

LMC6492 Dual/LMC6494 Quad CMOS Rail-to-Rail Input and Output Operational Amplifier

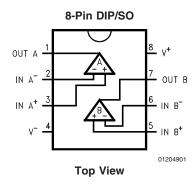
General Description

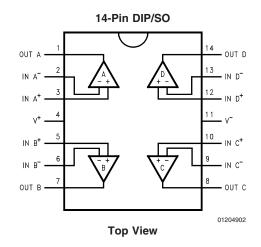
The LMC6492/LMC6494 amplifiers were specifically developed for single supply applications that operate from -40° C to $+125^{\circ}$ C. This feature is well-suited for automotive systems because of the wide temperature range. A unique design topology enables the LMC6492/LMC6494 common-mode voltage range to accommodate input signals beyond the rails. This eliminates non-linear output errors due to input signals exceeding a traditionally limited common-mode voltage range. The LMC6492/LMC6494 signal range has a high CMRR of 82 dB for excellent accuracy in non-inverting circuit configurations.

The LMC6492/LMC6494 rail-to-rail input is complemented by rail-to-rail output swing. This assures maximum dynamic signal range which is particularly important in 5V systems.

Ultra-low input current of 150 fA and 120 dB open loop gain provide high accuracy and direct interfacing with high impedance sources.

Features


(Typical unless otherwise noted)


- Rail-to-Rail input common-mode voltage range, guaranteed over temperature
- \blacksquare Rail-to-Rail output swing within 20 mV of supply rail, 100 k Ω load
- Operates from 5V to 15V supply
- Excellent CMRR and PSRR 82 dB
- Ultra low input current 150 fA
- High voltage gain ($R_L = 100 \text{ k}\Omega$) 120 dB
- Low supply current (@ V_S = 5V) 500 µA/Amplifier
- Low offset voltage drift 1.0 µV/°C

Applications

- Automotive transducer amplifier
- Pressure sensor
- Oxygen sensor
- Temperature sensor
- Speed sensor

Connection Diagrams

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

ESD Tolerance (Note 2) 2000V Differential Input Voltage ±Supply Voltage Voltage at Input/Output Pin $(V^{+}) + 0.3V, (V^{-}) - 0.3V$ Supply Voltage (V⁺ – V⁻) Current at Input Pin ±5 mA Current at Output Pin (Note 3) ±30 mA Current at Power Supply Pin 40 mA Lead Temp. (Soldering, 10 sec.) 260°C Storage Temperature Range -65°C to +150°C Junction Temperature (Note 4)

150°C

Operating Conditions (Note 1)

Supply Voltage $2.5V \le V^+ \le 15.5V$

Junction Temperature Range

LMC6492AE, LMC6492BE $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le +125^{\circ}\text{C}$ LMC6494AE, LMC6494BE $-40^{\circ}\text{C} \le \text{T}_{\text{J}} \le +125^{\circ}\text{C}$

Thermal Resistance (θ_{JA})

N Package, 8-Pin Molded DIP 108°C/W
M Package, 8-Pin Surface Mount 171°C/W
N Package, 14-Pin Molded DIP 78°C/W
M Package, 14-Pin Surface Mount 118°C/W

DC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1$ M Ω . **Boldface** limits apply at the temperature extremes

Symbol	Parameter	Conditions	Тур	LMC6492AE LMC6494AE	LMC6492BE LMC6494BE	Units
			(Note 5)	Limit	Limit	
				(Note 6)	(Note 6)	
V _{os}	Input Offset Voltage		0.11	3.0	6.0	mV
				3.8	6.8	max
TCVos	Input Offset Voltage		1.0			μV/°C
	Average Drift					
I _B	Input Bias Current	(Note 11)	0.15	200	200	pA max
I _{os}	Input Offset Current	(Note 11)	0.075	100	100	pA max
R _{IN}	Input Resistance		>10			Tera Ω
C _{IN}	Common-Mode		3			pF
	Input Capacitance					
CMRR	Common-Mode	0V ≤ V _{CM} ≤ 15V	82	65	63	dB
	Rejection Ratio	V ⁺ = 15V		60	58	min
		$0V \le V_{CM} \le 5V$	82	65	63	
				60	58	
+PSRR	Positive Power Supply	$5V \le V^+ \le 15V$,	82	65	63	dB
	Rejection Ratio	$V_{O} = 2.5V$		60	58	min
-PSRR	Negative Power Supply	$0V \le V^- \le -10V$,	82	65	63	dB
	Rejection Ratio	V _O = 2.5V		60	58	min
V _{CM}	Input Common-Mode	V ⁺ = 5V and 15V	V ⁻ -0.3	-0.25	-0.25	V
	Voltage Range	For CMRR ≥ 50 dB		0	0	max
			V ⁺ + 0.3	V ⁺ + 0.25	V ⁺ + 0.25	V
				V+	V+	min
A _V	Large Signal Voltage Gain	$R_L = 2 \text{ k}\Omega$: Sourcing	300			V/mV
		(Note 7) Sinking	40			min

DC Electrical Characteristics (Continued) Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1$ M Ω . Boldface limits apply at the temperature extremes

				LMC6492AE	LMC6492BE	
Symbol	Parameter	Conditions	Тур	LMC6494AE	LMC6494BE	Units
			(Note 5)	Limit	Limit	
				(Note 6)	(Note 6)	
Vo	Output Swing	V ⁺ = 5V	4.9	4.8	4.8	V
		$R_L = 2 k\Omega \text{ to } V^+/2$		4.7	4.7	min
			0.1	0.18	0.18	V
				0.24	0.24	max
		V ⁺ = 5V	4.7	4.5	4.5	V
		$R_L = 600\Omega \text{ to } V^+/2$		4.24	4.24	min
			0.3	0.5	0.5	V
				0.65	0.65	max
		V ⁺ = 15V	14.7	14.4	14.4	V
		$R_L = 2 k\Omega \text{ to } V^+/2$		14.0	14.0	min
			0.16	0.35	0.35	V
				0.5	0.5	max
		V ⁺ = 15V	14.1	13.4	13.4	V
		$R_L = 600\Omega \text{ to } V^+/2$		13.0	13.0	min
			0.5	1.0	1.0	V
				1.5	1.5	max
I_{SC}	Output Short Circuit Current	Sourcing, V _O = 0V	25	16	16	
				10	10	
	V ⁺ = 5V	Sinking, V _O = 5V	22	11	11	
				8	8	mA
I _{SC}	Output Short Circuit Current	Sourcing, V _O = 0V	30	28	28	min
				20	20	
	V ⁺ = 15V	Sinking, $V_O = 5V$	30	30	30	
		(Note 8)		22	22	
Is	Supply Current	LMC6492	1.0	1.75	1.75	mA
		$V^+ = +5V, V_O = V^+/2$		2.1	2.1	max
		LMC6492	1.3	1.95	1.95	mA
		$V^+ = +15V, V_O = V^+/2$		2.3	2.3	max
		LMC6494	2.0	3.5	3.5	mA
		$V^+ = +5V, V_O = V^+/2$		4.2	4.2	max
		LMC6494	2.6	3.9	3.9	mA
		$V^+ = +15V, V_O = V^+/2$		4.6	4.6	max

AC Electrical Characteristics

Unless otherwise specified, all limits guaranteed for $T_J = 25^{\circ}C$, $V^+ = 5V$, $V^- = 0V$, $V_{CM} = V_O = V^+/2$ and $R_L > 1$ M Ω . **Boldface** limits apply at the temperature extremes

				LMC6492AE	LMC6492BE	
Symbol	Parameter	Conditions	Тур	LMC6494AE	LMC6494BE	Units
			(Note 5)	Limit	Limit	
				(Note 6)	(Note 6)	
SR	Slew Rate	(Note 9)	1.3	0.7	0.7	Vµs min
				0.5	0.5	
GBW	Gain-Bandwidth Product	V ⁺ = 15V	1.5			MHz
φ _m	Phase Margin		50			Deg
G _m	Gain Margin		15			dB
	Amp-to-Amp Isolation	(Note 10)	150			dB
e _n	Input-Referred	F = 1 kHz	37			nV
	Voltage Noise	V _{CM} = 1V				nV √HZ
i _n	Input-Referred	F = 1 kHz	0.06			pΑ
	Current Noise					$\frac{pA}{\sqrt{HZ}}$
T.H.D.	Total Harmonic Distortion	$F = 1 \text{ kHz}, A_V = -2$	0.01			
		$R_L = 10 \text{ k}\Omega, V_O = -4.1 V_{PP}$				
		$F = 10 \text{ kHz}, A_V = -2$				%
		$R_L = 10 \text{ k}\Omega, V_O = 8.5 V_{PP}$	0.01			
		V ⁺ = 10V				

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human body model, 1.5 k Ω in series with 100 pF.

Note 3: Applies to both single-supply and split-supply operation. Continuous short operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature at 150°C. Output currents in excess of ±30 mA over long term may adversely affect reliability.

Note 4: The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} - T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

Note 5: Typical Values represent the most likely parametric norm.

Note 6: All limits are guaranteed by testing or statistical analysis.

Note 7: $V^+ = 15V$, $V_{CM} = 7.5V$ and R_L connected to 7.5V. For Sourcing tests, 7.5V $\leq V_O \leq 11.5V$. For Sinking tests, 3.5V $\leq V_O \leq 7.5V$.

Note 8: Do not short circuit output to V⁺, when V⁺ is greater than 13V or reliability will be adversely affected.

Note 9: V⁺ = 15V. Connected as voltage follower with 10V step input. Number specified is the slower of the positive and negative slew rates.

Note 10: Input referred, V⁺ = 15V and R_L = 100 k Ω connected to 7.5V. Each amp excited in turn with 1 kHz to produce V_O = 12 V_{PP}.

Note 11: Guaranteed limits are dictated by tester limits and not device performance. Actual performance is reflected in the typical value.

Application Circuits (Continued)

STRAIN VREF. GAUGE R1 R2 R3 R4 SV LMC6492 Vo

Pressure Sensor

 $R_f = Rx$ $R_f >> R1$, R2, R3, and R4

$$V_{O} = \left(\frac{R2}{R1 + R2} - \frac{R3}{R4 + R3}\right) \frac{R_{f}(R3 + R4)}{R3 R4} V_{RE}$$

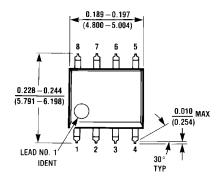
In a manifold absolute pressure sensor application, a strain gauge is mounted on the intake manifold in the engine unit. Manifold pressure causes the sensing resistors, R1, R2, R3 and R4 to change. The resistors change in a way such that R2 and R4 increase by the same amount R1 and R3 decrease. This causes a differential voltage between the input of the amplifier. The gain of the amplifier is adjusted by $R_{\rm f}$.

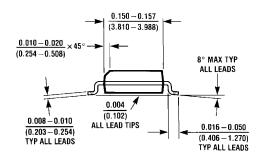
Spice Macromodel

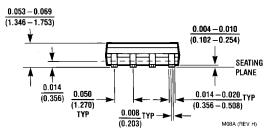
A spice macromodel is available for the LMC6492/4. This model includes accurate simulation of:

- Input common-model voltage range
- Frequency and transient response
- · GBW dependence on loading conditions
- · Quiescent and dynamic supply current
- · Output swing dependence on loading conditions

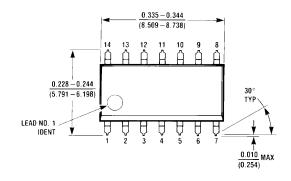
and many other characteristics as listed on the macromodel disk.

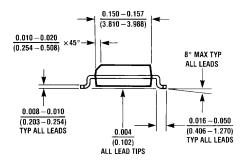

Contact your local National Semiconductor sales office to obtain an operational amplifier spice model library disk.

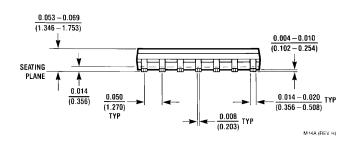

Ordering Information


Dookogo	Temperature Range	Transport	NSC	
Package	Extended -40°C to +125°C	Media	Drawing	
8-Pin Small Outline	LMC6492AEM	Rails	M08A	
	LMC6492BEM			
	LMC6492AEMX	Tape and Reel		
	LMC6492BEMX			
8-Pin Molded DIP	LMC6492AEN	Rails	N08A	
	LMC6492BEN			
14-Pin Small Outline	LMC6494AEM	Rails	M14A	
	LMC6494BEM			
	LMC6494AEMX	Tape and Reel		
	LMC6494BEMX			
14-Pin Molded DIP	LMC6494AEN	Rails	N14A	
	LMC6494BEN			

01204924


Physical Dimensions inches (millimeters) unless otherwise noted





8-Pin Small Outline Package
Order Number LMC6492AEM or LMC6492BEM
NS Package Number M08A

14-Pin Small Outline Package Order Number LMC6494AEM or LMC6494BEM NS Package Number M14A