

SLOS463A-APRIL 2005-REVISED JULY 2005

FEATURES

- 2.7-V and 5-V Performance
- Low Offset Voltage . . . 0.4 mV Typ, 3 mV Max
- Input Common-Mode Range . . . 200 mV Beyond the Rails
- Rail-to-Rail Swing Into 600 Ω
- Gain Bandwidth . . . 5 MHz Typ
- Slew Rate . . . 5 V/μs Typ
- Turn-On Time From Shutdown . . . <10 μ s
- Shutdown Current . . . 0.2 μA Typ
- Space-Saving Packages
 - SOT-23-5/6
 - SC-70

APPLICATIONS

- Wireless Phones, Mobile Phones, PDAs
- GSM/TDMA/CDMA Power Amp Control
- AGC, RF Power Detectors
- Temperature Compensation
- Wireless LANs
- Bluetooth
- HomeRF

LMV710 DBV (SOT-23-5) OR DCK (SC-70) PACKAGE (TOP VIEW) OUT 1 VCC-2 IN+ 3 IN-

DESCRIPTION/ORDERING INFORMATION

The LMV710, LMV711, and LMV715 are single BiCMOS operational amplifiers designed to meet the demands of low power, low cost, and small size required by battery-powered portable electronics. These devices have an input common-mode voltage range that exceeds the rails, rail-to-rail output, and high output-current drive. The devices offer a bandwidth of 5 MHz and a slew rate of 5 $V/\mu s$.

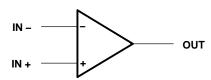
On the LMV711 and LMV715, a separate shutdown pin can be used to disable the device and reduce the supply current to $0.2~\mu$ A typical. The device features a turn-on time of less than 10 μ s. It is an ideal solution for power-sensitive applications, such as cellular phones, pagers, palm computers, etc.

The LMV710I, LMV711I, and LMV715I are characterized for operation from -40°C to 85°C.

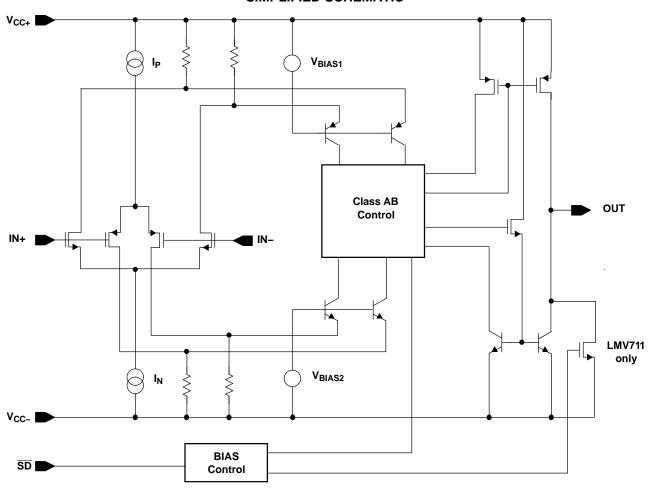
ORDERING INFORMATION

T _A	PACKAGE	<u>=</u> (1)	ORDERABLE PART NUMBER	TOP-SIDE MARKING ⁽²⁾
4000 +- 0500	SOT-23-5 – DBV	Reel of 3000	LMV710IDBVR	RB4_
	SC-70 - DCK	Reel of 3000	LMV710IDCKR	RE_
	SOT-23-6 – DBV Reel of 3000		LMV711IDBVR	RB5_
–40°C to 85°C	SC-70 - DCK	Reel of 3000	LMV711IDCKR	RF_
	SOT-23-6 – DBV	Reel of 3000	LMV715IDBVR	4B9_
	SC-70 - DCK	Reel of 3000	LMV715IDCKR	RL_

- (1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
- (2) DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



SLOS463A-APRIL 2005-REVISED JULY 2005

SYMBOL (EACH AMPLIFIER)

SIMPLIFIED SCHEMATIC

Not Recommended for New Designs

LMV710, LMV711, LMV715 SINGLE LOW-POWER RRIO OPERATIONAL AMPLIFIERS WITH HIGH OUTPUT CURRENT DRIVE AND SHUTDOWN

SLOS463A-APRIL 2005-REVISED JULY 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

				MIN	MAX	UNIT	
V _{CC+} - V _{CC-}	Supply voltage ⁽²⁾				6	V	
V _{ID}	Differential input voltage (3)				±Supply voltage	V	
V _I	Input voltage (either input)			V _{CC} - 0.4	V _{CC+} + 0.4	V	
Vo	Output voltage		V _{CC} - 0.4	$V_{CC+} + 0.4$	V		
I	Input current ⁽⁴⁾				±10	mA	
		DDV nockogo	5 pin		206		
	Deckage thermal impedance (5)(6)	DBV package	6 pin		165	°C/M	
θ_{JA}	Package thermal impedance (5)(6)	DCK needs no	5 pin		252	°C/W	
		DCK package	6 pin		259		
T _J	Operating virtual junction temperature		150	°C			
T _{stg}	Storage temperature range	-65	150	°C			

- Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
- All voltage values (except differential voltages and V_{CC} specified for the measurement of I_{OS}) are with respect to the network GND.
- Differential voltages are at IN+ with respect to IN-.
- Excessive input current will flow if a differential input voltage in excess of approximately 0.6 V is applied between the inputs unless some limiting resistance is used.
- Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions

		MIN	MAX	UNIT
$V_{CC+} - V_{CC-}$	Supply voltage	2.7	5	V
T _A	Operating free-air temperature	-40	85	°C

ESD Protection

	TYP	UNIT
Human-Body Model	TBD	V
Machine Model	TBD	V

SLOS463A-APRIL 2005-REVISED JULY 2005

Electrical Characteristics

 $\rm V_{CC+}$ = 2.7 V, $\rm V_{CC-}$ = GND, $\rm V_{IC}$ = 1.35 V, and $\rm R_L > 1~M\Omega$ (unless otherwise noted)

	PARAMETER	TEST CONDITIO	NS	T _A	MIN	TYP	MAX	UNIT
V _{IO}	Input offset voltage	V _{IC} = 0.85 V and 1.85 V	,	25°C		0.4	3	mV
νIO	input onset voltage	V _{IC} = 0.05 V and 1.05 V	,	–40°C to 85°C			3.2	IIIV
I _{IB}	Input bias current			25°C		4		pA
CMRR	Common-mode rejection ratio	0 ≤ V _{IC} ≤ 2.7 V		25°C	50	75		dB
CIVIKK	Common-mode rejection ratio	0 \(\varphi \) \(\lambda \)		–40°C to 85°C	45			uБ
		$2.7 \text{ V} \le \text{V}_{\text{CC+}} \le 5 \text{ V},$	$2.7 \text{ V} \le \text{V}_{\text{CC+}} \le 5 \text{ V},$ $\text{V}_{\text{IC}} = 0.85 \text{ V}$			110		
k	Supply-voltage rejection ratio	$V_{IC} = 0.85 \text{ V}$						dB
k _{SVR}	Supply-voltage rejection ratio	$2.7 \text{ V} \le \text{V}_{\text{CC+}} \le 5 \text{ V},$		25°C	70	95		uБ
		$V_{IC} = 1.85 \text{ V}$	$V_{IC} = 1.85 \text{ V}$					
V_{ICR}	Common-mode input voltage range	CMRR ≥ 50 dB		25°C	-0.2 to 2.9	–0.3 to 3		V
		Coursing V 0		25°C	15	28		
	0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	Sourcing $V_0 = 0$		-40°C to 85°C	12			4
los	Output short circuit current ⁽¹⁾	0:-1:1/		25°C	25	40		mA
		Sinking $V_0 = 5 V$		-40°C to 85°C	22			
			.,	25°C	2.62	2.68		
		D 40104 40514	V _{OH}	-40°C to 85°C	2.6			
		$R_L = 10 \text{ k}\Omega \text{ to } 1.35 \text{ V}$.,	25°C		0.01	0.12	
			V _{OL}	–40°C to 85°C			0.15	.,
V _O	Output voltage			25°C	2.52	2.55		V
			V _{OH}	–40°C to 85°C	2.5			
		$R_L = 600 \Omega \text{ to } 1.35 \text{ V}$		25°C		0.05	0.23	
			V _{OL}	-40°C to 85°C			0.3	
V _{O(SD)}	Output voltage level in shutdown mode	LMV711 only	- II	25°C		50	200	mV
I _{O(SD)}	Output leakage current in shutdown mode	LMV715 only		25°C		1		рА
C _{O(SD)}	Output capacitance in shutdown mode	LMV715 only		25°C		32		pF
		ON made		25°C		1.22	1.7	A
I_{CC}	Supply current	ON mode		–40°C to 85°C			1.9	mA
		Shutdown mode, SHDN	1 = 0	25°C		0.002	10	μΑ
		Sourcing $R_L = 10 \text{ k}\Omega$,	-	25°C	80	115		
		$V_0 = 1.35 \text{ V} \text{ to } 2.3 \text{ V}$		–40°C to 85°C	76			
		Sinking $R_L = 10 \text{ k}\Omega$,		25°C	80	113		
٨	Lorge signal valtage gain	$V_0 = 0.4 \text{ V} \text{ to } 1.35 \text{ V}$		–40°C to 85°C	76			٩D
A_V	Large-signal voltage gain	Sourcing $R_L = 600 \Omega$,		25°C	80	110		dB
		$V_0 = 1.35 \text{ V} \text{ to } 2.2 \text{ V}$		–40°C to 85°C	76			
		Sinking $R_L = 600 \Omega$,		25°C	80	100		
		$V_0 = 0.5 \text{ V}$ to 1.35 V	$V_0 = 0.5 \text{ V to } 1.35 \text{ V}$					
SR ⁽²⁾	Slew rate		25°C		5		V/µs	
GBWP	Gain bandwidth product			25°C		5		MHz
Φ_{m}	Phase margin			25°C		60		deg
T _(on)	Amplifier turn-on time			25°C		<10		μs

⁽¹⁾ Shorting the output to either supply rails will adversely affect reliability.

⁽²⁾ Number specified is the slower of the positive and negative slew rates.

Not Recommended for New Designs

LMV710, LMV711, LMV715 SINGLE LOW-POWER RRIO OPERATIONAL AMPLIFIERS WITH HIGH OUTPUT CURRENT DRIVE AND SHUTDOWN

SLOS463A-APRIL 2005-REVISED JULY 2005

Electrical Characteristics (continued)

 $\rm V_{CC+}$ = 2.7 V, $\rm V_{CC-}$ = GND, $\rm V_{IC}$ = 1.35 V, and $\rm R_L > 1~M\Omega$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
SHDN	Shutdown pin voltage range	V _(ON)	25°C	2.4 to 2.7	1.5 to 2.7		V
	Shuluowii piii vollage range	V _(OFF)	25 0		0 to 1	0 to 0.8	
V _n	Input referred voltage noise	f = 1 kHz	25°C		20		nV/√ Hz

Electrical Characteristics

 V_{CC+} = 3.2 V, V_{CC-} = GND, and V_{IC} = 1.6 V (unless otherwise noted)

	PARAMETER	TEST CONDITION	T _A	MIN	TYP	MAX	UNIT	
V _O Output voltage			V	25°C	2.95	3		1
	1 C E m A	V _{OH}	-40°C to 85°C	2.92			W	
	Output voltage	I _O = 6.5 mA	V _{OL}	25°C		0.01	0.18	V
				-40°C to 85°C			0.25	

SLOS463A-APRIL 2005-REVISED JULY 2005

Electrical Characteristics

 $\rm V_{CC+}$ = 5 V, $\rm V_{CC-}$ = GND, $\rm V_{IC}$ = 2.5 V, and $\rm R_{L} > 1~M\Omega$ (unless otherwise noted)

	PARAMETER	TEST CONDITIO	NS	T _A	MIN	TYP	MAX	UNIT
V	lanut offeet voltage	\/ 0.05 \/ and 1.05 \	,	25°C		0.4	3	m)/
V _{IO}	Input offset voltage	$V_{IC} = 0.85 \text{ V and } 1.85 \text{ V}$,	-40°C to 85°C			3.2	mV
I _{IB}	Input bias current			25°C		4		pА
CMRR	Common mode rejection ratio	0 < \/ < 2 7 \/		25°C	50	75		dB
CIVIKK	Common-mode rejection ratio	$0 \le V_{IC} \le 2.7 \text{ V}$		–40°C to 85°C	48			uБ
		$2.7 \text{ V} \le \text{V}_{\text{CC+}} \le 5 \text{ V},$	25°C	70	110			
l.	Cumply valtage rejection retio	$V_{IC} = 0.85 \text{ V}$	-40°C to 85°C	68			٩D	
k _{SVR}	Supply-voltage rejection ratio	$2.7 \text{ V} \le \text{V}_{\text{CC+}} \le 5 \text{ V},$	2.7 V ≤ V _{CC+} ≤ 5 V.			95		dB
		$V_{IC} = 1.85 \text{ V}$		–40°C to 85°C	68			
V _{ICR}	Common-mode input voltage range	CMRR ≥ 50 dB		25°C	-0.2 to 5.2	-0.3 to 5.3		V
		Sourcing V = 0		25°C	25	35		
	Output abort airquit aurrant(1)	Sourcing V _O = 0		-40°C to 85°C	21			m ^
los	Output short circuit current ⁽¹⁾	Cinking \/ F\/		25°C	25	40		mA
		Sinking V _O = 5 V	-40°C to 85°C	21				
				25°C	4.92	4.98		
		D 40104 40514	V _{OH}	-40°C to 85°C	4.9			
		$R_L = 10 \text{ k}\Omega \text{ to } 1.35 \text{ V}$.,	25°C		0.01	0.12	
. ,	0		V _{OL}	-40°C to 85°C			0.15	.,
Vo	Output voltage		.,	25°C	4.82	4.85		V
		D 600 O to 4.25 V	V _{OH}	-40°C to 85°C	4.8			
		$R_L = 600 \Omega \text{ to } 1.35 \text{ V}$		25°C		0.05	0.23	
			V _{OL}	-40°C to 85°C			0.3	
V _{O(SD)}	Output voltage level in shutdown mode	LMV711 only	- II	25°C		50	200	mV
I _{O(SD)}	Output leakage current in shutdown mode	LMV715 only		25°C		1		pА
C _{O(SD)}	Output capacitance in shutdown mode	LMV715 only		25°C		32		pF
		ON mode		25°C		1.17	1.7	1
I _{cc}	Supply current	ON mode		–40°C to 85°C			1.9	mA
		Shutdown mode, SHDN	$\overline{1} = 0$	25°C		0.2	10	μΑ
		Sourcing $R_L = 10 \text{ k}\Omega$,		25°C	80	123		
		$V_0 = 1.35 \text{ V to } 2.3 \text{ V}$		–40°C to 85°C	76			
		Sinking $R_L = 10 \text{ k}\Omega$,		25°C	80	120		
۸	Lorge signal voltage gain	$V_0 = 0.4 \text{ V to } 1.35 \text{ V}$		-40°C to 85°C	76			٩D
A_V	Large-signal voltage gain	Sourcing $R_L = 600 \Omega$,		25°C	80	110		dB
		$V_0 = 1.35 \text{ V to } 2.2 \text{ V}$		-40°C to 85°C	76			
		Sinking $R_L = 600 \Omega$,		25°C	80	118		
		$V_0 = 0.5 \text{ V} \text{ to } 1.35 \text{ V}$		-40°C to 85°C	76			
SR ⁽²⁾	Slew rate		25°C		5		V/μs	
GBWP	Gain bandwidth product			25°C		5		MHz
Φ_{m}	Phase margin			25°C		60		deg
T _(on)	Amplifier turn-on time			25°C		<10		μs

⁽¹⁾ Shorting the output to either supply rails will adversely affect reliability.

⁽²⁾ Number specified is the slower of the positive and negative slew rates.

Not Recommended for New Designs

LMV710, LMV711, LMV715 SINGLE LOW-POWER RRIO OPERATIONAL AMPLIFIERS WITH HIGH OUTPUT CURRENT DRIVE AND SHUTDOWN

SLOS463A-APRIL 2005-REVISED JULY 2005

Electrical Characteristics (continued)

 $\rm V_{CC+}$ = 5 V, $\rm V_{CC-}$ = GND, $\rm V_{IC}$ = 2.5 V, and $\rm R_{L}$ > 1 $\rm M\Omega$ (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	UNIT
SHDN	Shutdown pin voltage range	V _(ON)	25°C	2.4 to 5	2 to 5		V
	Shudown pin voltage range	V _(OFF)	25 0		0 to 1.5	0 to 0.8	V
V _n	Input referred voltage noise	f = 1 kHz	25°C		20		nV/√ Hz

TEXAS INSTRUMENTS www.ti.com

SLOS463A-APRIL 2005-REVISED JULY 2005

TYPICAL PERFORMANCE CHARACTERISTICS

GRAPH PREVIEWS

- Figure 1. Supply Current vs Supply Voltage (ON Mode)
- Figure 2. LMV711/LMV715 Supply Current vs Supply Voltage (Shutdown Mode)
- Figure 3. Output Positive Swing vs Supply Voltage $R_L = 600 \Omega$)
- Figure 4. Output Negative Swing vs Supply Voltage $R_1 = 600 \Omega$)
- Figure 5. Output Positive Swing vs Supply Voltage $R_L = 10 \text{ k}\Omega$)
- Figure 6. Output Negative Swing vs Supply Voltage $R_1 = 10 \text{ k}\Omega$)
- Figure 7. Output Positive Swing vs Supply Voltage ($I_{SRC} = 7 \text{ mA}$)
- Figure 8. Output Negative Swing vs Supply Voltage (I_{SINK} = 7 mA)
- Figure 9. Input Voltage Noise vs Frequency
- Figure 10. PSRR vs Frequency
- Figure 11. CMRR vs Frequency
- Figure 12. LMV711/LMV715 Turn-On Characteristics
- Figure 13. Sourcing Current vs Output Voltage
- Figure 14. Sinking Current vs Output Voltage
- Figure 15. THD+N vs Frequency ($V_{CC} = 5 \text{ V}$)
- Figure 16. THD+N vs Frequency ($V_{CC} = 2.7 \text{ V}$)
- Figure 17. THD+N vs V_{OUT} ($V_{CC+} = \pm 2.5 \text{ V}$)
- Figure 18. THD+N vs V_{OUT} ($V_{CC\pm} = \pm 1.35 \text{ V}$)
- Figure 19. C_{CM} vs V_{CM} ($V_{CC} = 2.7$ V)
- Figure 20. C_{CM} vs V_{CM} ($V_{CC} = 5 \text{ V}$)
- Figure 21. C_{DIFF} vs V_{CM} ($V_{CC} = 2.7 \text{ V}$)
- Figure 22. C_{DIFF} vs V_{CM} ($V_{CC} = 5 \text{ V}$)
- Figure 23. Open-Loop Frequency Response ($V_{CC\pm} = \pm 1.35 \text{ V}$)
- Figure 24. Open-Loop Frequency Response ($V_{CC+} = \pm 1.6 \text{ V}$)
- Figure 25. Open-Loop Frequency Response ($V_{CC+} = \pm 2.5 \text{ V}$)
- Figure 26. Open-Loop Frequency Response ($V_{CC\pm} = \pm 1.35 \text{ V}$)
- Figure 27. Open-Loop Frequency Response ($V_{CC\pm} = \pm 1.6 \text{ V}$)
- Figure 28. Open-Loop Frequency Response ($V_{CC^+} = \pm 2.5 \text{ V}$)
- Figure 29. Noninverting Large Signal Pulse Response
- Figure 30. Noninverting Small Signal Pulse Response Figure
- Figure 31. Inverting Large Signal Pulse Response
- Figure 32. Inverting Small Signal Pulse Response
- Figure 33. V_{OS} vs V_{CM} (V_{CC} = 2.7 V)
- Figure 34. V_{OS} vs V_{CM} (V_{CC} = 5 V)

8

29-Jun-2012

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login
LMV710IDBVR	NRND	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV710IDBVRE4	NRND	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV710IDBVRG4	NRND	SOT-23	DBV	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV710IDCKR	NRND	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV710IDCKRE4	NRND	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV710IDCKRG4	NRND	SC70	DCK	5	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV711IDBVR	NRND	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV711IDBVRE4	NRND	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV711IDBVRG4	NRND	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV711IDCKR	NRND	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV711IDCKRE4	NRND	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV711IDCKRG4	NRND	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV715IDBVR	NRND	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV715IDBVRE4	NRND	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV715IDBVRG4	NRND	SOT-23	DBV	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV715IDCKR	NRND	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
LMV715IDCKRE4	NRND	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

PACKAGE OPTION ADDENDUM

29-Jun-2012

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
LMV715IDCKRG4	NRND	SC70	DCK	6	3000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

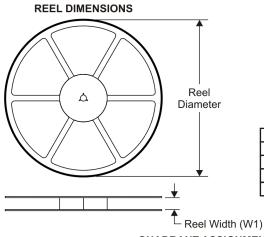
TBD: The Pb-Free/Green conversion plan has not been defined.

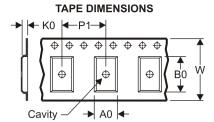
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

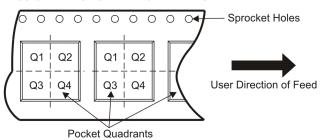
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

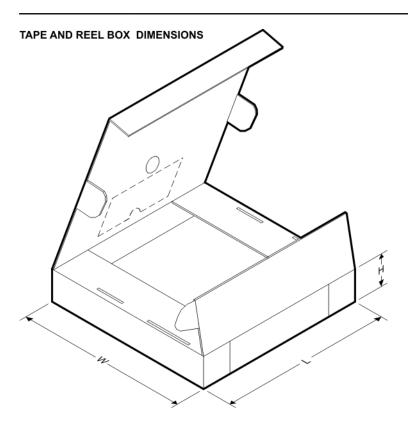

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 20-Jul-2010


TAPE AND REEL INFORMATION

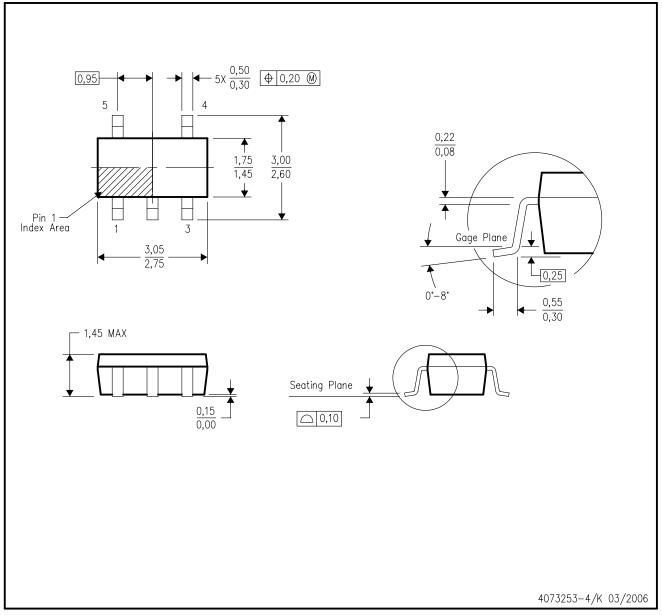
	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LMV710IDBVR	SOT-23	DBV	5	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LMV710IDCKR	SC70	DCK	5	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LMV711IDBVR	SOT-23	DBV	6	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LMV711IDCKR	SC70	DCK	6	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3
LMV715IDBVR	SOT-23	DBV	6	3000	179.0	8.4	3.2	3.2	1.4	4.0	8.0	Q3
LMV715IDCKR	SC70	DCK	6	3000	179.0	8.4	2.2	2.5	1.2	4.0	8.0	Q3

www.ti.com 20-Jul-2010

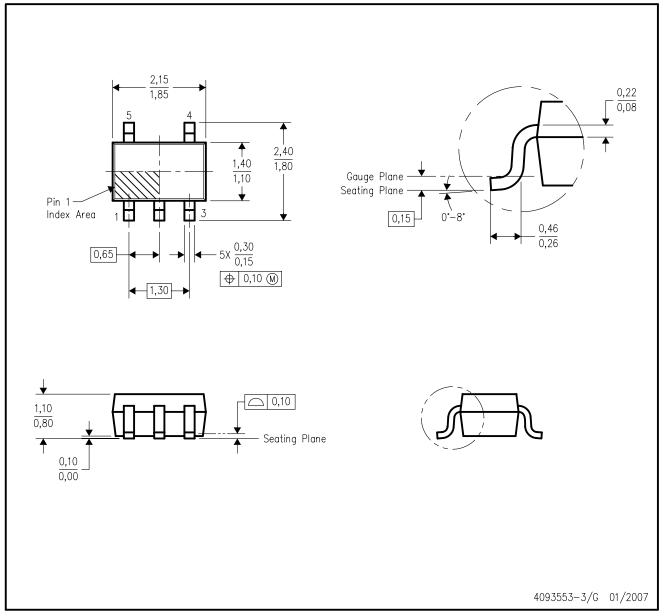


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LMV710IDBVR	SOT-23	DBV	5	3000	203.0	203.0	35.0
LMV710IDCKR	SC70	DCK	5	3000	203.0	203.0	35.0
LMV711IDBVR	SOT-23	DBV	6	3000	203.0	203.0	35.0
LMV711IDCKR	SC70	DCK	6	3000	203.0	203.0	35.0
LMV715IDBVR	SOT-23	DBV	6	3000	203.0	203.0	35.0
LMV715IDCKR	SC70	DCK	6	3000	203.0	203.0	35.0

DBV (R-PDSO-G5)

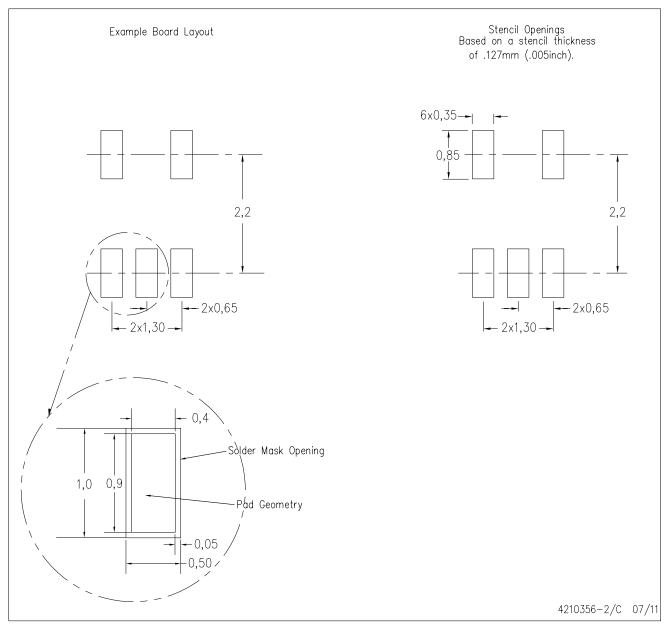
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
 - D. Falls within JEDEC MO-178 Variation AA.

DCK (R-PDSO-G5)

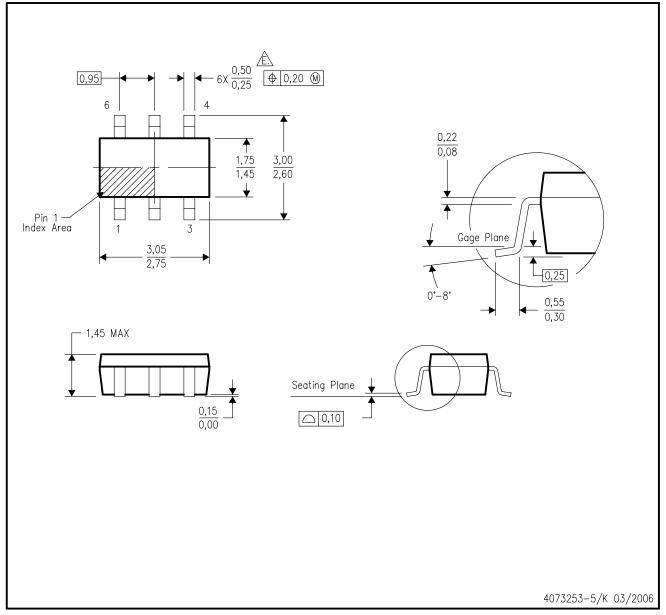
PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AA.

DCK (R-PDSO-G5)

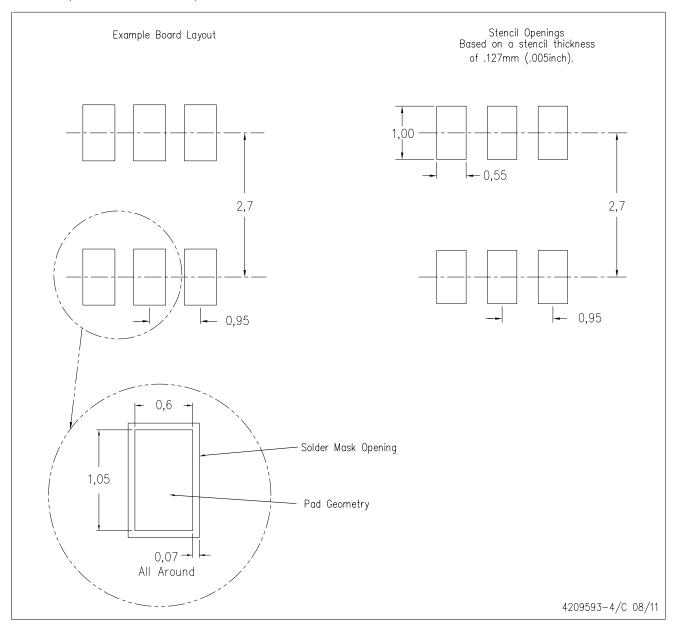
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DBV (R-PDSO-G6)

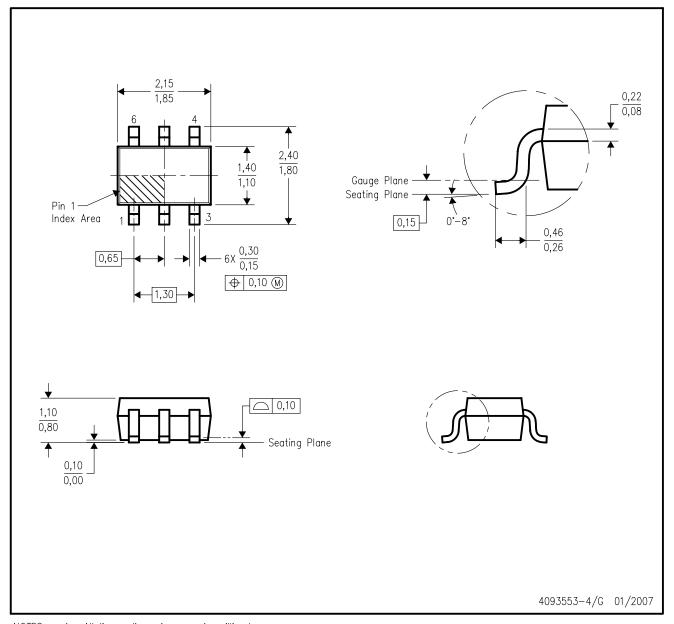
PLASTIC SMALL-OUTLINE PACKAGE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Leads 1,2,3 may be wider than leads 4,5,6 for package orientation.
- Falls within JEDEC MO-178 Variation AB, except minimum lead width.

DBV (R-PDSO-G6)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

DCK (R-PDSO-G6)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-203 variation AB.

DCK (R-PDSO-G6)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated