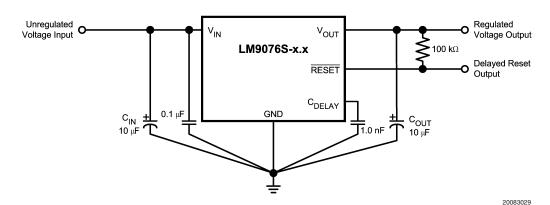
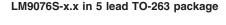


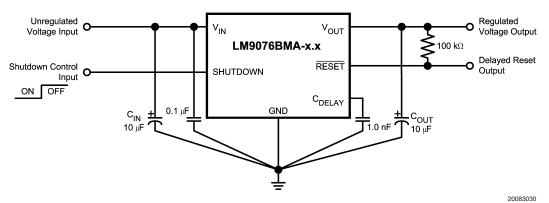
LM9076

150mA Ultra-Low Quiescent Current LDO Regulator with Delayed Reset Output

General Description

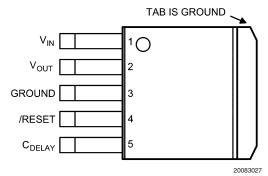

The LM9076 is a ±3%, 150 mA logic controlled voltage regulator. The regulator features an active low delayed reset output flag which can be used to reset a microprocessor system at turn-ON and in the event that the regulator output voltage falls below a minimum value. An external capacitor programs a delay time interval before the reset output pin can return high.

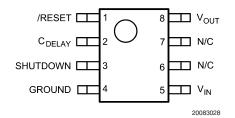

Designed for automotive and industrial applications, the LM9076 contains a variety of protection features such as thermal shutdown, input transient protection and a wide operating temperature range. The LM9076 uses an PNP pass transistor which allows low drop-out voltage operation.


Features

- Available with 5.0V or 3.3V output voltage
- Ultra Low Ground Pin Current, 25 μA typical for 100 μA load
- V_{OUT} initial accuracy of ±1.5%
- V_{OUT} accurate to ±3% over Load and Temperature Conditions
- Low Dropout Voltage, 200 mV typical with 150 mA load
- Low Off State Ground Pin current for LM9076BMA
- Delayed RESET output pin for low V_{OUT} detection
- +70V/-50V Voltage Transients
- Operational V_{IN} up to +40V

Typical Applications





LM9076BMA-x.x in 8 lead SO package

Connection Diagrams

Top View
Part Numbers LM9076S-3.3 and LM9076S-5.0
See NS TO-263 Package Number TS5

Top View
Part Number LM9076BMA-5.0
See NS SOIC Package Number M08A

Ordering Information

Output Voltage	Package Type	Order Number	Package Marking	Shipped As
3.3	TO-263-5	LM9076S-3.3	LM9076S-3.3	Rail of 45
3.3	TO-263-5	LM9076SX-3.3	LM9076S-3.3	Tape and Reel of 500
5.0	TO-263-5	LM9076S-5.0	LM9076S-5.0	Rail of 45
	TO-263-5	LM9076SX-5.0	LM9076S-5.0	Tape and Reel of 500
	SO-8	LM9076BMA-5.0	9076BMA5.0	Rail of 95
	SO-8	LM9076BMAX-5.0	9076BMA5.0	Tape and Reel of 2500

Absolute Maximum Ratings (Note 1) Operating Ratings (Note 1)

SHUTDOWN Pin -15V to +52V Thermal Resistance TS5B (Note 6)

Storage Temperature -65°C to +150°C Thermal Resistance M08A (Note 6)

Junction Temperature (T_J) +175C θ ja 156°C/W ESD, HBM, per AEC - Q100 - 002 +/-2 kV θ jc 59°C/W

ESD, MM, per AEC - Q100 - 003 +/-250V

Electrical Characteristics for LM9076–3.3

The following specifications apply for V_{IN} = 14V; I_{LOAD} = 10 mA; T_J = +25C; C_{OUT} = 10 μ F, 0.5Ω < ESR < 4.0 Ω ; unless otherwise specified. **Bold values indicate -40°C** \leq T_J \leq +125°C.(Notes 5, 4) Minimum and Maximum limits are guaranteed through test, design or statistical correlation.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
M9076-3.3 REGULATO	OR CHARACTERISTICS					
			3.251	3.30	3.349	V
		-20 °C \leq T _J \leq 85°C 1 mA \leq I _{LOAD} \leq 150 mA	3.234	3.30	3.366	V
	Output Voltage	$1 \text{mA} \le I_{\text{LOAD}} \le 150 \text{ mA}$	3.201	3.30	3.399	V
V_{OUT}		$V_{IN} = 60V$, $R_{LOAD} = 1 \text{ k}\Omega$, $t \le 40\text{ms}$	2.970	3.30	3.630	V
	Reverse Battery	$V_{IN} = -15V,$ $R_{LOAD} = 1 \text{ k}\Omega$	-300	0	_	mV
	Line Demidation	$9.0V \le V_{IN} \le 16V$, $I_{LOAD} = 10 \text{ mA}$	_	4	25	mV
ΔV_{OUT}	Line Regulation	$\begin{aligned} &16V \leq V_{IN} \leq 40V, \\ &I_{LOAD} = 10 \text{ mA} \end{aligned}$	-	17	35	mV
	Load Regulation	1 mA ≤ I _{LOAD} ≤ 150 mA	-	42	60	mV
	Dropout Voltage	I _{LOAD} = 10 mA	-	30	50	mV
V_{DO}		$I_{LOAD} = 50 \text{ mA}$	-	80	_	mV
		I _{LOAD} = 150 mA	_	150	250	mV
	Ground Pin Current	$9V \le V_{IN} \le 16V$, $I_{LOAD} = 100 \text{ uA}$	-	25	45	μA
		$9V \le V_{IN} \le 40V$, $I_{LOAD} = 10 \text{ mA}$	-	125	160	μA
I _{GND}		$9V \le V_{IN} \le 40V,$ $I_{LOAD} = 50 \text{ mA}$	-	0.6	_	mA
		$9V \le V_{IN} \le 16V$, $I_{LOAD} = 150 \text{ mA}$	-	3.6	4.5	mA
I _{sc}	V _{OUT} Short Circuit Current	$V_{IN} = 14V,$ $R_{LOAD} = 1\Omega$	200	400	750	mA
PSRR	Ripple Rejection	$V_{IN} = (14V_{DC}) + (1V_{RMS})$ @ 120Hz) $I_{LOAD} = 50 \text{ mA}$	50	60	-	dB
RESET PIN CHARACTE	RISTICS					1
V _{OR}	Minimum V _{IN} for valid RESET Status	(Note 3)	-	1.3	2.0	V
V_{THR}	V _{OUT} Threshold for RESET Low	(Note 3)	0.83	0.89	0.94	X V _{OUT} (Nom)

Electrical Characteristics for LM9076–3.3 (Continued) The following specifications apply for V_{IN} = 14V; I_{LOAD} = 10 mA; T_J = +25C; C_{OUT} = 10 μF, 0.5Ω < ESR < 4.0Ω ; unless otherwise specified. **Bold values indicate** -40°C ≤ T_J ≤ +125°C.(Notes 5, 4) Minimum and Maximum limits are guaranteed through test, design or statistical correlation.

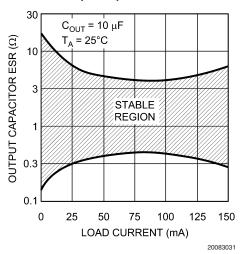
Symbol	Parameter	Conditions	Min	Тур	Max	Units		
RESET PIN CHARACTERISTICS								
V _{OH}	RESET pin high voltage	External pull-up resistor to $V_{OUT} = 100 \text{ k}\Omega$	V _{OUT} X 0.90	V _{OUT} X 0.99	V_{OUT}	V		
V _{OL}	RESET pin low voltage	$C_{DELAY} < 4.0V,$ $I_{SINK} = 250 \mu A$	_	0.2	0.3	V		
C _{DELAY} PIN CHARACTERISTICS								
I _{DELAY}	C _{DELAY} Charging Current	$V_{IN} = 14V,$ $V_{DELAY} = 0V$	-0.70	-0.42	-0.25	uA		
V _{OL}	C _{DELAY} pin low voltage	$V_{OUT} < 4.0V,$ $I_{SINK} = I_{DELAY}$	_	0.100	_	V		
t _{DELAY}	Reset Delay Time	V_{IN} = 14V, C_{DELAY} = 0.001 uF V_{OUT} rising from 0V, Δt from V_{OUT} > V_{OR} to RESET pin HIGH	4.7	7.8	13.2	ms		

Electrical Characteristics for LM9076-5.0

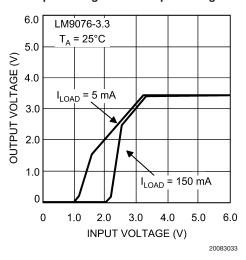
The following specifications apply for V_{IN} = 14V; $V_{SHUTDOWN}$ = Open; I_{LOAD} = 10 mA; T_{J} = +25°C; C_{OUT} = 10 μ F, 0.5 Ω < ESR < 4.0 Ω ; unless otherwise specified. **Bold Values indicate** -40°C $\leq T_{J} \leq$ 125°C. (Note 4), (Note 5) Minimum and Maximum limits are guaranteed through test, design, or statistical correlation.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
LM9076-5.0 REGULATOR C				-71		
			4.925	5.00	5.075	V
		$-20^{\circ}\text{C} \le \text{T}_{\text{J}} \le 85^{\circ}\text{C}$	4.900	5.00	5.100	V
	Output Voltage	$1 \text{ mA} \le I_{LOAD} \le 150 \text{ mA}$ $1 \text{ mA} \le I_{LOAD} \le 150 \text{ mA}$	4.850	5.00	5.150	V
V_{OUT}		$V_{IN} = 60V$, $R_{LOAD} = 1 \text{ k}\Omega$, $t \le 40 \text{ms}$	4.500	5.00	5.500	V
	Output Voltage Off LM9076 BMA only	$V_{SHUTDOWN} \ge 2V$, $R_{LOAD} = 1 \text{ k}\Omega$	_	0	250	mV
	Reverse Battery	$V_{IN} = -15V,$ $R_{LOAD} = 1 \text{ k}\Omega$	-300	0	_	mV
	Line Regulation	$9.0V \le V_{IN} \le 16V$, $I_{LOAD} = 10 \text{ mA}$	-	4	25	mV
ΔV_{OUT}	Line Regulation	$16V \le V_{IN} \le 40V,$ $I_{LOAD} = 10 \text{ mA}$	_	17	35	mV
	Load Regulation	$1 \text{ mA} \le I_{LOAD} \le 150 \text{ mA}$	-	42	60	mV
		I _{LOAD} = 10 mA	-	30	50	mV
V_{DO}	Dropout Voltage	I _{LOAD} = 50 mA	-	80	-	mV
		I _{LOAD} = 150 mA	-	150	250	mV
	Ground Pin Current	$9V \le V_{IN} \le 16V$, $I_{LOAD} = 100 \text{ uA}$	_	25	45	μА
		$9V \le V_{IN} \le 40V$, $I_{LOAD} = 10 \text{ mA}$	-	125	160	μА
I _{GND}		$9V \le V_{IN} \le 40V$, $I_{LOAD} = 50 \text{ mA}$	-	0.6	-	mA
		$9V \le V_{IN} \le 16V,$ $I_{LOAD} = 150 \text{ mA}$	-	3.6	4.5	mA
	Ground Pin Current in Shutdown Mode	$9V \le V_{IN} \le 40V$, $V_{SHUTDOWN} = 2V$	-	15	25	μА
I _{sc}	V _{OUT} Short Circuit	V _{IN} = 14V,	200	400	750	mA
PSRR	Current Ripple Rejection	$R_{LOAD} = 1\Omega$ $V_{IN} = (14V_{DC}) + (1V_{RMS})$ @ 120Hz)	50	60	_	dB
RESET PIN CHARACTERIST	TICE	I _{LOAD} = 50 mA				
V _{OR}	Minimum V _{IN} for valid RESET Status	(Note 3)	-	1.3	2.0	V
V_{THR}	V _{OUT} Threshold for RESET Low	(Note 3)	0.83	0.89	0.94	X V _{OUT} (Nom)
V _{OH}	RESET pin high voltage	External pull-up resistor to $V_{OUT} = 100 \text{ k}\Omega$	V _{OUT} X 0.90	V _{OUT} X 0.99	V _{OUT}	V
V_{OL}	RESET pin low voltage	C _{DELAY} < 4.0V, I _{SINK} = 250 μA	_	0.2	0.3	V
C _{DELAY} PIN CHARACTERIST	TICS					
I _{DELAY}	C _{DELAY} Charging Current	$V_{IN} = 14V,$ $V_{DELAY} = 0V$	-0.70	-0.42	-0.25	uA
V_{OL}	C _{DELAY} pin low voltage	$V_{OUT} < 4.0V,$ $I_{SINK} = I_{DELAY}$	_	0.100	-	V

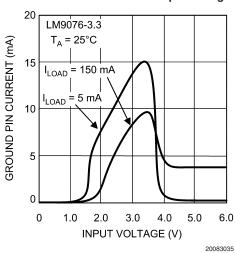
Electrical Characteristics for LM9076-5.0 (Continued)

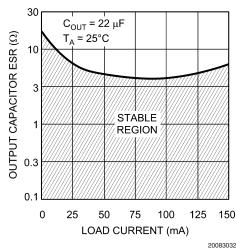

The following specifications apply for V_{IN} = 14V; $V_{SHUTDOWN}$ = Open; I_{LOAD} = 10 mA; T_{J} = +25°C; C_{OUT} = 10 μ F, 0.5 Ω < ESR < 4.0 Ω ; unless otherwise specified. **Bold Values indicate** -40°C $\leq T_{J} \leq$ 125°C. (Note 4), (Note 5) Minimum and Maximum limits are guaranteed through test, design, or statistical correlation.

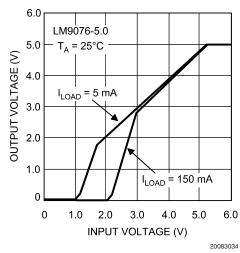
Symbol	Parameter	Conditions	Min	Тур	Max	Units		
C _{DELAY} PIN CHARACTERISTICS								
t _{DELAY}	Reset Delay Time	V_{IN} = 14V, C_{DELAY} = 0.001 uF V_{OUT} rising from 0V, Δt	7.1	11.9	20.0	ms		
		$\frac{\text{from V}_{\text{OUT}} > \text{V}_{\text{OR}} \text{ to}}{\text{RESET pin HIGH}}$						
SHUTDOWN CONTROL LOGIC — LM9076BMA-5.0 Only								
$V_{IL(SD)}$	SHUTDOWN Pin Low Threshold Voltage	V _{SHUTDOWN} pin falling from 5.0V until V _{OUT} >4.5V (V _{OUT} = On)	1	1.5	-	V		
$V_{IH(SD)}$	SHUTDOWN Pin High Threshold Voltage	$V_{\rm SHUTDOWN}$ pin rising from 0V until $V_{\rm OUT}$ < 0.5V ($V_{\rm OUT}$ = Off)	_	1.5	2	V		
	SHUTDOWN Pin High Bias Current	V _{SHUTDOWN} = 40V	_	35	-	μA		
I _{IH(SD)}		V _{SHUTDOWN} = 5V	-	15	35	μΑ		
		V _{SHUTDOWN} = 2V	_	6	10	μA		
I _{IL(SD)}	SHUTDOWN Pin Low Bias Current	V _{SHUTDOWN} = 0V	_	0	_	μА		

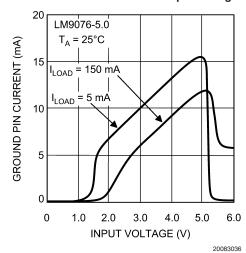

- Note 1: Absolute Maximum Ratings indicate the limits beyond which the device may cease to function, and/or damage to the device may occur.
- Note 2: Operating Ratings indicate conditions for which the device is intended to be functional, but does not guarantee specific performance limits. For guaranteed specifications and conditions refer to the Electrical Characteristics
- Note 3: Not Production tested, Guaranteed by Design. Minimum, Typical, and/or Maximum values are provided for informational purposes only.
- Note 4: Pulse testing used maintain constant junction temperature (T_J).
- Note 5: The regulated output voltage specification is not guaranteed for the entire range of V_{IN} and output loads. Device operational range is limited by the maximum junction temperature (T $_{J}$). The junction temperature is influenced by the ambient temperature (T $_{A}$), package selection, input voltage (V_{IN}), and the output load current. When operating with maximum load currents the input voltage and/or ambient temperature will be limited. When operating with maximum input voltage the load current and/or the ambient temperature will be limited.
- Note 6: Worst case (FREE AIR) per EIA/JESD51-3.

Typical Performance Characteristics

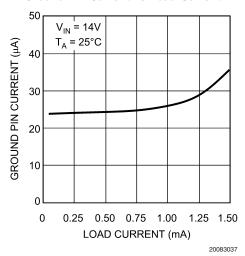

Output Capacitor ESR


Output Voltage vs Low Input Voltage

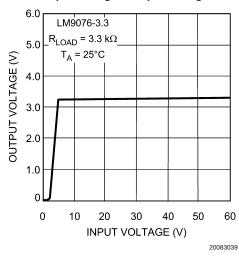

Ground Pin Current vs Low Input Voltage


Output Capacitor ESR

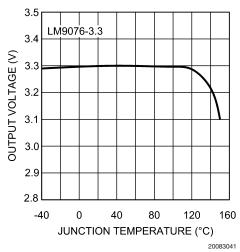
Output Voltage vs Low Input Voltage

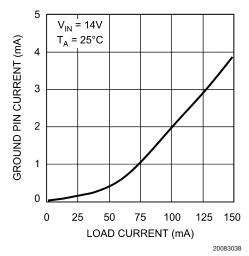


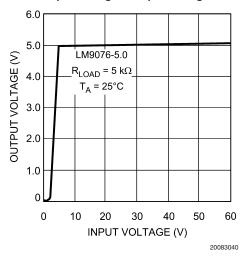
Ground Pin Current vs Low Input Voltage

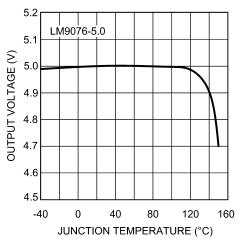


Typical Performance Characteristics (Continued)

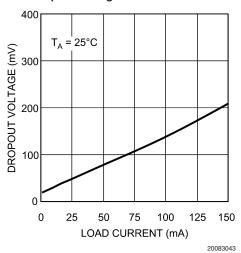

Ground Pin Current vs Load Current

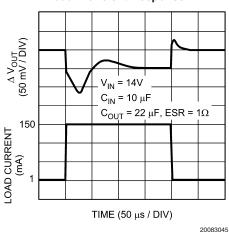

Output Voltage vs Input Voltage


Output Voltage vs Junction Temperature

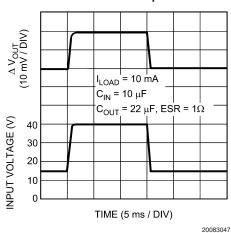

Ground Pin Current vs Load Current

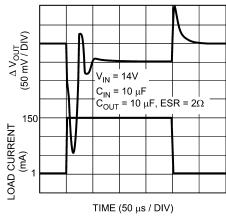
Output Voltage vs Input Voltage


Output Voltage vs Junction Temperature

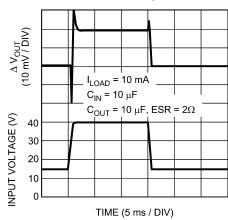

20083042

Typical Performance Characteristics (Continued)

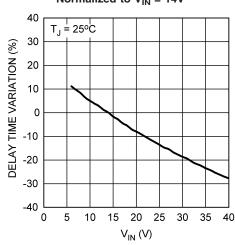

Dropout Voltage vs Load Current


Load Transient Response

Line Transient Response

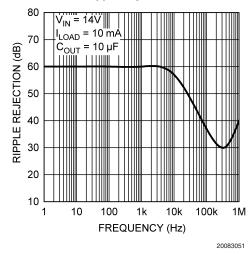


Load Transient Response


20083044

Line Transient Response

20083046


Delayed Reset Time vs Vin Normalized to $V_{IN} = 14V$

20083050

Typical Performance Characteristics (Continued)

Ripple Rejection

Application Information

REGULATOR BASICS

The LM9076 regulator is suitable for Automotive and Industrial applications where continuous connection to a battery supply is required (refer to the Typical Application circuit).

The pass element of the regulator is a PNP device which requires an output bypass capacitor for stability. The minimum bypass capacitance for the output is 10 μ F (refer to ESR limitations). A 22 μ F, or larger, output bypass capacitor is recommended for typical applications

INPUT CAPACITOR

The LM9076 requires a low source impedance to maintain regulator stability because critical portions of the internal bias circuitry are connected to directly to $V_{\rm IN}.$ In general, a 10 μF electrolytic capacitor, located within two inches of the LM9076, is adequate for a majority of applications. Additionally, and at a minimum, a 0.1 μF ceramic capacitor should be located between the LM9076 $V_{\rm IN}$ and Ground pin, and as close as is physically possible to the LM9076 itself .

OUTPUT CAPACITOR

An output bypass capacitor is required for stability. This capacitance must be placed between the LM9076 $V_{\rm OUT}$ pin and Ground pin, as close as is physically possible, using traces that are not part of the load current path.

The output capacitor must meet the requirements for minimum capacitance and also maintain the appropriate ESR value across the entire operating ambient temperature range. There is no limit to the maximum output capacitance as long as ESR is maintained.

The minimum bypass capacitance for the output is 10 μ F (refer to ESR limitations). A 22 μ F, or larger, output bypass capacitor is recommended for typical applications.

Solid tantalums capacitors are recommended as they generally maintain capacitance and ESR ratings over a wide temperature range. Ceramic capacitor types XR7 and XR5 may be used if a series resistor is added to simulate the minimum ESR requirement. See *Figure 1*.

Aluminum electrolytic capacitors are not recommended as they are subject to wide changes in capacitance and ESR across temperature.

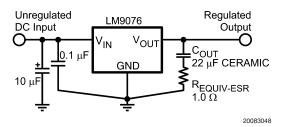


FIGURE 1. Using Low ESR Capacitors

DELAY CAPACITOR

The capacitor on the Delay pin must be a low leakage type since the charge current is minimal (420 nA typical) and the pin must fully charge to V_{OUT} . Ceramic, Mylar, and polystyrene capacitor types are generally recommended, although changes in capacitance values across temperature changes will have some effect on the delay timing.

Any leakage of the $I_{\rm DELAY}$ current, be it through the delay capacitor or any other path, will extend the delay time, possibly to the point that the Reset pin output does not go high.

SHUTDOWN PIN - LM9076BMA ONLY

The basic On/Off control of the regulator is accomplished with the SHUTDOWN pin. By pulling the SHUTDOWN pin high the regulator output is switched Off. When the regulator is switched Off the load on the battery will be primarily due to the SHUTDOWN pin current.

When the SHUTDOWN pin is low, or left open, the regulator is switched On. When an unregulated supply, such as V BATTERY , is used to pull the SHUTDOWN pin high a series resistor in the range of $10K\Omega$ to $50K\Omega$ is recommended to provide reverse voltage transient protection of the SHUTDOWN pin. Adding a small capacitor (0.001uF typical) from the SHUTDOWN pin to Ground will add noise immunity to prevent accidental turn on due to noise on the supply line.

RESET FLAG

The $\overline{\text{RESET}}$ pin is an open collector output which requires an external pull-up resistor to develop the reset signal. The external pull-up resistor should be in the range of 10 k Ω to 200 k Ω .

At V $_{\rm IN}$ values of less than typically 2V the $\overline{\rm RESET}$ pin voltage will be high. For V $_{\rm IN}$ values between typically 2V and approximately V $_{\rm OUT}$ + V $_{\rm BE}$ the $\overline{\rm RESET}$ pin voltage will be low. For V $_{\rm IN}$ values greater than approximately V $_{\rm OUT}$ + V $_{\rm BE}$ the $\overline{\rm RESET}$ pin voltage will be dependent on the status of the V $_{\rm OUT}$ pin voltage and the Delayed Reset circuitry. The value of V $_{\rm BE}$ is typically 600 mV at 25°C and will decrease approximately 2 mV for every 1°C increase in the junction temperature. During normal operation the $\overline{\rm RESET}$ pin voltage will be high .

Any load condition that causes the V_{OUT} pin voltage to drop below typically 89% of normal will activate the Delayed Reset circuit and the $\overline{\text{RESET}}$ pin will go low for the duration of the delay time.

Any line condition that causes V_{IN} pin voltage to drop below typically V_{OUT} + V_{BE} will cause the \overline{RESET} pin to go low without activating the Delayed Reset circuitry.

Excessive thermal dissipation will raise the junction temperature and could activate the Thermal Shutdown circuitry which, in turn, will cause the RESET pin to go low.

For the LM9076BMA devices, pulling the SHUTDOWN pin high will turn off the output which, in turn, will cause the $\overline{\text{RESET}}$ pin to go low once the V_{OUT} voltage has decayed to a value that is less than typically 89% of normal. See *Figure 2*.

RESET DELAY TIME

When the regulator output is switched On, or after recovery from brief V_{OUT} fault condition, the $\overline{\text{RESET}}$ flag can be can be programmed to remain low for an additional delay time. This will give time for any system reference voltages, clock signals, etc., to stabilize before the micro-controller resumes normal operation.

This delay time is controlled by the capacitor value on the C_{DELAY} pin. During normal operation the C_{DELAY} capacitor is charged to near V_{OUT} . When a V_{OUT} fault causes the $\overline{\mathsf{RESET}}$ pin to go low, the C_{DELAY} capacitor is quickly discharged to ground. When the V_{OUT} fault is removed, and

Application Information (Continued)

 V_{OUT} returns to the normal operating value, the C_{DELAY} capacitor begins charging at a typical constant 0.420 uA rate. When the voltage on the C_{DELAY} capacitor reaches the same potential as the V_{OUT} pin the \overline{RESET} pin will be allowed to return high.

The typical RESET delay time can be calculated with the following formula:

$$t_{DELAY} = V_{OUT} X (C_{DELAY} / I_{DELAY})$$

For the LM9076–3.3 with a $C_{\rm DELAY}$ value of 0.001 uF and a $I_{\rm DELAY}$ value of 0.420 uA the typical $\overline{\rm RESET}$ delay time is:

$$t_{DELAY} = 3.3 V x (0.001 uF / 0.420 uA) = 7.8 ms$$

For the LM9076-5.0 with a $C_{\rm DELAY}$ value of 0.001 uF and a $I_{\rm DELAY}$ value of 0.420 uA the typical $\overline{\rm RESET}$ delay time is:

$$t_{DELAY} = 5.0V X (0.001uF / 0.420uA) = 11.9 ms$$

THERMAL PROTECTION

Device operational range is limited by the maximum junction temperature (T_J) . The junction temperature is influenced by the ambient temperature (T_A) , package selection, input volt-

age $(V_{\rm IN})$, and the output load current. When operating with maximum load currents the input voltage and/or ambient temperature will be limited. When operating with maximum input voltage the load current and/or the ambient temperature will be limited.

Even though the LM9076 is equipped with circuitry to protect itself from excessive thermal dissipation, it is not recommended that the LM9076 be operated at, or near, the maximum recommended die junction temperature (T_J) as this may impair long term device reliability.

The thermal protection circuity monitors the temperature at the die level. When the die temperature exceeds typically 160°C the voltage regulator output will be switched off.

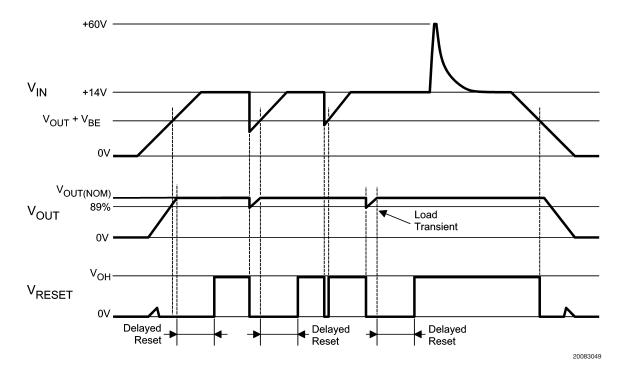
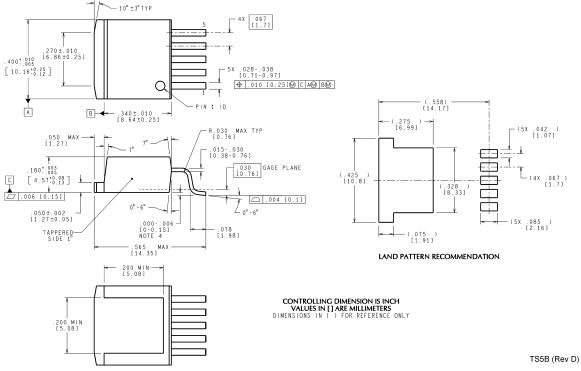
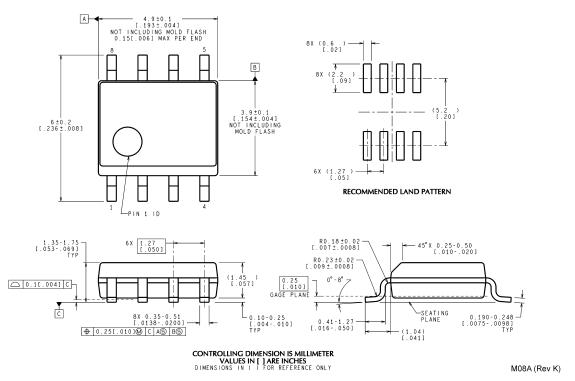




FIGURE 2. Typical Reset Pin Operational Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

5-Lead TO-263 NS Package Number TS5B

8-Lead (0.150" Wide) Molded SO Package NS Package Number M08A

Notes

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

For the most current product information visit us at www.national.com.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.

Leadfree products are RoHS compliant.

National Semiconductor Americas Customer Support Center

Email: new.feedback@nsc.com Tel: 1-800-272-9959

www.national.com

National Semiconductor
Europe Customer Support Center
Fax: +49 (0) 180-530 85 86
Email: europe.support@nsc.com

Email: europe.support@nsc.com
Deutsch Tel: +49 (0) 69 9508 6208
English Tel: +44 (0) 870 24 0 2171
Français Tel: +33 (0) 1 41 91 8790

National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560