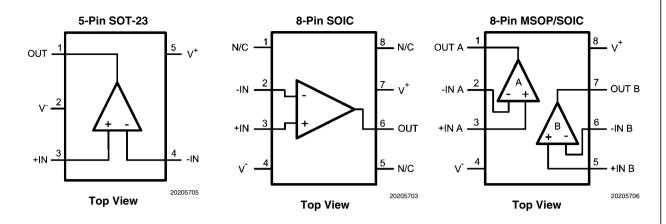
Note 2: Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC) Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC).

Note 3: Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Short circuit test is a momentary test. Output short circuit duration is infinite for V_S ≤ 6V at room temperature and below. For V_S > 6V, allowable short circuit duration is 1.5 ms.

Note 4: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)}) - T_A) / \theta_{JA}$. All numbers apply for packages soldered directly onto a PC board.

Note 5: Electrical Table values apply only for factory testing conditions at the temperature indicated. Factory testing conditions result in very limited self-heating of the device such that $T_J = T_A$. No guarantee of parametric performance is indicated in the electrical tables under conditions of internal self-heating where $T_J > T_A$.

Note 6: Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not guaranteed on shipped production material.

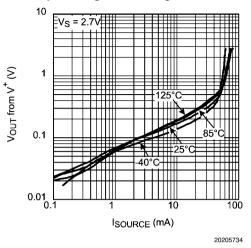

Note 7: All limits are guaranteed by testing or statistical analysis.

Note 8: Offset voltage temperature drift determined by dividing the change in V_{OS} at temperature extremes into the total temperature change.

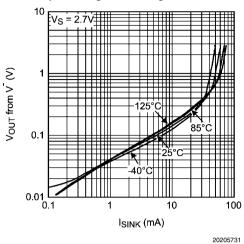
Note 9: Positive current corresponds to current flowing into the device.

Note 10: Slew rate is the slower of the rising and falling slew rates. Connected as a Voltage Follower.

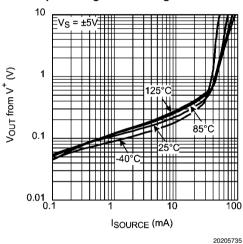
Connection Diagrams

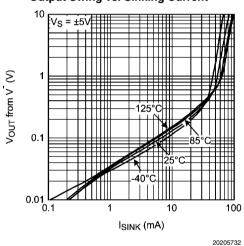

Ordering Information

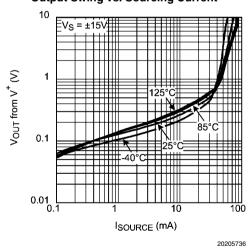
Package	Part Number	Part Number Package Media Transport		NSC Drawing
	LM7321MF		1k Units Tape and Reel	
	LM7321MFE	AU4A	250 Units Tape and Reel	
5-Pin SOT-23	LM7321MFX]	3k Units Tape and Reel	MEGEA
5-PIN 501-23	LM7321QMF		1k Units Tape and Reel	MF05A
	LM7321QMFE	AR8A	250 Units Tape and Reel	
	LM7321QMFX]	3k Units Tape and Reel	
	LM7322MM		1k Units Tape and Reel	
8-Pin MSOP	LM7322MME	AZ4A	250 Units Tape and Reel	MUA08A
	LM7322MMX]	3.5k Units Tape and Reel	
	LM7321MA	L M7004MA	95 Units/Rail	
	LM7321MAX	- LM7321MA	2.5k Units Tape and Reel	
0 Din COIC	LM7322MA	L M7000MA	95 Units/Rail	MOOA
8-Pin SOIC	LM7322MAX	- LM7322MA	2.5k Units Tape and Reel	M08A
	LM7322QMA	L N 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	95 Units/Rail	
	LM7322QMAX	LM7322QMA	2.5k Units Tape and Reel	

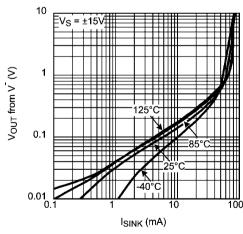

Automotive Grade (Q) product incorporates enhanced manufacturing and support processes for the automotive market, including defect detection methodologies. Reliability qualification is compliant with the requirements and temperature grades defined in the AEC-Q100 standard. Automotive Grade products are identified with the letter Q. PPAP (Production Part Approval Process) documentation of the device technology, process and qualification is available from Texas Instruments upon request.

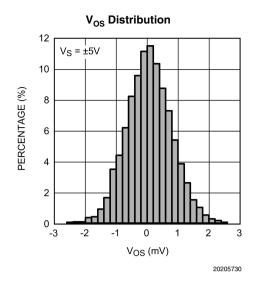
Typical Performance Characteristics Unless otherwise specified: $T_A = 25$ °C.

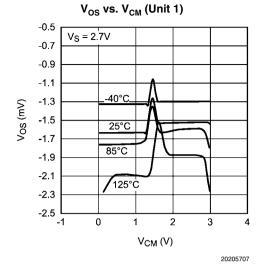

Output Swing vs. Sourcing Current

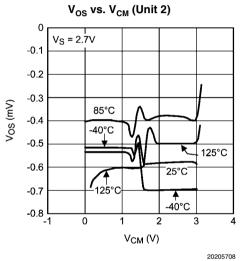

Output Swing vs. Sinking Current

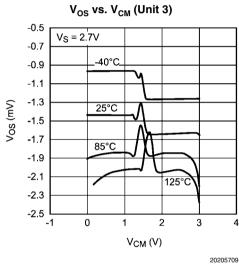

Output Swing vs. Sourcing Current

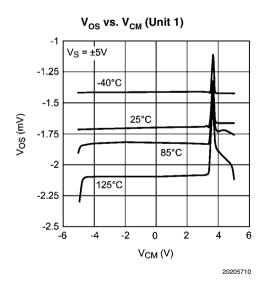

Output Swing vs. Sinking Current

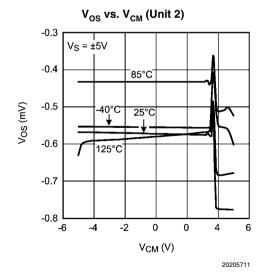

Output Swing vs. Sourcing Current

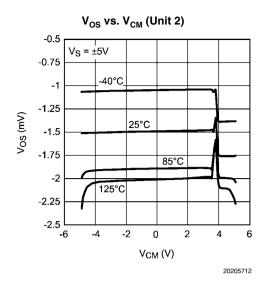


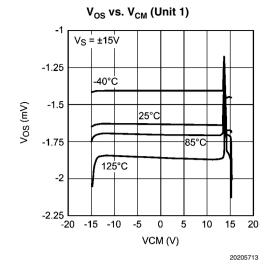

Output Swing vs. Sinking Current




20205733







 V_{OS} vs. V_{CM} (Unit 2) V_{OS} vs. V_{CM} (Unit 2) $V_{S} = \pm 15 V$ $V_{S} = \pm 10 V$ $V_{S} = 10 V$ $V_{S} = 10 V$ $V_{S} = 10 V$ $V_{S} = 10 V$ $V_{S} =$

-5 0 5 10 15 20

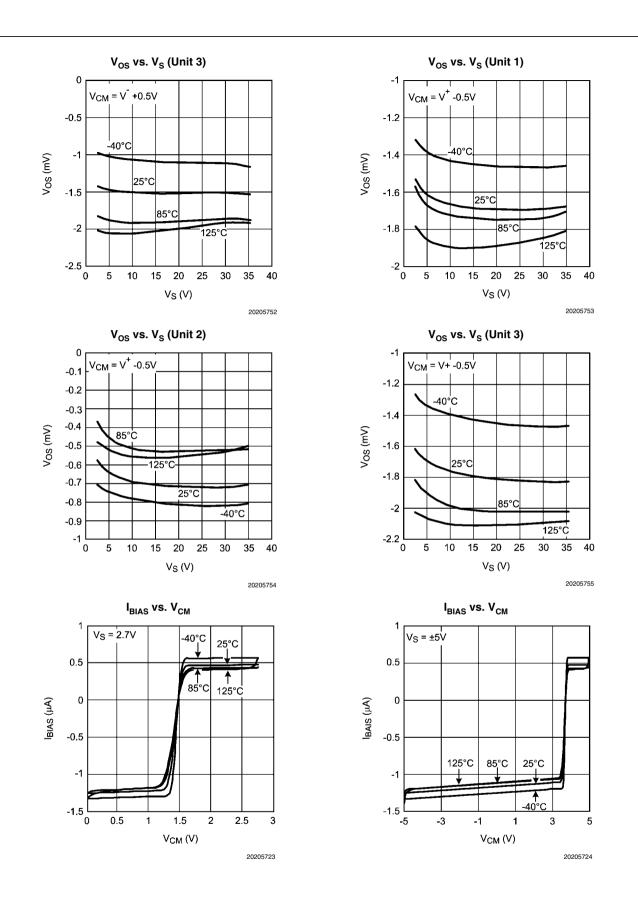
V_{CM} (V)

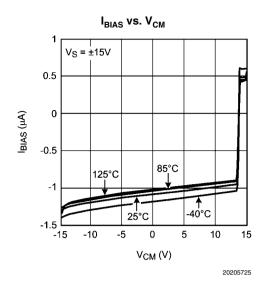
-0.9

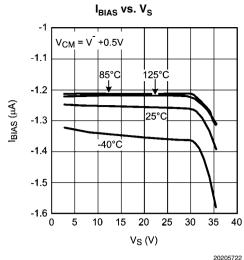
-1 -20 -15 -10

V_{OS} vs. V_{CM} (Unit 3) -0.5 V_S = ±15√ -0.7 -0.9 -40°C -1.1 -1.3 Vos (mV) . 25°C -1.5 -1.7 85°C -1.9 125°C -2.1 -2.3 -2.5 _____ -20 -15 -10 -5 0 5 10 15 20 V_{CM} (V)

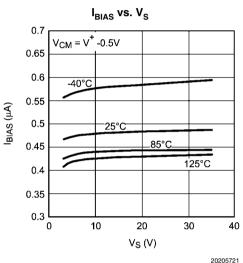
20205714

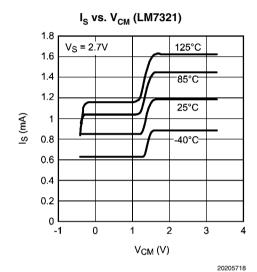

 V_{OS} vs. V_{S} (Unit 1) -1.1 V_{CM} = V +0.5V -40°C -1.3 -1.5 25°C Vos (mV) -1.7 -1.9 85°C 125°C -2.1 -2.3 -2.5 L 10 20 30 40 V_S (V) 20205750

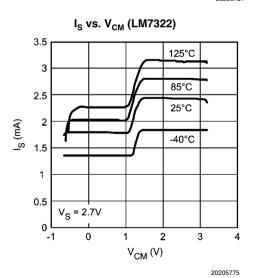

V_{OS} vs. V_S (Unit 2) 0 $V_{CM} = V^{-} + 0.5V$ -0.1 -0.2 Vos (mV) -0.3 -0.4 -0.5 -40°C -0.6 -0.7 L 10 15 20 25 30 35 40 V_S (V)

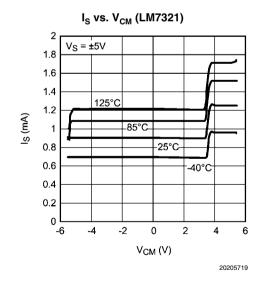

9 www.ti.com

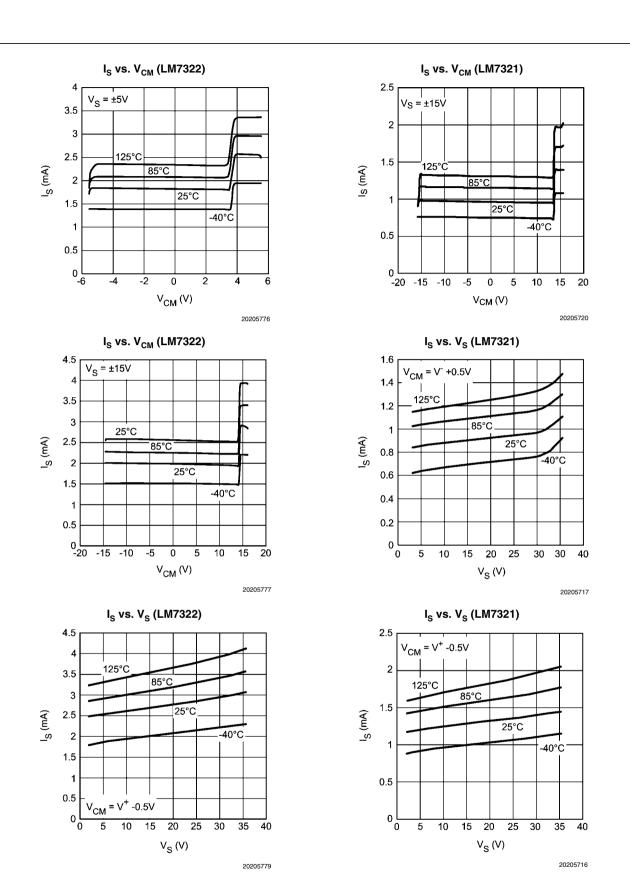
20205751

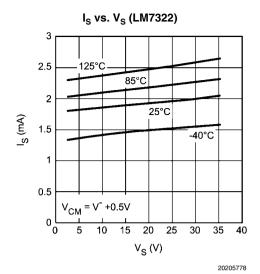

20205715

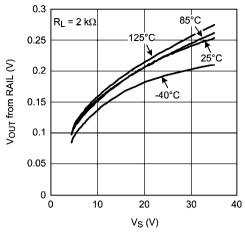


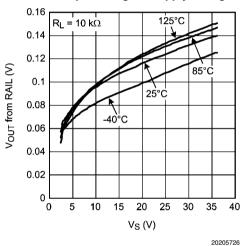




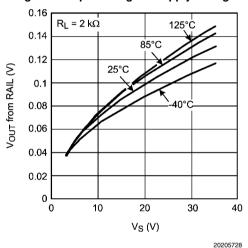

20205



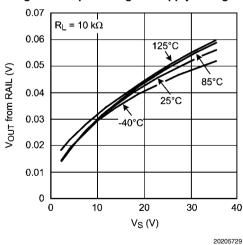


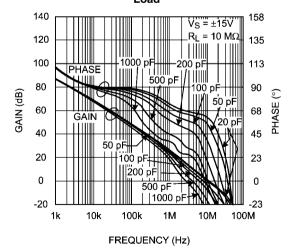


Positive Output Swing vs. Supply Voltage

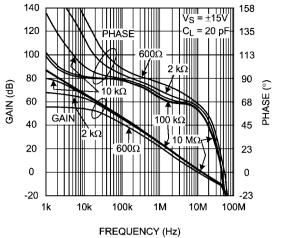


20205727

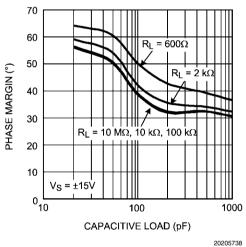

Positive Output Swing vs. Supply Voltage


Negative Output Swing vs. Supply Voltage

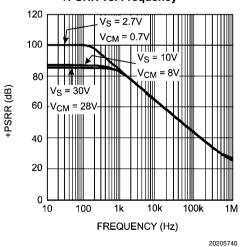
Negative Output Swing vs. Supply Voltage



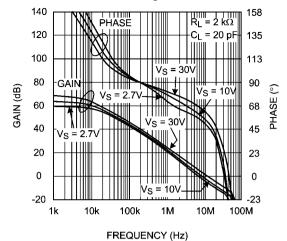
Open Loop Frequency Response with Various Capacitive Load


20205782

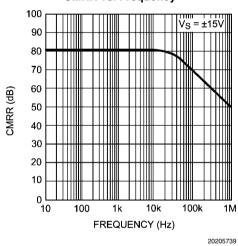
Open Loop Frequency Response with Various Resistive Load

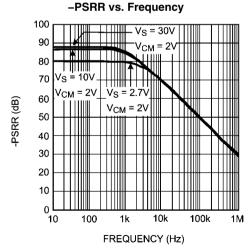


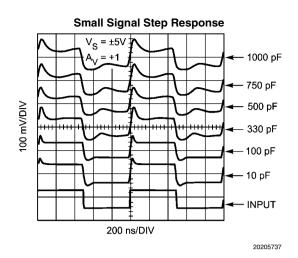
20205783

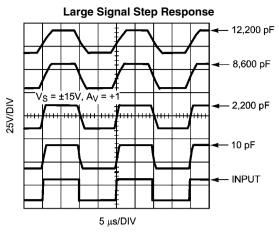


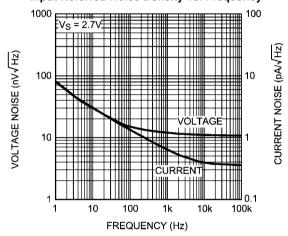
+PSRR vs. Frequency

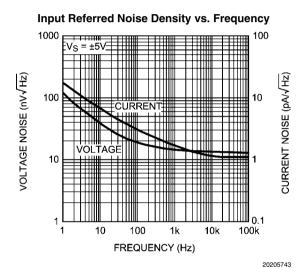



Open Loop Frequency Response with Various Supply Voltage

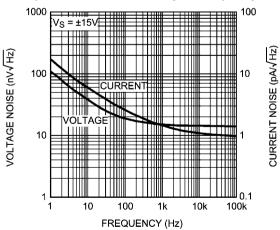

20205784

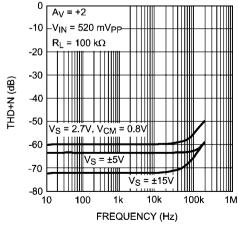

CMRR vs. Frequency


20205741

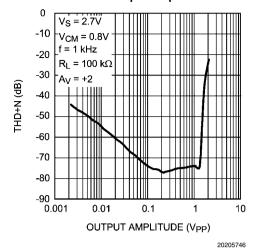


20205749

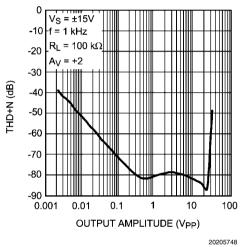

Input Referred Noise Density vs. Frequency


20205742

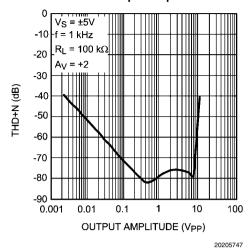
Input Referred Noise Density vs. Frequency

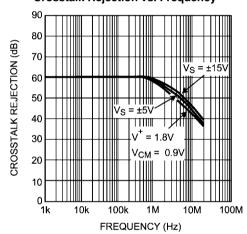

20205744

THD+N vs. Frequency



20205745


THD+N vs. Output Amplitude


THD+N vs. Output Amplitude

THD+N vs. Output Amplitude

Crosstalk Rejection vs. Frequency

20205768

Application Information

DRIVING CAPACITIVE LOADS

The LM7321/LM7321Q/LM7322/LM7322Q are specifically designed to drive unlimited capacitive loads without oscillations as shown in *Figure 1*.

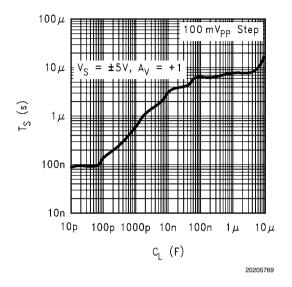


FIGURE 1. ±5% Settling Time vs. Capacitive Load

In addition, the output current handling capability of the device allows for good slewing characteristics even with large capacitive loads as shown in *Figure 2* and *Figure 3*.

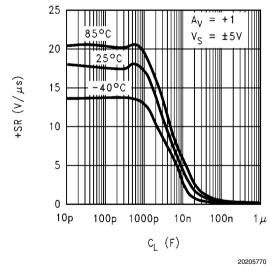


FIGURE 2. +SR vs. Capacitive Load

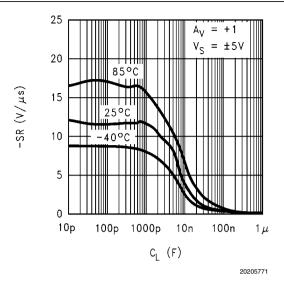


FIGURE 3. -SR vs. Capacitive Load

The combination of these features is ideal for applications such as TFT flat panel buffers, A/D converter input amplifiers, etc.

However, as in most op amps, addition of a series isolation resistor between the op amp and the capacitive load improves the settling and overshoot performance.

Output current drive is an important parameter when driving capacitive loads. This parameter will determine how fast the output voltage can change. Referring to the Slew Rate vs. Capacitive Load Plots (typical performance characteristics section), two distinct regions can be identified. Below about 10,000 pF, the output Slew Rate is solely determined by the op amp's compensation capacitor value and available current into that capacitor. Beyond 10 nF, the Slew Rate is determined by the op amp's available output current. Note that because of the lower output sourcing current compared to the sinking one, the Slew Rate limit under heavy capacitive loading is determined by the positive transitions. An estimate of positive and negative slew rates for loads larger than 100 nF can be made by dividing the short circuit current value by the capacitor.

For the LM7321/LM7321Q/LM7322/LM7322Q, the available output current increases with the input overdrive. Referring to Figure 4 and Figure 5, Output Short Circuit Current vs. Input Overdrive, it can be seen that both sourcing and sinking short circuit current increase as input overdrive increases. In a closed loop amplifier configuration, during transient conditions while the fed back output has not quite caught up with the input, there will be an overdrive imposed on the input allowing more output current than would normally be available under steady state condition. Because of this feature, the op amp's output stage quiescent current can be kept to a minimum, thereby reducing power consumption, while enabling the device to deliver large output current when the need arises (such as during transients).

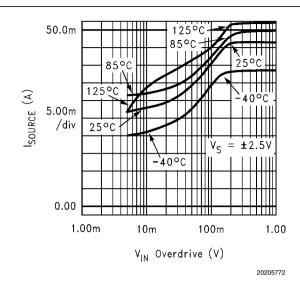


FIGURE 4. Output Short Circuit Sourcing Current vs. Input Overdrive

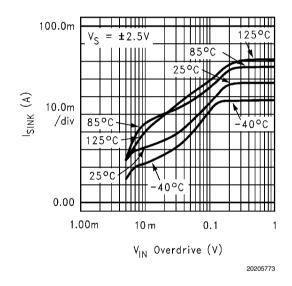


FIGURE 5. Output Short Circuit Sinking Current vs. Input Overdrive

Figure 6 shows the output voltage, output current, and the resulting input overdrive with the device set for $\rm A_V=+1$ and the input tied to a 1 $\rm V_{PP}$ step function driving a 47 nF capacitor. As can be seen, during the output transition, the input overdrive reaches 1V peak and is more than enough to cause the output current to increase to its maximum value (see Figure 4 and Figure 5 plots). Note that because of the larger output sinking current compared to the sourcing one, the output negative transition is faster than the positive one.

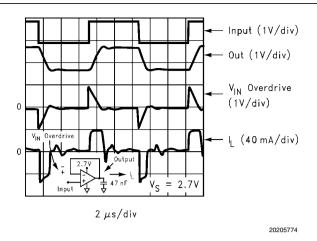


FIGURE 6. Buffer Amplifier Scope Photo

ESTIMATING THE OUTPUT VOLTAGE SWING

It is important to keep in mind that the steady state output current will be less than the current available when there is an input overdrive present. For steady state conditions, the Output Voltage vs. Output Current plot (Typical Performance Characteristics section) can be used to predict the output swing. Figure 7 and Figure 8 show this performance along with several load lines corresponding to loads tied between the output and ground. In each cases, the intersection of the device plot at the appropriate temperature with the load line would be the typical output swing possible for that load. For example, a 1 $\rm k\Omega$ load can accommodate an output swing to within 250 mV of V- and to 330 mV of V+ (V_S = ±15V) corresponding to a typical 29.3 V_PP unclipped swing.

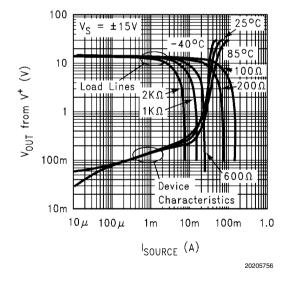


FIGURE 7. Output Sourcing Characteristics with Load Lines

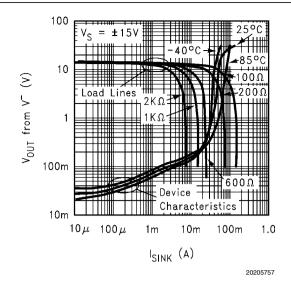


FIGURE 8. Output Sinking Characteristics with Load Lines

SETTLING TIME WITH LARGE CAPACITIVE LOADS

Figure 9 below shows a typical application where the LM7321/LM7321Q/LM7322/LM7322Q is used as a buffer amplifier for the V_{COM} signal employed in a TFT LCD flat panel:

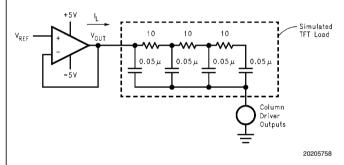


FIGURE 9. V_{COM} Driver Application Schematic

Figure 10 shows the time domain response of the amplifier when used as a V_{COM} buffer/driver with V_{REF} at ground. In this application, the op amp loop will try and maintain its output voltage based on the voltage on its non-inverting input (V_{REF}) despite the current injected into the TFT simulated load. As long as this load current is within the range tolerable by the LM7321/LM7321Q/LM7322/LM7322Q (45 mA sourcing and 65 mA sinking for $\pm 5V$ supplies), the output will settle to its final value within less than 2 μ s.

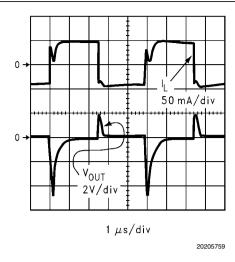


FIGURE 10. V_{COM} Driver Performance Scope Photo

OUTPUT SHORT CIRCUIT CURRENT AND DISSIPATION ISSUES

The LM7321/LM7321Q/LM7322/LM7322Q output stage is designed for maximum output current capability. Even though momentary output shorts to ground and either supply can be tolerated at all operating voltages, longer lasting short conditions can cause the junction temperature to rise beyond the absolute maximum rating of the device, especially at higher supply voltage conditions. Below supply voltage of 6V, the output short circuit condition can be tolerated indefinitely.

With the op amp tied to a load, the device power dissipation consists of the quiescent power due to the supply current flow into the device, in addition to power dissipation due to the load current. The load portion of the power itself could include an average value (due to a DC load current) and an AC component. DC load current would flow if there is an output voltage offset, or the output AC average current is non-zero, or if the op amp operates in a single supply application where the output is maintained somewhere in the range of linear operation.

Therefore:

$$\begin{aligned} & P_{TOTAL} = P_Q + P_{DC} + P_{AC} \\ & P_Q = I_S \cdot V_S \\ & Dissipation \\ & P_{DC} = I_O \cdot (V_r - V_o) \\ & P_{AC} = \text{See Table 1 below} \end{aligned} \qquad \begin{aligned} & \text{Op Amp Quiescent Power} \\ & \text{Dissipation} \\ & \text{AC Load Power} \end{aligned}$$

where:

Is: Supply Current

 V_S : Total Supply Voltage (V+ – V-)

Vo: Average Output Voltage

V_r: V+ for sourcing and V- for sinking current

Table 1 below shows the maximum AC component of the load power dissipated by the op amp for standard Sinusoidal, Triangular, and Square Waveforms:

TABLE 1. Normalized AC Power Dissipated in the Output Stage for Standard Waveforms

P_{AC} (W. Ω /V ²)						
Sinusoidal	Triangular	Square				
50.7 x 10− ³	46.9 x 10− ³	62.5 x 10− ³				

The table entries are normalized to V_S^2/R_L . To figure out the AC load current component of power dissipation, simply multiply the table entry corresponding to the output waveform by the factor V_S^2/R_L . For example, with $\pm 12V$ supplies, a 600Ω load, and triangular waveform power dissipation in the output stage is calculated as:

$$P_{AC} = (46.9 \times 10^{-3}) \cdot (242/600) = 45.0 \text{ mW}$$

The maximum power dissipation allowed at a certain temperature is a function of maximum die junction temperature (T_J _(MAX)) allowed, ambient temperature T_A , and package thermal resistance from junction to ambient, $\theta_{I\Delta}$.

$$P_{D(MAX)} = \frac{T_{J(MAX)} - T_{A}}{\theta_{JA}}$$

For the LM7321/LM7321Q/LM7322/LM7322Q, the maximum junction temperature allowed is 150°C at which no power dissipation is allowed. The power capability at 25°C is given by the following calculations:

For MSOP package:

$$P_{D(MAX)} = \frac{150^{\circ}C - 25^{\circ}C}{235^{\circ}C/W} = 0.53W$$

For SOIC package:

$$P_{D(MAX)} = \frac{150^{\circ}C - 25^{\circ}C}{165^{\circ}C/W} = 0.76W$$

Similarly, the power capability at 125°C is given by: For MSOP package:

$$P_{D(MAX)} = \frac{150^{\circ}C - 125^{\circ}C}{235^{\circ}C/W} = 0.11W$$

For SOIC package:

$$P_{D(MAX)} = \frac{150^{\circ}C - 125^{\circ}C}{165^{\circ}C/W} = 0.15W$$

Figure 11 shows the power capability vs. temperature for MSOP and SOIC packages. The area under the maximum thermal capability line is the operating area for the device. When the device works in the operating area where P_{TOTAL} is less than $P_{\mathsf{D(MAX)}}$, the device junction temperature will remain below 150°C. If the intersection of ambient temperature and package power is above the maximum thermal capability line, the junction temperature will exceed 150°C and this should be strictly prohibited.

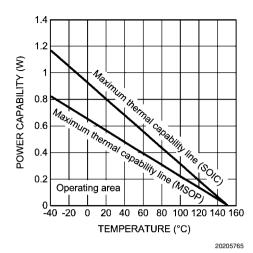


FIGURE 11. Power Capability vs. Temperature

When high power is required and ambient temperature can't be reduced, providing air flow is an effective approach to reduce thermal resistance therefore to improve power capability

Other Application Hints

The use of supply decoupling is mandatory in most applications. As with most relatively high speed/high output current Op Amps, best results are achieved when each supply line is decoupled with two capacitors; a small value ceramic capacitor ($\sim 0.01 \, \mu F$) placed very close to the supply lead in addition to a large value Tantalum or Aluminum ($> 4.7 \, \mu F$). The large capacitor can be shared by more than one device if necessary. The small ceramic capacitor maintains low supply impedance at high frequencies while the large capacitor will act as the charge "bucket" for fast load current spikes at the op amp output. The combination of these capacitors will provide supply decoupling and will help keep the op amp oscillation free under any load.

SIMILAR HIGH OUTPUT DEVICES

The LM7332 is a dual rail-to-rail amplifier with a slightly lower GBW capable of sinking and sourcing 100 mA. It is available in SOIC and MSOP packages.

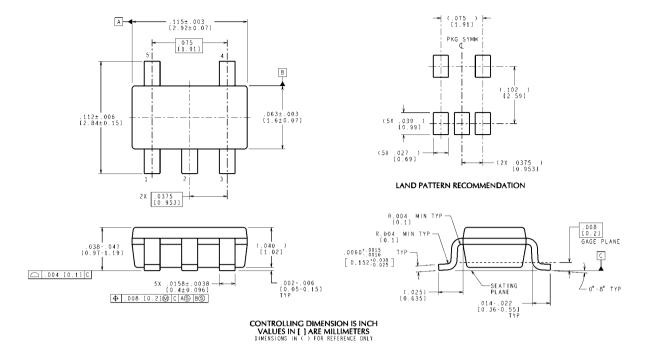
The LM4562 is dual op amp with very low noise and 0.7 mV voltage offset.

The LME49870 and LME49860 are single and dual low noise amplifiers that can work from ±22 volt supplies.

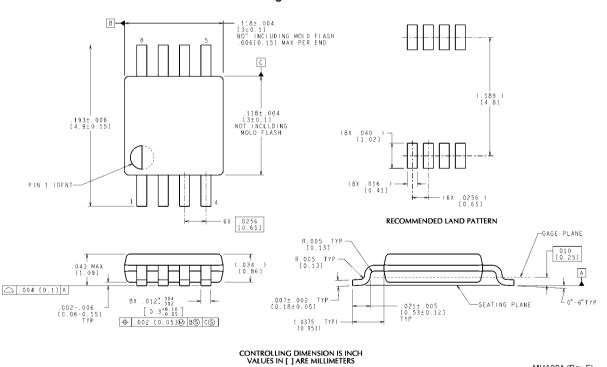
OTHER HIGH PERFORMANCE SOT-23 AMPLIERS

The LM7341 is a 4 MHz rail-to-rail input and output part that requires only 0.6 mA to operate, and can drive unlimited capacitive load. It has a voltage gain of 97 dB, a CMRR of 93 dB, and a PSRR of 104 dB.

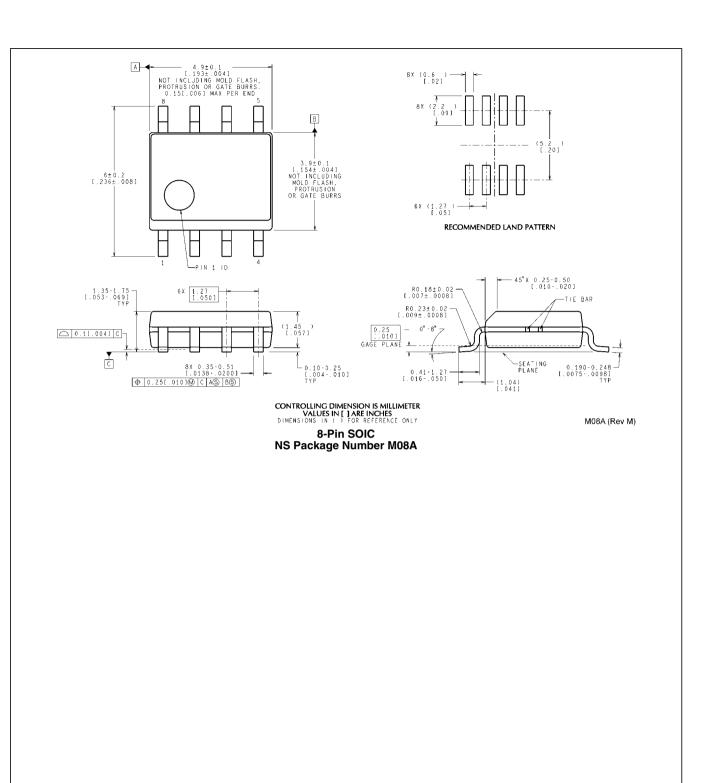
The LM6211 is a 20 MHz part with CMOS input, which runs on ±12 volt or 24 volt single supplies. It has rail-to-rail output and low noise.


The LM7121 has a gain bandwidth of 235 MHz.

Detailed information on these parts can be found at www.national.com.


MF05A (Rev D)

MUA08A (Rev F)


Physical Dimensions inches (millimeters) unless otherwise noted

5-Pin SOT-23 NS Package Number MF05A

8-Pin MSOP NS Package Number MUA08A

23

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Wireless Connectivity

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications dataconverter.ti.com Computers and Peripherals www.ti.com/computers **Data Converters DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt www.ti.com/space-avionics-defense power.ti.com Space, Avionics and Defense Microcontrollers Video and Imaging microcontroller.ti.com www.ti.com/video www.ti-rfid.com **OMAP Mobile Processors** www.ti.com/omap

TI E2E Community Home Page

www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

e2e.ti.com