LMS202

LMS202 5V Single Supply TIA/EIA-232 Dual Transceivers

Literature Number: SNLS166D

LMS202

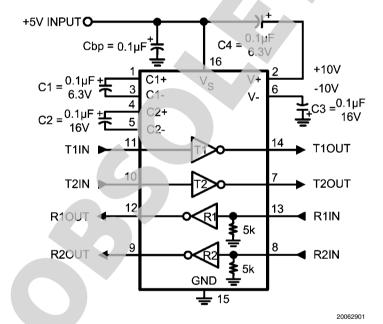
OBSOLETE July 12, 2010

5V Single Supply TIA/EIA-232 Dual Transceivers

General Description

The LMS202 features two transmitters and two receivers for RS-232 communication. It has a DC-to-DC converter that permits the device to operate with only a single +5V power supply. The on-chip DC-to-DC converter which utilizes four external 0.1µF capacitors to generate dual internal power supplies for RS-232 compatible output levels.

The device meet EIA/TIA-232E and CCITT V.28 specifications up to 230kbits/sec. The LMS202 is available in a 16 pin narrow and Wide SOIC package.


Features

- Single +5V power supply
- 230 kbps data rate
- On-board DC-to-DC converter
- 0.1µF charge pump capacitors
- Drop-in replacement to Maxim's MAX202

Applications

- POS equipment (Bar code reader)
- Hand-held equipment
- General purpose RS-232 communication

Connection Diagram and Typical Circuit

Pin Descriptions

Pin Number	Pin Name	Pin Function		
1, 3	C1+, C1-	External capacitor connection pins. Recommended external capacitor C1 = 0.1µF (6.3V)		
2	V+	Positive supply for TIA/EIA-232E drivers. Recommended external capacitor C4 = 0.1µF (6.3V)		
4, 5	C2+, C2-	External capacitor connection pins. Recommended external capacitor C2 = 0.1µF (16V)		
6	V-	Negative supply for TIA/EIA-232E drivers. Recommended external capacitor C3 = 0.1µF (16V)		
7, 14	T1out, T2out	Transmitter output pins conform to TIA/EIA-232E levels. The typical transmitter output swing is $\pm 8V$		
		when loaded $3k\Omega$ load to ground. The open-circuit output voltage swings from (V+ $-$ 0.6V) to V-		
8,13	R1in, R2in	Receiver inputs accept TIA/EIA-232		
9, 12	R1out and R2out	Receiver output pins are TTL/CMOS compatible		
10, 11 Tin1, Tin2 Transmitter input pins are TTL/CMOS compatible. In		Transmitter input pins are TTL/CMOS compatible. Inputs of transmitter do not have pull-up		
		resistors. Connect all unused transmitter inputs to ground		
15	GND	Ground pin		
16	V _S	Power supply pin for the device, +5V (±10%)		

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing	
	LMS202CM	1110000011	48 Units/Rail		
40 Dia 0010	LMS202CMX	LMS202CM	2.5k Units Tape and Reel		
16-Pin SOIC	LMS202IM	LMS202IM	48 Units/Rail	M16A	
	LMS202IMX	LIVISZUZIIVI	2,5k Units Tape and Reel	1	
	LMS202CMW	LMS202CMW	45 Units/Rail	M16B	
16-Pin Wide SOIC	LMS202CMWX	LIVISZUZGIVIVV	1.0k Units Tape and Reel		
10-Fill Wide SOIC	LMS202IMW	LMS202IMW	45 Units/Rail	MITOB	
	LMS202IMWX	LIVISZUZIIVIVV	1.0k Units Tape and Reel		

www.national.com

-65°C to +150°C

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

 $V_{\rm S}$ -0.3V to 6V V+ $(V_S - 0.3V)$ to + 14V +0.3V to -14V V-Driver Input Voltage, T_{IN} -0.3V to (V + +0.3V)Receiver Input Voltage, RIN ± 30V Driver Output Voltage T_O (V - -0.3V to (V + + 0.3V)Receiver Output Voltage Ro -0.3 to $(V_S + 0.3)$ Short Circuit Duration, To Continuous **ESD** Rating 2kV Human Body Model (Note 2)

Soldering Information
Infrared or Convection 235°C (20sec.)
Junction Temperature 150°C

Operating Ratings

Storage Temperature Range

Supply Voltage $V_{\rm S}$ 4.5V to 5.5V Ambient Temperature Range, $T_{\rm A}$ Commercial (C) 0°C to +70°C Industrial (I) -40°C to +85°C Package Thermal Resistance (*Note*

SO 71°C/W WSO 55°C/W

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified

200V

 $C1 = C2 = C3 = C4 = Cbp = 0.1 \mu F$

Machine Model (Note 6)

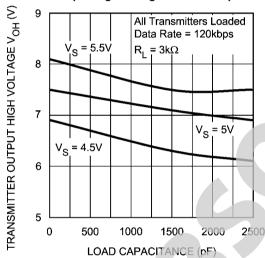
Symbol	Parameter	Conditions	Min (Note 5)	Тур	Max (Note 5)	Units
DC Charac	teristics		1	Į		
I _s	Supply Current	No Load, T _A = 25°C		1	7	mA
Logic			•	•		
I _{INPUT}	Input Leakage Current	$T_{IN} = 0V \text{ to } V_{S}$			±10	μA
V_{THL}	Input Logic Theshold Low	T _{IN}			0.8	V
V _{THH}	Input Logic Theshold High	T _{IN}	2.0			V
V _{OL}	TTL/CMOS Output Voltage Low	R_{OUT} , $I_{OUT} = 3.2mA$			0.4	V
V _{OH}	TTL/CMOS Output Voltage High	R_{OUT} , $I_{OUT} = -1.0$ mA	3.5	V _S -0.1		V
RS-232 Re	ceiver Inputs			l .		
V _{RI}	Receiver Input Voltage Range		-30		+30	V
V_{RTHL}	Receiver Input Theshold Low	$V_{\rm S} = 5 \text{V}, T_{\rm A} = 25 ^{\circ}\text{C}$	0.8	1.4		V
V _{RTHH}	Receiver Input Theshold High	$V_S = 5V, T_A = 25^{\circ}C$		2	2.4	V
V _{HYST}	Receiver Input Hysteresis	V _S = 5V	0.2	0.6	1.0	V
R _I	Receiver Input Resistance	$V_{S} = 5V, T_{A} = 25^{\circ}C$	3	5	7	kΩ
RS-232 Tra	nsmitter Outputs	7	•	•		
V _O	Transmitter Output Voltage Swing	All transmitters loaded with $3k\Omega$ to GND	±5	±8		V
R _o	Output Resistance	$V_S = V + = V - = 0V$,	300			Ω
		$V_O = \pm 2V$				
I _{os}	Output Short Circuit Current			±11	±60	mA
Timing Cha	aracteristics				'	
DR	Maximum Data Rate	C _L = 50pF to 1000pF,	230			kbps
		$R_L = 3k\Omega$ to $7k\Omega$				
T _{RPLH} T _{RPHL}	Receiver Propagation Delay	C _L = 150pF		0.08	1	μs

Symbol	Parameter	Conditions	Min (<i>Note 5</i>)	Тур	Max (Note 5)	Units
T _{DPLH}	Transmitter Propagation Delay	$R_L = 3k\Omega$, $C_L = 2500pF$ All transmitters loaded		2.4		μs
V _{SLEW}	Transition Region Slew Rate	$T_A = 25$ °C, $V_S = 5V$ $C_L = 50$ pF to 1000pF, $R_L = 3$ kΩ to 7kΩ Measured from +3V to -3V or vice versa	3	6	30	V/µs

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not guaranteed. For guaranteed specifications and the test conditions, see the Electrical Characteristics.

Note 2: Human Body Model, $1.5k\Omega$ in series with 100pF

Note 3: The maximum power dissipation is a function of $T_{J(MAX)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_J - T_A)/(\theta_{JA})$. All numbers apply for packages soldered directly onto a PC board.


Note 4: Typical Values represent the most likely parametric norm.

Note 5: All limits are guaranteed by testing or statistical analysis

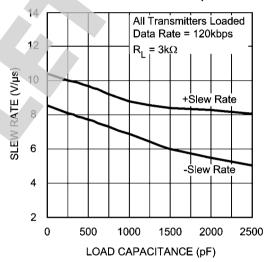
Note 6: Machine model, 0Ω in series with 200pF

Typical Characteristics

Transmitter Output High Voltage vs. Load Capacitance

20062902

Application Information


CAPACITOR SELECTION

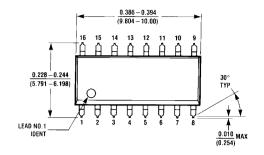
The recommended capacitors are $0.1\mu F$. However, larger capacitors for the charge pump may be used to minimized ripples on V+ and V- pins.

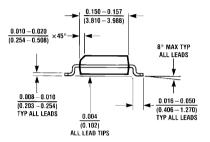
POWER SUPPLY DECOUPLING

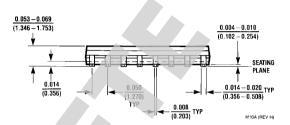
In some applications that are sensitive to power supply noise from the charge pump, place a decoupling capacitor, Cbp,

Transmitter Slew Rate vs. Load Capacitance

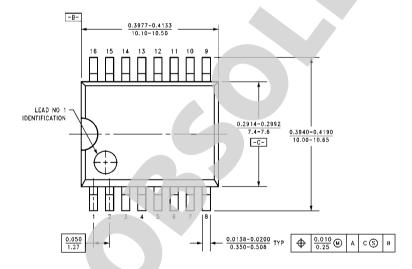
2006290

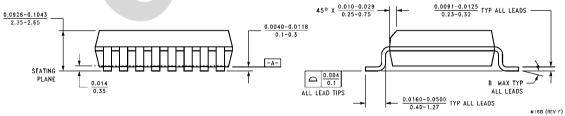

from V_S to GND. Use at least a $0.1\mu F$ capacitor or the same size as the charge pump capacitors (C1 – C4).


CHARGED PUMP


The dual internal charged-pump provides the $\pm 10V$ to the to transmitters. Using capacitor C1, the charge pump converts +5V to +10V then stores the +10V in capacitor C3. The charge pump uses capacitor C2 to invert the +10V to -10V. The -10V is then stored in capacitor C4.

www.national.com


Physical Dimensions inches (millimeters) unless otherwise noted



16-Pin SOIC NS Package Number M16A

16-Pin Wide SOIC NS Package Number M16B

5

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS, PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS. NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor **Americas Technical** Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

interface.ti.com

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Security

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Interface

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page <u>e2e.ti.com</u>

www.ti.com/security