Q‘ TeEXAS
INSTRUMENTS

MSP430 Family

Starter Kit

Evaluation Kit Manual

1999 Mixed-Signal Products
SLAS191A

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent
Tl deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS. INCLUSION OF TIPRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER'’S RISK.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.

Tl assumes no liability for applications assistance or customer product design. Tl does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of Tl covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI's publication of information regarding any third
party’s products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright 00 1999, Texas Instruments Incorporated

Contents

Section Title Page
1 Getting Started 1-1
1.1 Installing the Software i 1-1
1.2 Hardware Installation 1-2
1.2.1 The STK/EVK-PCB Operating Conditions 1-2
1.2.2 Howtolnstallthe Hardware i, 1-3
1.2.3 Programming the Monitor Software Into an
Erased EPROM (EVK ONlY) ... oo 1-5
1.2.4 MSP-STK/EVK430x320 Target CONnNectorsc.c.covevenn... 1-6
1.2.5 MSP-EVK430x330 Target CONNeCtorsc.c.couviinninnnn.. 1-7
126 The LCD ..ot e e e e 1-8
1.2.7 Schematic for the MSP-STK/EVKA430x320ccovviinennn... 1-10
1.2.8 Schematic for the MSP-EVK430%x330coviiiiiiiinnnnnn.. 1-11
1.2.9 Startingthe STK Demo Programccoiiiiiinennnnn.n. 1-12
1.2.10 Executing a Program withthe STK 1-12
1.2.11 Howto Use Breakpointsot 1-22
1.2.12 Accessing the Port on the MSP430x320 STK/EVK 1-23
1.2.13 How to Use an Interrupt Routine 1-24
1.3 Loading a Program Into the EPROM Viathe Terminal 1-25
2 MONItOr CoOMMaANAS . ..ottt e e e e e 2-1
2.1 Syntax CoNVENLIONSttt ettt 2-1
2.2 Memory Organizationuiouune 2-1
2.3 COMMANAS ...t 2-2
3 MoNitor ReSIICIONS ... e 3-1
3.l RegISter RA . e 3-1
3.2 Thelnstruction CALL R4 3-1
3.3 Peripheral Hardware/Registersc.iuuiiiii i 3-2
3.4 RAM Locations forthe Monitor i i 3-2
3.5 Writing Data Into the EPROM 3-5
4 Treatment of INterrUPLS 4-1
4.1 Use of Interrupts in the Monitor Environment 4-1
5 Half Duplex Monitor Software UART e 5-1
5.1 Transmission Parameters of the Software UARTot 5-1
5.2 Identification of Bit Pattern AABSh 5-1
5.3 Special Treatment of <ESC> in the Software UART 5-4
5.4 Transmitting One Character it 5-5
5.5 Transmitting @ Stringot 5-7
5.6 Receivinga Character 5-8
6 Using Interrupt Vectors inthe EPROM i, 6-1
6.1 The Identification Bit Pattern AfteraReset oot 6-1

7 Memory Configurations for MSP430 Devices ..., 7-1
A Difference Between STK and EVK i A-1

List of lllustrations

Figure Title Page
1-1 MSP-STK430 Program GroUD .. .vvt ittt e ettt et et e 1-2
1-2 MSP/EVKA30 Program GrOUD vvie ittt it ettt e ettt e i ieens 1-2
1-3 Terminal SCreeNo 1-4
1-4 Programming the DeVICEttt e e 1-5
1-5 MSP-STK/EVK430x320 Target CONNeCtOrsoournetin i 1-6
1-6 MSP-EVK430x330 Target CoONNECIOrSottt e e 1-7
1-7 Supplied LCD Mechanical Dataciiiiii it 1-8
1-8 LCD Segment DigitsS . .. oo it e e 1-9
1-9 LUXMETER DemoO Programou et ettt e ettt e e 1-12
100 PrOPeIIES ottt 1-13
1-11 Getting Started Demo Programouiiitii i 1-14
1-12 ASMA430 Assembler WIindow e 1-15
1-13 gs_stkl.asm Window Displayo e 1-16
114 gS StKL.aSM .ottt e 1-17
1-15 Terminal WINdOW e e e 1-18
1-16 Terminal Transfer o 1-19
1-17 HyperTerminal DiSplay e 1-20
1-18 Terminal | execute gs_StKL.IXt oo e 1-21
1-19 Terminal Breakpoint e e 1-23
1-20 Basic Timer Interrupt Routing o i e e i 1-24
1-21 Terminal | INtermuUpt ... oo 1-25
1-22 Programming Voltage and Jumper Location i, 1-26
1-23 EPROM LCD and Interrupt Routinet 1-27
1-24 HyperTerminal Window e 1-28
1-25 Transfers\Send Text File e 1-28
1-26 Send Text File Dialog BOX oit it e e e e 1-29
1-27 Burn Failed MESSagEottt e 1-30
2—1 Memory Organizationuuu ittt e e e 2-1
2-2 Help Command 2-2
2—-3 Byte, Word Commandst 2-3
2—4 Initializing the Terminal Program Commando, 2-4
2-5 User Reset Commandttt e 2-5
26 Register Command ...ttt 2-6
2—7 Register Specified Command i e 2-7
2—8 Modify One RegISter 2-8
2-9 Modify Additional RegiSterst 2-9
2-10 Revise Memory Modification 2-10
2-11 Memory Byte, Word Commandt 2-11
2-12 Memory Modification it i 2-12
2-13 Revised Memory Modification i 2-13

2-14 Transfer Data Commandttt e 2-14

2-15 EPROM Erase Check Command i, 2-15
2-16 Location of a Breakpoint Commandot 2-16
2-17 SetaBreakpointCommand i e 2-17
2-18 Clearing a Breakpoint Command i 2-18
2-19 Clearing a Breakpoint Locationt 2-18
2-20 Starting the Application Command i 2-19
3—1 CALL R4 Instruction Codet e e 3-1
3-2 RAM Area 272h to SFEh o 3-3
3-3 RAM Area 200h to 3FFh for the MSP430x32x Family 34
3—4 Temporary Burn Routine in the MSP430x32x RAM Areacccvvuvn.. 3-5
4-1 Monitor Interrupts for the MSP430x32x Family 4-1
4-2 PO.0 Interrupt EXample 4-2
5-1 Identification of Bit Pattern AA55h for the MSP430X32x Family 5-2
5-2 Special Treatment of ESC 5-4
5-3 Transmittingthe s Character i, 5-6
6—1 Identifying AAS5h After Reset e 6-2
7-1 Memory Map of the STK/IEVK e 7-1
7—2 Memory Map of the STK/IEVKA30X32X ...ttt e 7-2
7-3 Memory Map of the STK/IEVKA30X33X ...\ttt 7-3

List of Tables

Table Title Page
11 LCD CONNEBCION . .ttt ettt et et e e et e e e e e e e 1-9
3-1 Peripheral Registers and BitS i e e e 3-2
4—1 Type Of INteITUPL ...ttt et e e e e 4-2
4-2 Interrupt Vectors for the MSP430x32x Family 4-3
4-3 Interrupt Vectors for the MSP430x33x Family i, 4-3
51 FUNCHON/VECION . . . o e e e 5-1

vi

1 Getting Started

This chapter provides installation and programming instructions for the starter Kit MSP-STK430x320, and
the evaluation Kits MSP-EVK430x320 and MSP-EVK430x320.

NOTE:
This manual covers both the MSP-STK430x320 and MSP-EVK430x320 kits. The
actual icons and/or windows on the computer screen may differ from those shown
in the book due to software version upgrades.

In this documentation, the term STK/EVK is used interchangeably to represent both kits. The programs used
in this manual are provided in the installation directory ..\stk\examples, or in ..\evk\examples. These
programs demonstrate the user-friendly environment of the MSP430 starter and evaluation kits.

The main difference between the MSP-EVK430x320 and the MSP-EVK430x330, besides the peripheral
blocks, is the memory map. The memory map is described in chapter 2 under Memory Organization.

1.1 Installing the Software
Exit all MS-Windows[programs prior to loading this software.

The setup program installs all necessary files for running programs on the STK/EVK. The setup program
adds the appropriate program group and icons to the Windows program manager.

To install the software:
1. Insert MSP430-STK/EVK disk 1 in the floppy drive and run setup.exe.

2. In the Select Components window, choose the applications to load. The Starter Kit and
Simulation Environment button are the default. Make a choice and select Next.

3. Choose the desired COM port for the hardware connection. The default is set to COM port 2.
Select the port to be used, then select Next.

4. Read the licensing agreement and answer the question at the bottom of the screen. If YES is
selected to the licensing agreement, a prompt to close all other applications running in Windows
will appear.

5. The setup.exe program automatically creates and loads the MSP430-STK/EVK software to the
recommended directory (C:\ADT430), unless otherwise indicated. Choose the directory and
select Next.

6. Insert Disk 2 when prompted. Select OK when disk 2 is in the floppy drive.

7. Setup.exe places MSP430 icons in the ADT430 program folder, unless otherwise indicated.
Select Next.

8. Setupis complete. Please take a momenttofill out and return the registration card to ensure
receiving further software updates.

The ADT430 program folder should contain the following icons: Simulation Environment, Read me SIM,
Help SIM, ASM430 Assembler, Sensor Demo, and Uninstall the STK430 and EVK430 Terminals.

MS-Windows is a trademark of Microsoft Corp.

1-1

& C:\WINDOWS \Start Menu\ Programs\ADT430 _ [O] x|

ASkA30 Read me STE. 5 nsor Demno; STEA30 Unlnstall STE

Azzembler) Teminal

EE"\-"K43|:IE ASk430 Read me EVE Unlnstal EVE.
Terminal: Aszsernbler

Figure 1-2. MSP/EVK430 Program Group

NOTE: EVK/STK430 Terminal icon
Before clicking the EVK/STK430 Terminal icon, ensure the standard Windows Applications
Terminal and Notepad are installed in the Windows directory. The Windows terminal emulator
is configured to use serial port COM2 by default.

1.2 Hardware Installation

The STK/EVK kit hardware includes the STK/EVK-PCB and one 9-pin cable for connection to the PCs serial
communication port. The EVK also contains the PRG430 along with the necessary cables.

1.2.1 The STK/EVK-PCB Operating Conditions

Temperature range 10°C —45°C

Humidity 40% — 70%

Current consumption =0.7 mA at 3V, 25°C, no connection to serial port
(Approximate Values) =1 mA at 5V, 25°C, no connection to serial port

=5 mA at 3V, 25°C, serial port connected
=5.5 mA at 5V, 25°C, serial port connected

Note: The current consumption is measured without any additional external
connections.

Operating voltage 3Vor5V

Note: The operating voltage is selectable as 3V or 5V on the STK/EVK-PCB
by making the appropriate connections (see Figure 1-5 or 1-6,
depending on the system you have).

1-2

1.2.2 How to Install the Hardware

This section targets three main parts: the setup of the serial interface, the programming adapter, and the
power supply.

LCD and UVEPROM

The EVK is supplied with the LCD and a UVEPROM, separate from the EVK PCB. Install the EPROM and
LCD into the EVK PCB before proceeding. Refer to the STK/EVK target connectors section for the correct
LCD orientation. The STK has a one-time programmable (OTP) device mounted on the PCB.

Serial Communication

Connect the STK/EVK-PCB to the serial communications port of the PC using the 9-pin cable that is
supplied. Use the Settings/Communications. . .command to set the communication port to which the cable
is connected. The default selection is COM2.

The HyperTerminal (which uses the Terminal icon) is used to communicate to the STK/EVK MSP430 chip
via a Monitor Program that has already been downloaded into the EPROM of the chip. The HyperTerminal
settings used are: data bits—7; parity—even; stop bits—1; flow control—none.

Voltage Sources
The following four sources supply the voltage for the STK/EVK-PCB:

1. PCserial interface
Typically, the serial interface of the PC supplies the STK/EVK-PCB voltage using the 9-pin cable.
The user must determine if the serial interface can meet the electrical requirements of the
STK/EVK PCB. Some PC manufacturers do not source enough current and voltage from the
serial port to power the STK/EVK devices. If this is the case, a 9-volt battery can be connected in
parallel to the serial port.

2. 3.6 Vlithium battery
A battery can be assembled onto the STK/EVK that supplies the STK/EVK-PCB with power.

3. Programming Adapter
The Programming Adapter’s power supply is stabilized to 5V (this can only be used on the EVK).

4. Target system
The power supply from a target system can be connected to the STK/EVK-PCB. A supply voltage
of 3V to 5V can be used.

CAUTION: Different Power Supplies
If there is more than one power supply connected, the STK/EVK is supplied
with the higher voltage, provided the data sheet supply voltage ranges are
not exceeded.

If the HyperTerminal program is running on the PC, the serial communication cable has been installed, the
proper com port is selected, and the proper voltage is supplied, the screen will look like Figure 1-3.

1-3

“ & STE1W3%5 - HyperT erminal
File Edit Miew LCal Transfer Help
MSP-STK430A320 ;I
>_
4 I I [
|Eu:unneu:teu:| 0:01:23 |.-’-'-.ut|:| detect Auto detect SCROLL |E.-’3.P'S 4

Figure 1-3. Terminal Screen

A help message is displayed on the screen automatically if the Monitor message MSP-STK430x320 is not
received by the STK/EVK control software, where x is the current revision letter.

Reset Button

NOTE: Pins for the STK Demo Program
Some pins of the MSP430 device will be used for the sensor demo program (only available on
the STK):

¢ A5 (connected to the sensor)

¢ SegO...Segl3 (connected to the LCD Display)
¢ Coml...Com4 (connected to the LCD Display)
¢« RO03...R33 (connected to the LCD R-Ladder)

« P0.0 (connected to the Trigger button)

e The string MSP-STK430x320 should appear in the HyperTerminal window (white background
area of the STKW95 HyperTerminalC window). In addition, the LCD display on the evaluation
board (EVK or STK) should display MSP430.

« If both do not appear, simply press the reset button on the evaluation board (identified with an
RES etched next to it) one time.

NOTE:
The MSP430 evaluation board requires very low supply voltages due to its ultra-low
power consumption characteristics. In this case, the RS232 interface, or a 3.6 V
lithium battery (if installed) provides the supply voltage for the STK/EVK.

Due to PC com port differences, it may be necessary to jumper the board down to
3V or supply an external battery. To jumper the board, refer to the diagram in the
STK/EVK Target Connectors section, and place one jumper across the Vcc holes,
and another across the Vcc/LCD holes where the default for both of these is open.

HyperTerminal is a trademark of Hilgraeve.

1-4

Changing the RS232 interface to another COM port (other than COM2) of a personal computer, requires
a change to the COM port assignment in the current version of the terminal emulator.

1.2.3

1.

2
3.
4

Programming the Monitor Software Into an Erased EPROM (EVK Only)

The following steps are recommended to program the Monitor into an EPROM after it has been erased:

Connect the programming adapter to the PC.

Start the Program Device software and:

Connect the EVK-PCB to the programming adapter.

— select the file mon_140.txt in the STK directory

— select with Verify

— select EPROM device
— select the correct parallel port where the adapter is connected
— click on the Program button.
For detailed information see the MSP430 Family Programming Adapter Manual.

Apply the power supply to the programming adapter (not included in the kit).

Figure 1-4 shows the pop-up that will appear when programming the Monitor software into an erased
EPROM EVK.

»2 PROGRAM DEVICE MSP 430

A

Filename: |mun_1 41 txt

— Program
[w! with Yerify
["] with Blow

Path: chadtd30hevk
Files: Duwectones:
mon 141 et [--]
readme_txt [examples]

[-a-]

[-e-]

[-d-]

[-e-]

[-f]

[-a-]

—Erase Check —
[by file

—Device Type —
P/E325
EPROM 1GkB
RAM 512B

—Range for Eraze Check / Readout

Start: ([CO00 |h Length: (4000 |k

— Parallel Port —
ILPT1
CLPT2

OLPT3

Program |
Yerifp |
Eraze Check |
Blow Fuze |
Read Out |

Help |
About |
Cloze |

- Status

Communication Control Messages

Figure 1-4. Programming the Device

1-5

1.2.4

1-6

MSP-STK/EVK430x320 Target Connectors

External Supply 3-5V dc Digital Signals:
Only Required If Stand Pin 1 XIN Pin 9 NC Pin 17 PO.0
Alone Operation Pin2 | XOUT Pin10 | CI Pin18 | PO.1
Pin 3 XBUF Pin 11 TP.O Pin 19 PO.2
Pin 4 RST/NMI Pin 12 TRl Pin 20 PO.3
Pinl | A4 Pin 5 TCK Pin 13 TP.2 Pin 21 PO.4
Pin2 | A5 Pin 6 TMS Pin 14 TP.3 Pin 22 PO.5
Pin3 | A2 Pin7 | TDI Pin15 | TP4 Pin23 | PO6
pina | A3 Pin8 | TDO Pin16 | TP5 Pin24 | PO.7
Pin5 | SVCC
Pin 6 | REXT
Pin7 | AO
i 74l
Pin8 | Al ;3 .‘r'__J
—] D i
39°] EI: BES)
3V Close o P | —n T) —_ |} -
- | :
f/V Open = + 3
cc Lop T, |l oo |3
5V 3V Open — L1 ——1 = H =
5V 5V Close 4 ED——— g g Q0 ||3
3V 3V Close —] D ——| B g Q0 (=
=l am = j 3
Default IR g 2 Q0 ||
—— 8 : =
v e 7 ‘ a NEPADR 328IPH & & Q0 |3
pp-Input — = g g m -
Apply 12-20Vdc If | F m | = @ =
Programming Using Serial E] . Q0 |3
Port 1
F ‘.,'J = -, {2 14 P 30 -
b} S £ 1 || LD / @B o
Vpp Fuse F250 mA .
LCD Signals: LCD (Only STK)
Pin 1 R33 Pin 11 SEG6 Pin 21 SEG16
. Pin 2 R23 Pin 12 SEG7 Pin 22 SEG17
Connector To Programming Pin3__ |RI13 Pin 13| SEG8 | Pin 23 | SEG18
Adapter MSP-PRG430x Pina _ |RO3 Pin14 | SEG9 | Pin24 | SEG19
(Only EVK) Pin 5 SEGO Pin15 | SEG10 | Pin25 | SEG20
Pin 6 SEG1 Pin 16 SEG11 | Pin 26 COMOo
Pin 7 SEG2 Pin 17 SEG12 | Pin 27 comi
Pin 8 SEG3 Pin 18 SEG13 | Pin 28 COomM2
Pin 9 SEG4 Pin 19 SEG14 | Pin 29 COM3
Pin 10 SEG5 Pin 20 SEG15 | Pin 30 NC

Figure 1-5. MSP-STK/EVK430x320 Target Connectors

1.25 MSP-EVK430x330 Target Connectors

Vpp-input

Apply 12-20V DC if Connects to Serial

programming via Serial Port of PC Pin z = Power
Vpp Fuse F250mA P ort (not assembled) | / g = Ground
(not assembled)

\ External Supply 3-5V DC
Only required if stand
O alone operation
Connector to
Programming -
Adapter =ye - Ground
MSP-PRG430B Voo
3V close
5V *open
Vee LCD
~ 5V 3V *open
= s |8V 5V close
1C201-1004-028 E 3V __ 3V close
Digital Signals: = | * Default
P1.0| P1.1 \ t
P1.2]|P1.3 \E |___{—Reset button
P1.4]|P15 e = T
P1.6|P17 v g, Digital Signals:
p20[P21 N s L7 ne P0O.7
P2.2| P2.3 o v 0.6 P05
P2.4| P25 u3 YAMAICHI NN - -
P261P2.7 = N P0.4 P0.3
P0.2 P0.1
P3.0} P3.1 QWidl = %0
Paoleas S L \ LcD 29 P0.0 TPO.5
P3.4| P35 \ TP0.4 TPO.3
P3.6 | P3.7 ! A TP0.2 TPO.1
P4.0 | P4.1 + TP0.0 Cl
P4.21P4.3 |8 8 83 8 8 8 l - RST/NMI_[XBUF
P4.41P4.5 O """'"‘\“'""'l' 8 TDO TCK
P4.6 | P4.7 T™S TDI
\ \
Buzzer (not assembled) LCD (not assembled)
LCD-Signals:

CoM2 | coMo |SEG1|SEGS | _... | SEG27| SEG29| R13 |Vee | NG
COM3 | COMT [SEGO|SEG2 | ... |SEG26] SEG28| R03 |R23 | NC

Figure 1-6. MSP-EVK430x330 Target Connectors

1-7

1.2.6
Figure 1-7 shows the segment type LCD supplied with the STK/EVK.

1-8

The LCD

40.00 £ 0.25

4

B

VEWING AREA

2.00) ¢

6.00

£
[0==¢
OEE]
==
D=
(B

14.40% 0.25

Digit

7 6 5 4 3 2 1 0

Figure 1-7. Supplied LCD Mechanical Data

The LCD is connected to the STK/EVK as shown in Table 1-1.

Table 1-1. LCD Connector

PIN NO. COM1 | COM2 | COM3 | COM4
1 - - COomM3 -
2 - - - COM4
3 - COoM2 - -
4 CcoM1 — - -
5 — — — —
6 6C 6F 6H 6E
7 6A 6B 6D 6G
8 5C 5F 5H 5E
9 5A 5B 5D 5G
10 4C 4F 4H 4E
11 4A 4B 4D 4G
12 3C 3F 3H 3E
13 3A 3B 3D 3G
14 2C 2F 2H 2E
15 2A 2B 2D 2G
16 1C 1F 1H 1E
17 1A 1B 1D 1G
18 ocC OF OH OE
19 0A 0B oD 0G
20 COM1 — — —

\ A/

F B

EDUC] <8

E c

Z D
N

Digit 7 Digit 6-0

Figure 1-8. LCD Segment Digits

1-9

Schematic for the MSP-STK/EVK430x320

1.2.7

YINOD ;o ano
£NOD d e
NOD H——o5—®
ARy & TWOD.
1S |2
e1s |
as | S
s - .
ors |2 g 58
65 | = T o
[C =g &
i wms < n -
95 £ & - z
ss 15 83 " =
if : ’ il 1
€s | o 143
s B ' cLno 3 = s
15 | s o LA CRT]
wos I8 00¢T1TSL 1L
—\/\/\- b
SIAT UO PaIaWassy 10 00T
6 VEOETT averT 12}
uado Ag =994 €1d 21a
B0 Ag =297 82
S3A3 ¥3Q108 =9
ano
L
N2 5
= B -1 = > E
= 8==8 =1 8& uwmw
E & AE
<
oo lole | |e % Moz
oo oo oo
o o |~ o |5 [=
it
WT [
& £]2 |3 — ano n
= 5 2] 17 T 9 B [Eln
00d B
L—fen ano
ST Sdl TISvL ° 10 dd €
Fre Yl WAZ|UO Palauiassy 10N >LSUO Pajquiassy 10N TC L o ask oF -
2 IS = °
[ez=* | taL ano 8 = Gotozrsat dRho Ls
[zz—" Zdl 77O Ot o ﬂlm T2
= Tar 8 No 7O OTr $n S8 < "
_— | I esas R o e roor | * 2 g2
S * - -
1935 o 6T o TRNITSS O 07 udo A§=90
e
2193S s —— | no: . O 0Oc—f—= vo AE=I00
. pE = — L1] Tnox 50 O3
ETO3S €S en = NIX 0 Om‘\. S3A3 ¥3A10S
e |/
L= o WISZEd0ErdSI |/ o o dSW JOA 79,01
GEEE yi; |/ =W 3 i
B &)
91935 95 &V gyl
ey et
JARES
N, | & N3 veorn UL
EIRES / e =N € A 5 €a <
&
o195 55 i 3onS NE o . I
02035 *09 ot N T uum . ~3 S B
o oo Ne [0 2219) —a|” > AOT drizy = ="
5§ no N9 1 > E_»r
i =1+ u 28 YR
|2
SERRERBREER |2 WA UO PaIQUIaSSY 10N anaor R A 45
> =2 S 2 |3 a I
ERS @6 |6 L]
= DOAVOONG

€

1-10

Schematic for the MSP-EVK430x330

1.2.8

palquIassy 10N

_H G0 82y

1azzng

ani
otogrel
@
)

0s

TWNOD =

9
o

1 00T

Td

pelquessy 10N

ane = asyong
H ane T8
MW
S<sxn
Hrlee ©
—l m -
p— -
= 2o [JoNn N3 5
8 ..lm D € w|. e
5 {1 v unm
Lo 5
adzTIISLIL -
> < v S2'04
VeoTT1 71 I B

0 (D U (0|00 |0(0|0(0|0|0|0(0|T|0|0|(V|T
SRR R (R (RIS (S|31I3 B B63 1SS [S S SRS pajquiassy 10N
o |0 W N [F O (No|Os W N |- [O|N o |0 |w aNo =
a7 [[D[S SIS TS S 0 (00 |0 [w | W [w |w [w |w T
O |© ~ O |01 [(W [N | = © |0 |N|O 3B W][N |= 5
|
— | ————a
T7d 15 0F TN 2yos
B 5N5 %5 | 62__OOA 5 z |Nm o
e o —n
pEWOD &S] EPE- iosz
ZNOD_ ¥S ¢ Zidd Bl o
65 5] 5 1ed veoTT1 o1 O]
B GG5 55 [z 0za s1d
g ONOO 95] o Dl o eNl N3
0S /S v¢ L'Td S w |V
2 5] e L1d g N INI aND
TS 85 £z 91d ano = NI a5 ° 912100 od [
tc_91d o 1]
25 65 zz_51d Juee . 1o 7o a0 [2 =
B 550 T2 _vid @ 60 — R p 8 T o233
— Camams]
s 0z €Td o u 06e ™ EE DY adT0z.SdL 5 e e
SS 29 6T__c1d | * o [5 8
— . a 1nox 9 o o = S
95 €9 8T T1d 1 —to 82 |- E
B s [T 01q W 010 o 0 23R | == =
B oo or rod W OIN ano- M Jswoon el] 51757 |+Tg
[EE -
6S 99 ST 90d r's saA3 1ap|os 8
B 575 9| 7T 50q W Ley - <
G
555 €T 0 & OIN ©32
[LI 4 - .
TS 69 ZT_tod S 5
uadh =
e o [T_cod g3 B [| <5, o 50N = 30
V1S 1L 0T __T0d ™100T 898¢e0u 822 Fd o ano = ﬂ
L 5 00d W W WS 558 8 A EYQ
< g ! > o
9TS € 8 S0dl ol ot pistu > * e
B v L vodl 558 ety Bl |_m03 NooT g 1IX3 90A
LS 5 to0dl veu $0 o3R I T N 00T _ |41 21
T . ; -
a0 oL S codl oIST 3 5 1Y VEOIT! 1y 1 AR) =
= 0csS LL 14 H.On_._. _IM<N<N_1 ez [» ~ +|TO B8
B LS 8L € 00dl 23N > 2 TR AOT 3
N
§cs 6L (2] paIqIassY 10N 5 g 1959
ZoN 08 Toon @ oA —e . .
0000 |00 [0 00 |00 |00 |00 |00 [€O [[¢O O | | [|© O] |
PIN|® RO N|®|OO|=[N|W ||| ||| m
mm&mmwwaaﬁﬂll =X IXIX|0
SVSQLSG%H%MWMW%EMWNW
T
]

1-1

1.2.9 Starting the STK Demo Program

In the HyperTerminal program, type ad to start the demo program. If the HyperTerminal program has been
closed, double click on the Sensor Demo icon to start the demo program.

LUXMETER Demo Program:

The STK Monitor includes a demo program that shows a metering application. The application hardware
consists of the light sensor, a trigger button, and a voltage reference for the analog-to-digital converter.

When the program starts, the screen displays demo and the measured light values are shown on the LCD
display (measured in irradiance). The values are updated every 5 seconds. The A on the left side of the
LCD indicates that the shown value is less than one second old. Any keystroke interrupts the demo program
and switches back to the Monitor/HyperTerminal program. If the STK is disconnected with the demo running,
the program will run until a mounted battery is discharged. To correctly exit the program push the <ESC>
key.

Voltage Reference

Trigger Button / Light Sensor

Dic_,{tal/ A0

NE2EE
K — 8 8)

+—
Jer

Figure 1-9. LUXMETER Demo Program
1.2.10 Executing a Program with the STK

To execute a program, write a test program or use the gs_stkl.asm file, which is located in the
C:\ADT430\STK\EXAMPLES directory. Figure 1-11 is the Getting Started demo program.

NOTE: Programming Hint
During development, a program should reside in the free RAM area (240h-3FFh for the
MSP430x320, and 272h-50Ch for the MSP430x330) making program modification during
debug phase possible. Any code written to the device’s EPROM area on the STK cannot be
erased. The stack pointer for the MSP430x33x device resides at 005DEh.

How to use the command line parameters of the assembler:
The default command line parameters of the assembler (asm430.exe) are -z and -I. These

parameters are set in the Properties of the Assembler icon after installation. For further
information on command line parameters see the Assembly Language Tools User’s Guide.

To change the parameters, select the ASM430 Assembler icon with one left mouse click. Click on
the file menu in the Windows Program Manager and select the Properties command. Select the
shortcut tab. Depending on the version of Windows being used, the screen will show the following
dialog on the screen:

Command

ASM430 Assembler Properties

C:HADT430NA5 MAASMA30.EXE | 2

CAADT 4308 TEAERAMPLES|

Nomalwindow g

_BndTaget. | Chamgelcon. |
ok | cowel | ooy |

Figure 1-10. Properties

NOTE: File | Properties...
If the installation is not changed, the parameters -z and -1 will be added to the target’s statement.
If the Start in: properties are adjusted to the source code directory, the path of the source file

should not be entered.

1-13

EEE Ik o R R R ok o kO R R R o kO R kR SRR Ik R R SRR o

;Getting Started 1 Deno Program

CEE R O S I O O I S O

SI'M

RAM ori g
SP orig

; —— Control

| E1
| E2
| FGL
| F&2
ME1
ME2

WDTCTL
WDTHol d
WDT_wr key

G E

(C© TEXAS | NSTRUMENTS on 2/ 96

. set 0 ;1 = Sinul ator
; 0 = STK/ EVK

. set 00240h ; Free Menory startadress

. set 003DEh ; stackpointer

regi ster definitions

.equ Oh

.equ Olh

.equ 02h

.equ 03h

.equ 04h

.equ 05h

.equ 0120h

.equ 80h

.equ 05A00h

.equ 08h

EEE R ok Rk R b o bk O Rk R kS R IR R o kS b o R R o kb O R R

;Reset : Initialize processor

CE R O S O I O O I O O kI
)

; —— O ear

File gs_stkl.

. sect
RESET
MOV
MoV

Speci al

MOV. B
CLR. B
CLR. B
CLR B

JMP
asm

“MAIN" ,RAM orig

#SP_ori g, SP

#(WDTHol d+WDT_wr key) ,

Functi on Registers
#08h, |E1
| E2
| FGL
| F&
$

&WDTCL

’

initialize stackpointer
St op Wat chdog Ti ner

I Monitor !

Endl ess Loop

Figure 1-11. Getting Started Demo Program

Use the assembler icon in the ADT430 Program Folder to assemble the gs_stk1.asm file, which is located
inthe C:\ADT430\STK\EXAMPLES directory, and is shown in Figure 1-11. Ensure that the Startin: property
of the assemble icon is set to the source directory (C:\ADT430\STK\EXAMPLES). Click on the ASM430

Assembler icon.

¥
S5M430
&azembler

The following screen will appear (the version number, date, and copyright date may differ from that shown
below):

CoAD T TSR S bl Tl

LD Macro Assembler Uersion 1.8 [89796]
iopgright (c] 1995, 1996 Texas Insktruments Imcorporated

| E L

Soprce Fille [.asm]:

* |

Figure 1-12. ASM430 Assembler Window

1-15

Enter the source name gs_stk1 and press ENTER. This will cause the assembler to assemble gs_stkl.asm
into gs_stk1.txt. The following display will appear:

File / Source

B (Inactive C-\ADT430\ASM\ASM430.EXE)

HEP43l Macro Assembler Uersion 1.88 [B9/94]
Copyright {c) 19951994 Texas Instruments Incorporated

Source File [.asn]: gs stk

FASE 1

PRASS 2

sections = & begin eni
texk unipitialized
data unipitialized
55 uninitialized
HAlH L] et 1

Tize of initialized data: BFCh

Assenbler run completed For gs_stk1.asm *®

1]

Figure 1-13. gs_stkl.asm Window Display

The assembler output file is named gs_stk1.txt. This file is created only if the assembler is invoked with the
option -z. To verify that the gs_stk1.txt file was created, check the ADT430\STK\EXAMPLES directory.

An additional listing of gs_stk1.Ist is created when the option -l is used. To review the gs_stk.Ist output,
double-click on the file name and view using an appropriate viewer. Figure 1-14 is a listing of gs_stk1l.asm:

MSP430 Macro Assenbl er Version 1.08 [09/96] Tue Jun 30 07:20: 38 1998
Copyright (€ 1995, 1996 Texas |nstrunents |ncorporated

c:\ adt 430\ st k\ exanpl es\ gs_st k1. asm Page 1

1-***
2;CGetting Started 1 Deno Program (C TEXAS | NSTRUMENTS on 2/ 96

3- EE R S S S S I S R R S O
)

4
5;*** Set this variable to '1" for the use on the Sinul ator***

6 00 SIM . set 0 ;1 = Sinmulator
7 ; 0 = STK/EWK
8 0240 RAM orig .set 00240h ; Free Menory startadress
9 03de SP orig . set 003DEh ; stackpoi nter
10

11 ;—— Control register definitions

12

13 00 | E1 . equ Oh

14 01 I E2 .equ 01h

15 02 | FGL . equ 02h

16 03 | FQ . equ 03h

17 04 MEL .equ 04h

18 05 VE2 . equ 05h

19

20 0120 WDTCTL .equ 0120h

21 80 WDTHol d .equ 80h

22 5a00 WDT_wr key . equ 05A00h

23

24 08 G E .equ 08h

25

26 R I S S O O S R O O
’

27; ; Reset : Initialize processor

28 LRk b S S Rk O S
’

29 0240 .sect “MAIN' ,RAM orig
30 0240 RESET
31 0240 403103de MOV #SP_ori g, SP ; initialize stackpointer

32 0244 40b25a800120 MOV # (WDTHol d+WDT_wr key) , &WDTCTL
; Stop Watchdog Ti ner

33

34 ; —— Clear Speci al Function Registers
35 024a 42f20000 MOV. B #08h, | E1 ; I Monitor !

36 024e 43c20001 CLR B |E2

37 0252 43c20002 CLR B |FGL

38 0256 43c20003 CLR B |IF&

39

40 025a +3fff JMP $; Endl ess Loop

No Errors, No War ni ngs
gs_stkl.| st

Figure 1-14. gs_stkl.asm

1-17

Next, the object file gs_stk1.txt will be downloaded to RAM of the MSP430-STK/EVK.

The PC downloads the object file gs_stkl.txt to RAM of the MSP430_STK/EVK. The PC uses the
HyperTerminal to communicate with the Monitor Program in the EVK/STK EPROM or ROM.
Windows95 (NT) provides a terminal emulator icon under Start/Programs/Accessories.

Double-clicking with the mouse on the STK430 terminal icon also starts the HyperTerminal. The STK430
icon is located under the ADT430 program group.

Serial communication is set up for the STK/EVK as needed. When the serial interface of the STK/EVK is
connected to the COM2 port of the PC, the LCD display on the STK/EVK will show MSP430, and the Monitor
in the MSP430 device will send the following string:

“ & 9TK1W35 - HyperT erminal
Eile Edit Miew LCall Transfer Help
VBP—STK430A320 1=
>_
[« | ,
|Eu:unneu:teu:| 0:01:23 |.-'1'-.ut|:| detect Auto detect SCROLL ||:.-'3.P'S -

Figure 1-15. Terminal Window

Open the pulldown menu Transfer in the HyperTerminal to load the program using the RS232 into the
STK/EVK, as shown in Figure 1-16. Select the Send Text File menu item.

NOTE:
. perl e 5 - | O} =
File Edit “iew Calki@Zeg Help
0|z @|$| end Text File
Receive text file... ﬂ

View Text File...

Send Binary File...
Receive Binary File...

I | on
|Eu:unneu:teu:| 00512 |.ﬁ.ut|:| detect Auta detect SCROLL |E.-'-‘-.F'S oz

Figure 1-16. Terminal Transfer
NOTE: The help menu can be displayed by typing an h.

1-19

Select the assembler output file gs_stk1.txt in the examples directory from the Send Text File . . dialog box.
Figure 1-17 shows the HyperTerminal screen displaying the following data after loading gs_stk1.txt into the
STK/EVK.

S TK1W35 - HyperT erminal

D=l 5|5 | &

Init

MBP-STK430A320

>@?240

31 40 DE 03 B2 40 80 5A 20 01 F2 42 00 00 C2 43

01 00 C 43 02 00 C2 43 03 00 FF 3F

q

>downl oaded _PC_ _SP_ _SR_

reg 0000 4204 03de 0008 0000 f48c cd9f 0069 000e
reg 0008 : 0c62 4071 0000 ffdO 2051 0el0 O8ac f84e

Figure 1-17. HyperTerminal Display

1-20

In the HyperTerminal , type rO <ENTER> to modify the program counter of the user program. The program
displays the current content of r0. Next type 0240 <ENTER> to set the start address as defined in
gs_stkl.asm. Exit the modify register mode by pressing the <ESC> key.

Each time the SPACE bar is pressed, the program executes one single step and the program displays the
registers contents. Typing a g followed by <ENTER> causes the program to continue from the current
address stored in the program counter. Pressing the <ESC> key stops the program.

NOTE: Single Step
The single step command should only be executed if the program counter points to an
instruction in the RAM. Otherwise this command acts like a go command.

“g STK1W35 - HyperT erminal

File Edit “iew Cal Transfer Help

>@240 =]
31 40 DE 03 B2 40 80 5A 20 01 F2 42 00 00 C2 43
01 00 C2 43 02 00 C2 43 03 00 FF 3F

q
>downl oaded _PC__SP_ _SR_
reg 0000 4204 03de 0008 0000 f48c cd85 2ed4 10de
reg 0008 0c42 4068 0000 ffdO 2051 0Oel0 08ac b8
>r0
=reg 0000 4204 0240
=reg 0001 03de

reg 000: 0008
>step
>executed _PC_ _SP_ _SR_
reg 0000 0244 03de 0008 0000 f48c cd85 2ed4 10de
reg 0008 0c42 4068 0000 ffdO 2051 0elO 08ac b842
>go.
>user break _PC_ _SP_ _SR_
reg 0000 025a 03de 0008 0000 f48c cd85 2ed4 10de
reg 0008 0Oc42 4068 0000 ffdO 2051 0el0 08ac b842
>

-

I — o
|Eu:unneu:teu:| 0:12:56 |.¢.utu:- detect |.-'1‘-.ut|:| detect SCROLL |E.-'-‘-.F'S 4

Figure 1-18. Terminal | execute gs_stk1.txt

Another way to start this program is to write the start address (in this instance 0240h) into memory location
03FEh. Each time the u user command is executed or the reset button is pressed, the start address (in this
instance 0240h) is written to the user program counter. Switch to the word mode by entering a w, and then
enter m3fe and <ENTER>. Now the start address can be entered (in this instance 0240), and press
<ENTER> and <ESC> to exit. Pressing u and then g starts the program.

NOTE: Use of the examples in MSP430 Simulation Environment
If the examples are used in the MSP430 Simulation Environment, the SIM constant (located
at the top of the assembler code) must be set to 1.

1-21

1.2.11 How to Use Breakpoints

Continue the Getting Started exercise by assembling and downloading the file gs_stk2.asm in the examples
directory as described previously.

This program includes a section for the reset vector, so the program counter is initialized after the download
and each time a user performs a reset.

EEE R S R R S I R I R R O R R R S S R

; Interrupt vectors

EEE S S O R S S R S R S S O O O

p w0 N PR

6.

. sect “I'nt_Vect”, USER END-1
.word RESET ; POR, ext. Reset, Watchdog
.end

Start the program by typing g <ENTER>. The display indicates 0, then 1 on the LCD.
Press the <ESC> key to stop the program.
Type u <ENTER> to execute a user reset.

Set the breakpoint by typing s, and then 0264 (address) <ENTER>. This breakpoint stops the
program prior to changing the display.

Type s <ENTER> to stop the program. It stops prior to changing the display. Step through the
program by pressing the space bar showing how the display changes.

Clear the breakpoint by typing c, and then 0264 (address) <ENTER>.

Figure 1-19 shows these commands as they appear on the display.

1-22

Enter The g-command to start the program

Press <ESC> to Interrupt the program

Enter the u-command to execute a user reset

\Enter the address of the breakpoint

// Enter the s-command to set a breakpoint

“& STE1'W35 - HyperT erminal

SR

0008 0000 f48c 0010 0000 15de
0000 ffd0 2153 Oel4 28ad feff

0000 0000 15de
0000 ffdO 2153 0eld 28ad 34af
f48¢c 0000 0000 15de
2153 0el4 28ad 34af
>
>go_
>BP\halted PC__SP_ SR
re 000 0264 03de 000b 0000 f48c 0000 0000 15de
reg \0Q08 0e62 404d 0000 ffdO 2153 0el4 28ad 0000
>ste
>>ekeguted _PC_ _SP_ _SR_
reg\00Q0 026a 03de 0008 0000 f48c 0000 0000 15de
reg 000 0e62 404d 0000 ffdO 2153 0el4 28ad 0000
>
| R =
4| N\ v
|Eu:unneu:teu:| I:I:EI'I:\)%'I \ \|.-'1'-.ut|:| detect Auta detect SCROLL |E.-'-‘-.F'S |NL|M‘£*

Enter the g-command to start the program
Automatic stop on breakpoint

Press the SPACE key to execute a single step

Figure 1-19. Terminal Breakpoint

1.2.12 Accessing the Port on the MSP430x320 STK/EVK
Assemble and download the file gs_stk3.asm in the examples directory, as described previously.

Press the trigger button on the demo to start the program. Press the trigger button to toggle the display

between 0 and 1.
The following instructions are necessary:

i—— | nit Port

BI C. B #01h, PODI R ; Set

PO.0 as i nput

BIC. B #01h, PO E ; Disable PO.0 interrupt

; —— Test of Port

1-23

$ML1 BIT.B #01h, POI N ; Test PO.O
INz $ML1 ; Do nothing if PO.0 | ow

1.2.13 How to Use an Interrupt Routine
Assemble and download the file gs_stk4.asm in the examples directory, as described previously.

1. When an interrupt occurs, the program sends the contents of the program counter and status
register to the stack.

2. Next, the program branches to the starting address of the interrupt routine.
3. The interrupt routine normally ends with the RETI instruction.

4. The RETIinstruction loads the data, which was saved to the stack at the beginning of the interrupt
routine, to the status register and program counter.

5. The program continues from the point of interruption.

Using interrupt routines allows the MSP430 to use low power modes. Selecting a low power mode causes
the program to stop at the current position, and an activity that causes an interrupt automatically clears the
low power mode. The interrupt continues program execution at the starting address of the corresponding
interrupt routine. The RETI loads the saved program data to the status register and program counter.
Loading the status register and program counter clears out the low power mode bits, and the program
continues with the next instruction. Figure 1-20 is the Basic Timer Interrupt routine.

Bl S #CPUOFF, SR ; set CPUoff Bit

R SRR R R R R R R R R R R R R R RS E RS EEEEEEEEEREEEEEEEEEEEEES]
’

; Basic Timer Interrupt routine

EEE Rk kO O kR S Rk R O S R Rk S S S O R
’

Int_BT ; Basic Timer 128 Hz (7.8 ns)

DEC. B lcd_tiner ; decrement SWI cd-tiner

JINZ Int_BT _end ; 10 : no action

Bl C #CPUOFF, O(SP) ; Clear CPUoff Bit

MOV. B #l cd+ival ,lcd_tiner ; =0 : load again
Int_BT end

RETI

To use the interrupts, the interrupt vector table must be set up as follows:

EEE R S I Rk S b o S R R R R S O S S R R o kS S S R R S o S R R S S S R S S

; Interrupt vectors

EEE Rk R R Rk Rk R R b kO R Rk R R O

.sect "int_Vect”, USER END- 31

.word RESET ;' no source
.word Int_BT ; Basic Timer
.word RESET ; No source
.word RESET ;' no source
.word RESET ; No source

.wor d RESET ; No source
.word RESET ;' No source
.word RESET ; No source
.word RESET ;' NO source
.word RESET ; No source
.word RESET ; Nno source
.word RESET 7 NO source
.word RESET ; Nno source

.wor d RESET ; No source
.word RESET ; NM, Gsc. fault
.word RESET ; POR, ext. Reset, Watchdog
.end

Figure 1-20. Basic Timer Interrupt Routine

1-24

Set a breakpoint at address 025Eh, and single step through the program. A longer reaction time can be
expected for any step beyond address 025Eh. At this time, the CPU is off and waiting for the Basic Timer
interrupt.

NOTE: Only two breakpoints may be set at any one time.

9 TK1W35 - HyperT erminal

D=l 53] Dls| &

Figure 1-21. Terminal | Interrupt

1.3 Loading a Program Into the EPROM Via the Terminal

After debugging, the program is ready to load. The program is loaded to the EPROM for the EVK, or ROM
for the STK. The STK requires a programming voltage. The EVK requires a jumper between pins 13 and
14 of the programming connector. Figure 1-22 show the locations for the programming voltage and the
connector jumper.

1-25

Vpp -Input \ —(‘-} |
Apply If

| IS
programming via serial 7] = |_]
por e

/ ;’"1. 2 14 ?——
Vpp fuse F250 mA Sy SR L
Connects to programming Jumper for programming the EPROM
adapter MSP-PRG430x of an EVK with the Monitor

(EVK only)

Figure 1-22. Programming Voltage and Jumper Location

To load a program into the MSP430 EPROM/ROM using the HyperTerminal, the following points must be
considered:

¢ The Monitor code must already be programmed into the EPROM/ROM (only the EVK is supplied
with the code for the monitor program mon_x.txt).

e The STK/EVK 9-pin D-SUB-connector must be connected to the serial interface (the default is
COM2) of the PC.

« The supply voltages of the STK/EVK must be applied by connecting the STK/EVK to the serial
interface of the PC and by connecting the programming supply voltage.

NOTE: Programming the EVK using the Serial Port
Attach a jumper between PIN 13 and PIN 14 on the Programming Adapter connector (see
Hardware Installation in Chapter 9).

Ifthe assembled file gs_stk5.asm is downloaded, the program routines for the LCD, and the interrupt routine
of the previous example will be written into the EPROM/ROM (see sections in the code).

1-26

EEE Ik o R R R ok o kO R R R o kO R kR SRR Ik R R SRR o
’

; Section in EPROM

CEE R O S I O O I S O
’

.sect “PrepLCD’, EPROMoorig
; —— Prepare LCD and Basic tiner

PrepLCD MOV.B #-1h, LCDM ; LCD : Anal og generator on Low
; i npedance 4 Mux active
; all outputs are Seg
MOV. B #057h, BTCTL ; Basic Tinmer : SSEL=0 DI V=0 Reset=1
; ACLK
; 32768/256 = 128 Hz
; (7.8 nms debounce tine)
; LCD frane frequency @4 Mix: 64 Hz
BIS. B #BTME, ME2 ; Enabl e basic tinmer nodul e
BIC. B #040h, BTCTL : Basic Tinmer reset disabled
BIS.B #BTI E, | E2 ; enable basic tinmer interrupt
MOV. B #lcd ival,lcd tinmer ; load SWlcd tinmer
CALL #show cir ; clear LCD
El NT ; enable interrupts
; —— clear LCD
.sect “show_ clr:”, EPROM ori g+50h
show _clr
#15, r5 ; clear display nenory
show clrl
MV. b #0, LCD1-1(rb5)
DEC r5
JINz show clrl
RET

EEE R S S Sk S b o b S R R o kS S R R I b o R R R Sk o S R O S kR S R R S S o

; Basic Timer Interrupt routine

EEE R S R S S R R O R R R R S S L R
’

. sect “Int_BT" , EPROM ori g+100h

I nt _BT ; Basic Tinmer 128 Hz (7.8 ns)
DEC. B lcd_tiner ; decrenment SWI cd-timer
INZ Int_BT end ; 10 : no action
Bl C #CPUOFF, 0 (SP) ; Clear CPUoff Bit
MOV. B #lcd_ival ,lcd_tinmer ; =0 : |oad again
Int_BT end
RETI

Figure 1-23. EPROM LCD and Interrupt Routine

Now these routines can be used in any other program. This section does not have to be downloaded again,
even if the STK/EVK is disconnected from the power supply.

To load a program using the HyperTerminal, double click the terminal icon in the MSP-STK/EVK430 program
group in the Windows Program Manager. The HyperTerminal window appears as follows in Figure 1-24.

1-27

STE1W495 - HyperT erminal

DIz 55| Dls| &

MBP-STK430A320

Figure 1-24. HyperTerminal Window

To load a program into the MSP430 using the HyperTerminal, activate the Transfers/Send Text File. . .

command as shown in Figure 1-25.

STE1W4A5 - HyperT erminal

Transfer

=2 -@-E [SendTextFiIe

Receive text file...
View Text File...

Send Binary File...
Receive Binary File...

Figure 1-25. Transfers \ Send Text File

Figure 1-26 shows the Send Text File dialog box.

1-28

Choose your Text File Press Open to Send TXT File
Send Text File

EECH RN =) -

| Mon_141.bat
2 Fleadme. bt

Tesﬂ t:-:t

I_

Figure 1-26. Send Text File Dialog Box

Figure 1-27 represents a burn fail screen. If an error occurs during the programming of the EPROM, the
screen shows the message burn failed at XXXX. Where XXXX is the address where the programming cycle
failed the first time.

1-29

“# STE1W35 - HypperT erminal

Eile Edit “iew Cal Transfer Help

>@oo00 .:J
F2 43 30 00 F2 40 57 00 40 00 F2 DO 80 00 05 00
F2 CO 40 00 40 00 F2 DO 80 00 01 00 FO 40 80 00
01 42 BO 12 50 G0 32 D2

@050

35 40 OF 00 C5 43 30 00 15 83 FC 23 30 41

@100

DO 83 1F 41 06 20 B1 CO 10 00 00 00 FO 40 80 00
11 41 00 13

@3E0

40 02 00 C1 40 02 40 02 40 02 40 02 40 02 40 02
40 02 40 02 40 02 40 02 40 02 40 02 40 02 40 02

q

>purn failed at c000

>downl oaded _PC_ _SP_ _SR_

reg 0000 0240 03de 0008 0000 f48c c010 0000 0010
reg 0008 0c62 4098 0000 ffdO 2051 0el4 28ac f84e

>

po

N I
|Eu:unneu:teu:| 0:12:56 |.-’-'-.ut|:| detect Buto detect SCROLL |E.fl'-.F'

o
B

Figure 1-27. Burn Failed Message
In the gs_stk6.asm example, in the examples directory, only the addresses of the routines in the EPROM
are labeled. This supports easy use of program sections in the EPROM.

EEE R S S R O S

Addr esses i n EPROM

EEE Ik R R o kO R R R o kSRR kO R R Rk o kO R
’

PrepLCD .equ EPROM ori g ; EPROM Addr ess of PrepLCD
;—— clear LCD
show clr .equ EPROM ori g+50h ; EPROM Address of show clr
; Basic Timer Interrupt routine
I nt_BT . equ EPROM ori g+100h ; Basic Tinmer 128 Hz (7.8 ns)

1-30

2 Monitor Commands

This chapter describes the syntax conventions and the available commands of the Monitor Program.

2.1 Syntax Conventions

e The numbers in brackets [] are optional.

e xIis ahexadecimal address.

¢ nis the hexadecimal number of bytes to show.

e iis the hexadecimal register number.

¢ Only ther, m, and e commands expect <ENTER> or <ESC> commands.

¢ The <ESC> key provides a keyboard interrupt for all command inputs except m.

¢ The half-duplex UART prevents keyboard interrupts while entering a large number of bytes to
show the results of an action.

¢ The registers are named in hexadecimal format from RO to RF.

¢ All addresses or memory/register contents must be entered in hexadecimal mode. Entering
zeros in the MSB is optional.

e Errors in address or memory/register contents in the terminal input must be corrected by
re-entering all four hexadecimal digits. The leading (MSB) zeros are optional.

« The Arrow, Insert, Delete, or Backspace keys can not be used to change an incorrect terminal
input.

2.2 Memory Organization

To use some commands, itis necessary to know the memory locations and their functions (see Figure 2-1).
In memory locations 000h to OFFh, only the byte mode is possible. In memory locations 100h to 1FFh, only
the word mode is possible. Memory locations 010h to OFFh are reserved for 8-bit peripheral modules, and
the locations between 100h and 1FFh are reserved for 16-bit peripheral modules.

FFFFh FFFFh
. INT. VECTOR
FEEOh INT. VECTOR FEEON CTO
FFDFh FFDFh
16 KB EPROM 32 KB EPROM
C000h 8000h
I I I I
I I I I
I I I I
I I I I
03FFh 05FFh
0200h 512 B RAM 0200h 1 KB RAM
01FFh 01FFh
0100h 16 Bit Peripheral Modules 0100h 16 Bit Peripheral Modules
00FFh - - 00FFh - -
0010h 8 Bit Peripheral Modules 0010h 8 Bit Peripheral Modules
000Fh Special Function Register 000Fh Special Function Register
0000h 0000h
MSP430x320 MSP430x330

Figure 2-1. Memory Organization

2-1

2.3 Commands

h The h command displays the Help Command screen shown in Figure 2-2 with the available
commands.

Enter h at the command prompt

S TK1W35 - HyperT erminal

Dig| 5|3 =je| &

hel p
byte, word node
nonitor, user reset
i nspect registers
i nspect nenory
eprom erase check
| oad program
run DEMO
set breakpoi nt
cl ear breakpoi nt
go (free run)
<space> single step
<ESC> exit command
>

Figure 2-2. Help Command

2-2

b,w The b and w commands shown in Figure 2—3 switch to byte or word indication mode. The two
indication modes are only important for the memory inspect command m. The Monitor completes the
entered command (byte or word).

Enter b at the command prompt
Enter w at the command prompt

STK1W195 - HyperT erminal

D] 515 ol =

40 00 80 80 00 00 52 00 41 10 01 06 04 20 02 00

>nD300 10
mem 0300 : 0040 8080 0000 0052 1041 1601 2004 0002

Figure 2-3. Byte, Word Commands

2-3

2-4

The i command, shown in Figure 2—4, initializes the entire monitor program. This command performs
a software reset of the STK/EVK, but is only possible if the monitor is still running. If the contents of
memory location 3DEh are AA55h, the i command will start the user application. Turn off the hardware
supply voltage to return control to the monitor. This clears the bit-pattern AA55h.

Enter i at the command prompt

STE1'%495 - HyperT erminal

Dl 518 ofE| =

MBP-STK430A320

Figure 2—4. Initializing the Terminal Program Command

u The u command, shown in Figure 2-5, sets the user PC to the start vector of the loaded user program.

This performs a user reset of the application. In this example, the start vector of the user application,
located at address 03FEh, is 0300h.

Enter u at the command prompt

& STK1%/95 - HyperT erminal

D] 518 ol =

>user reset _PC_SP_ SR
reg 0000 0300 03de 0008 000uO f48cPlcl4 0069 000e

reg 0008 1a28 400f 0000 ffdO 4040 6803 e2c2 07a0
>

Figure 2-5. User Reset Command

2-5

r[i] The r <ENTER> command, shown in Figure 2—6, without a specific register number, shows all 16 CPU
registers RO to R15. With this syntax, a modification of the register contents is not possible.

Enter r then <ENTER> at the command prompt

5TK1W195 - HyperT erminal

D] 5(8] wole| !
>i it
BP-STK430A320
>r

reg 0000 : 0300 03de 0008 0000 f48c 0010 0069 000e
reg 0008 : 1a28 402a 0000 ffdO 4040 6803 e2c2 07a0l

Figure 2-6. Register Command

2-6

Entering the command with the hexadecimal register number r[i] <ENTER> as shown in Figure 2—7, results

in displaying only the contents of the dedicated register i.

/

Type r5 <ENTER> at the command prompt

“ g 9TK1W35 - HyperT erminal
File Edit Miew LCal Transfer Help
Iﬁl 58] 5] =Y
1=
>r5
reg 0005 : 0010 _
1| I k =
|En:nnnec:ted 0:01:23 |.-’-'-.utn:| detect |.-’-'-.utn:| detect SCROLL |E.-’-¥.P'S,y:

Figure 2—7. Register Specified Command

NOTE: Modification of the Registers R1, R3, and R4
The Monitor Program does not allow the modification of registers R1, R3, and R4. R1 is the
stack pointer and can not be modified because of the internal program structure of the monitor.
R3 is the constant generator register and therefore cannot be modified. R4 is internally used
by the monitor, therefore, modification of R4 by the user application code will overwrite the
correct function in the monitor program and cause improper operation.

2-7

Figure 2—8 shows the procedure for changing data in a register. Write new data into register r[i] by pressing
<ENTER> and the program displays the next register.

Type r5 <ENTER> at the command prompt
Type the new desired register contents and press <ENTER>

9 TKTW35 - HyperT erminal

BP—-STK430A320

>r5

reg 0005 : 0010 ffff
reg 0006 0069

>r5

reg 0005 : 0010 ffff_

Type r5 again to view the new content of the register

If it is not desired to modify additional registers press <ESC>

Figure 2-8. Modify One Register

2-8

Figure 2—-9 shows the procedure to modify an additional register. Press <ENTER>, and the program displays
the next register.

Enter r <ENTER> to show the modified register contents

Press <ESC> here
Modified registers r5, r6

STE1%35 - HyperTerminal

0010 &
0069
000e

0300 03de 0008 0000 f48c aaaa bbbb 000e
9a28 4092 0000 ffdO 4040 6807 e6ca 87a4

Figure 2-9. Modify Additional Registers

2-9

Figure 2—10 shows the proper way to change incorrect entries. Using the Arrow, Delete or Insert keys as
inputs causes unpredictable behavior. After entering an incorrect register content, the entire input should
be entered again. Another method is to press <ESC> and to enter the r[i] command again.

NOTE:

The ENTER key must never be pressed after entering an incorrect input.

To start the register command type r <ENTER>

Type r5 <ENTER> to modify register r5
Incorrect terminal input '$%" &’
/ Correct terminal input to modify r5

File Edit

& STEK1W3h - HpperT erminal

ew/ Call Transfer Hélp

D) 58] ol & /

>i nift =l
P—STK430A320
>r
reg Q000 0300 03d¢ 0008/ 0000 f48c 0010 0069 000e
reg /0008 : 9a28 406c 0000 ffdO 4040 6807 e2ca 87a0
>r5
reg 0005 : 0010 $%& 4567
reg 0006 0069
>r
reg 0000 : 0300 \03de 0008 0000 f48c 4567 0069 000e
reg 0008 : 9a28 406c 0000 ffdO 4040 6807 e2ca 87a0
>
| 2|
T \ e
Connected 0:05:12 \jf.f;iatq-dgta:t.. \uto detect SCROLL [cars 4

\

Enter <ESC>

Figure 2-10. Revise Memory Modification

mx[n] The m command allows the user to inspect (read/modify/write) memory locations. Use the m

command in conjunction with the b or w commands. The b or w command displays the memory as
shown in Figure 2-11.

Enter b at the command prompt

Enter w at the command prompt
Enter m220 20 at the command prompt

“g STEKIWA5 - HyperT erminal

File Edit [/ Yiew/ Call Transfer Help

Dlis] 5|8 | el _

—STKA30A320

>hyte
>nR20 2

m 0220 : 48 00 02 00 20 20 00 08 00 20 00 00 09 00 02 80
mem 0230 : 01 00 00 00 00 OO0 02 00 OO 44 20 00 00 50 00 0O
>wor d
>m220 ‘20
mem 0220 : 0048 0002 2020 0800 2000 0000 0009 8002

mem 0230 : 0001 0000 0000 0002 4400 0020 5000 0000
>

N I e
|Ennnected 0:05:12 |.-’-'-.ut-:| detect Auto detect SCROLL |E.-’-‘n.F'S i

Figure 2-11. Memory Byte, Word Command

The address x shown above as 220 must be entered to define the memory location. The number n, shown
above as 20, is optional. It defines the number of memory bytes that are to be displayed. Entering the m
command without n allows the memory contents at address x to be displayed or modified.

NOTE: Interrupt.
Viewing large memory areas will take some time because the output function to display memory
contents cannot be interrupted while the UART is operating in the half duplex mode.

2-11

Figure 2—12 shows how to modify memory contents. Modify the memory by typing in new data and pressing
<ENTER>. The program displays the next memory location. If no modification is necessary press
<ENTER>. To exit the memory command (mx) press the <ESC> key. Pressing <ENTER> toggles through
memory locations, displaying each new location after <ENTER>.
Switch to byte indication mode
Switch to word indication mode

Show and modify memory location 0300h in byte mode
Show and modify memory location 0300h in word mode
Enter aathen <ENTER>to modify memory
/ Enter bbcc then <ENTER> to modify memory
/
(]] -

. Of x
File Edit /Yiew Cal Trarsfer /Help

40aa bbcc

0400

_ I -
I S 2
Connected 0:06:12 wutodetect |Autodetect |SCROLL [CAPS 4

\

Press <ESC> here
Show only one memory location 0300h in word mode

Figure 2-12. Memory Modification

To revise an incorrect terminal input, perform the following functions as shown in Figure 2-13. Using the
Arrow, Delete or Insert keys as inputs causes unpredictable behavior. After entering an incorrect register
contents, the entire input should be entered again. Another method is to press <ESC> and enter the m
command again. Never type <ENTER> after entering an incorrect input.

Start the memory mode

Incorrect terminal input

Correction
/ Press <ESC>

m 0300 : 31 40

View memory contents

Figure 2-13. Revised Memory Modification

2-13

@x The @x command loads program/data section(s), byte by byte, into the RAM/EPROM. A program
algorithm detects the correct download section (in the RAM or EPROM) and runs automatically. The
transfer can be made by using a keyboard or by file transfer (pull-down menu Transfers/Send Text
File in Hyperterminal program). If download is performed manually, it can be terminated with a q
keystroke. Normally the data associated with the load command is a content of linker or
assembler-generated program/data files.

Figure 2—-14 is an example of the format of such a program/data file:

“& STK1W35 - HyperTerminal

File Edt View Call Transfer Help

0|z 5|3

05|

>@220

C2 43 12 00

32 00 BO 12

72 D7 BO 12
1C D8 30 40
1D 00 12 01
FC 27 16 42

92 12 D4 FF

31 40 00 03

52 12 12 00
11 00 B2 40
F2 41 12 00
@3FE

20 02

q

>downl oaded
reg 0000 :
reg 0008 :

3B
90
OE
52
B2
18
04
B2
52
FF
76

40
D8
D7
02
40
01
3C
40
12
00
FO

PC _SP_ _SR_
0220 0400 0008
0000 2837 0000

B4
BO
BO
06
0B
36
3B
80
11
12
EB

SP

02
12
12
12
09
90
40
5A
00
01
00

92
48
56
F2
14
00
4C
20
F2
16
BO

SR

12

02
FO
01
10

01
40
42
12

BO
BO
FB
56
05
92
30
19
10
7A

FF
12
12
00
42
38
12
40
00
01
D7

F2

72
03
03
3B

20
12
F2

40
D7
D7
00
00
40
FF
02
00
41

0000 f8b8 0010
foc2 fffe fffe

FF 00
BO 12
BO 12
B2 40
66 F2
40 DA
36 41
06 12
F2 42
11 00

0000 0003
fffe fbfe

KN I—

£

| Connected 0:12:56

|.ﬁ.u'n:u detect

|£‘-.uh:| detect

SCROLL

|CAP

oy
B

Figure 2-14. Transfer Data Command

The @x command sets the memory-modification address to the address where program/data files are
stored. All code lines following the @x command represent data in byte format. These bytes will be copied
sequentially to the specified section address. The g command terminates the section input and returns the
control back to the Monitor Program.

NOTE: Programming an EPROM

While programming the EPROM, be sure that the file being used has the correct section
addresses and contains the correct program/data. Programming an EPROM location once will
prevent a second programming at this location in the STK. For more information see the
Hardware Installation section in this manual.

exn

The EPROM erase check (ex n) command verifies that the EPROM is empty. The EPROM is empty
if the contents of all EPROM-memory locations are FFh. The x represents the starting address to
verify that the EPROM has been erased. The n portion of this command will show the number of
bytes that have been erased. The Monitor ceases checking the EPROM if a memory location other
than FFh is detected and displays that memory location as shown in the Figure 2-15.

Enter mC040 20 <ENTER> to start memory mode (to show 20h)

Check if there is memory space at C040h for 20h Words

/Memory location C040h is not erased and is displayed

“z 9TE1W35 - HyperT erminal
Eile Edit Miew /Call Transfer Help
0|z 515 s
2l
ffff ffff ffff ffff fEFfFf fFEFf FEFEf fPFfF
4035 000f 43c5 0030 8315 23fc 4130 ffff
ce040 20)
mem c050 : 4035>
1| I F
|En:nnnec:ted 0:01:23 |.-’-'-.utn:| detect Auto detect SCROLL |E.-’-¥.P'S,y:

Figure 2-15. EPROM Erase Check Command

2-15

The s command allows a breakpoint to be set. The program supports the capability of having two
breakpoints. Breakpoints may be set only if the program is in RAM. Typing an s shows the
breakpoints that are currently set. Figure 2—16 shows how to enter the location of the breakpoint.
Set a breakpoint by Typing ‘s’
Enter the location of the breakpoint: 24e

9TK1W3I35 - HyperT erminal

BP—STK430A320

>Set Bkpt 0000 0000 24e

Figure 2-16. Location of a Breakpoint Command

Both breakpoint addresses are displayed. A breakpoint address that contains all zeros indicates that no
breakpoint is set. Enter the address to set a breakpoint. Pressing the <RETURN> key activates the
breakpoint at that address.

2-16

The address of the two breakpoints should not be identical. Only two breakpoints are supported, a third
breakpoint cannot be set. In order to set another breakpoint, one breakpoint has to be cleared first with the
¢ command. Figure 2—17 shows the breakpoint after entry.

To set a breakpoint type s

Enter the location of the breakpoint: 24e <ENTER>

#STK1'W195 - HyperT erminal

>Set Bkpt 0000 0000 24e
>Set Bkpt 024e 0000

Press <ESC> here

Figure 2-17. Set a Breakpoint Command

2-17

c The ¢ command is used to clear a breakpoint. Typing ¢ shows the set breakpoints, as shown in
Figure 2-18.

Clear a breakpoint by typing a ‘c’

#5TK1W35 - HyperT erminal

D] 5(5] s &

>Clr Bkpt 024e 0000

Figure 2-18. Clearing a Breakpoint Command

To clear one of the breakpoints (other than zero), it is necessary to enter the associated address. Typing
the <ENTER> key after entering the address clears the breakpoint. See Figure 2-19.

To clear a breakpoint type ¢

To clear a breakpoint enter the location: 24e <ENTER>

STK1W4A5 - HyperT erminal

>Clr Bkpt 024e 0000 24e
>set Bkpt 0000 0000

Press <ESC> here

Start set breakpoint mode by typing s to show the cleared breakpoint

Figure 2-19. Clearing a Breakpoint Location

2-18

The g command starts/restarts the user application that is loaded into RAM. The system retrieves
the start vector of a user’s application from memory location (3FEh on the 320 STK/EVK, 5FEh on
the 330 EVK) if a new program is loaded, or after executing a PUC command or a user reset.
Otherwise, the program execution continues with the actual PC (R0). Return to the Monitor occurs
after pressing any key on the keyboard. The g command functions as stated if the user application
is not running in an interrupt routine (GIE=0 if interrupt nesting is not allowed), and the user
application has not disabled the GIE bit.

& STEK1WA5 - HpperT erminal =] B3
File Edit Yiew LCall Transfer Help

D] 5(3] olE| =
>init =]

MBP-STK430A320

>@300
31 40 00 04 B2 40 80 5A 20 01 07 43 17 53 FE 3F
@3FE
00 03

q

>downl oaded _PC_ _SP_ _SR_

reg 0000 : 0300 03de 0008 0000 f48c 1di14 0069 000e
reg 0008 : 1la28 4032 0000 ffdO 4040 6803 e2c2 07a0
>go. . _

\

. — e

|EDnnect%dEl:E|5:12: |:5:utu:u'detect |.r1'-.utu:detect SCROLL |E.-'-‘-.F'S ;5

\

Enter g to start the user application

Figure 2—20. Starting the Application Command

2-19

2-20

3 Monitor Restrictions

3.1 Register R4

The Monitor Program uses the R4 register internally to return data from the user application to the
Hyperterminal. Modifications to the value stored in R4 will result in unexpected behavior of the Monitor
Program. The Monitor command r, to change the register contents, is not supported for R4. The register R4
can be modified by the user application code. Consequently, the user should exercise caution when using
this register.

It is possible to interrupt the user application by pressing the ESC key on the keyboard. This works only if
the GIE bit has not been cleared. One exception is possible in spite of a cleared GIE flag. If the user
application runs on a breakpoint, program execution will branch to the Monitor as the program runs.

Problems may occur if the user application uses most of its time in interrupt routines. While the application
is servicing an interrupt, a new interrupt can only occur if the GIE bit has been set. The GIE bit is set only
if the first interrupt routine explicitly sets it within the routine itself, thereby allowing for nested interrupts.

Starting the user application with the Monitor causes the Monitor Program to set the GIE bit. If the GIE-bit
was reset before in the user application, it will remain set. This ensures the availability of the RS232
communication but influences the user’s software application. The particular interrupts can be enabled with
their associated interrupt flags.

3.2 The Instruction CALL R4

Inthe user application, itis possible to return to the Monitor with the instruction CALL R4. The monitor should
be started prior to this so that the contents in R4 are valid and to initialize the Monitor.

A single step should not be executed over the CALL R4 instruction because this will cause unpredictable
behavior of the Monitor. The following code is an example that uses the instruction CALL R4.

NOTE:
Execute the single step command only if the program counter points to an instruction in
the RAM.
WDTCTL .equ 0120h
WDTHol d . equ 80h
WDT_wr key . equ 05a00h
. text 0240h
RESET: MOV #03DEh, SP
MOV # (WDTHol d+WDT_wr key) , &ADTCTL ; stop Wat chdog
; Timer
MOV #0h, R7
WAI T: I NC R7
CALL R4
. sect “I'nt_Vect” , 03FEh
.word RESET
.end

Figure 3-1. CALL R4 Instruction Code

3-1

3.3 Peripheral Hardware/Registers

Do not modify the following peripheral registers and bits because UART operation uses these register and
bits.

Table 3-1. Peripheral Registers and Bits

REGISTER ADDRESS BITS
TCDAT 44h All
TCPLD 43h All
TCCTL 42h All
IFG1 02h 3
IE1 00h 3
POIES 14h 1,2
PODIR 12h 1,2
POIFG 13h 2
POIE 15h 2

3.4 RAM Locations for the Monitor

The Monitor Program uses eighteen bytes of RAM, from address 200h to 212h, within the RAM area of the
MPS430x32x (which ranges from 200h to 3FFh for the MSPx32x family, and 200h to 5FFh for the MSPx33x
family). The user application should not use this memory area.

The Monitor Program needs no stack while running the user application. If the user application returns to
the Monitor Program using a breakpoint, single step, or keyboard interrupt, an additional stack size of 32h
bytes is needed for the Monitor Program. This Monitor Program stack is always set up on the top of the user
stack. When returning to the user application, the Monitor Program clears the entire user stack. If the user
program is inactive and the Monitor Program is running, 50 bytes are put onto the stack. The stack pointer
shown in Figure 3-3 reflects the application situation, not the actual Monitor stack pointer. In these 50 bytes,
all register data valid in the application program is saved to be restored when the user application is
reactivated. Returning to the user application, the 50 bytes used are freed, and the stack pointer is pointing
to the user application.

3-2

In most cases, it is efficient to initialize the user stack which is allowed to grow (downwards) until it reaches
the address 270h (26Fh—32h=23Eh). Thus, the resulting size of the maximum user stack is 16Dh
(3DCh-272h=16Ah) on the MSP430x325 family and 360h (5DCh—272h = 36Ah) on the MSP430x33x family.

Interrupt
Vectors

Identification Bit Pattern

Maximum Program,

Stack and Data Size

of User Application
Is 3FEh — 272h

i Stack Needed From
ROM Monitor

Temporary
Burn Routine

RAM Area Always Reserved
From ROM Monitor

RAM Area 272h—3FEh for
the MSP430x320

3FEh

3EOh
3DEh

3DCh

272h
23Eh+32h = 270h

23Eh
23Dh

214h
212h

200h

Interrupt
Vectors

Identification Bit Pattern

Maximum Program,

Stack and Data Size

of User Application
Is 5FEh — 272h

i Stack Needed From
ROM Monitor

Temporary
Burn Routine

RAM Area Always Reserved
From ROM Monitor

RAM Area 200h-5FFh for
the MSP430x330

Figure 3-2. RAM Area 272h to 3FEh

5FEh

5EOh
5DEh

5DCh

272h
23Eh+32h = 270h

23Eh
23Dh

214h
212h

200h

3-3

The user application data is located within the RAM area from 272h to 3FEh (5FEh for 33x). The locations
used statically (200h to 214h) and dynamically (stack) by the Monitor Program limit the size of the available
RAM. Due to limited size, two memory configurations are recommended as shown in Figure 3-3.

User application active

i Interrupt Vectors

3FEh

3EOh

Identification Bit Pattern

3DEh

SP

Address Range for
Program, Stack and
Data of User
Application is 3DCh
to 214h

NOTE:

The User
Application Does
Not Set the Stack

Pointer SP

v

3DCh

214h

RAM Area Always Reserved
for ROM Monitor

212h

200h

EPROM) so it can be executed.

SP

NOTE:
The identification bit pattern determines if the monitor code or a user’s code (program)
is executed after a power-up or hardware reset (PUC). See Section 5.2. The temporary
burn routine addresses are allocated for the EPROM burn routine, which must run in the
RAM. When data is written into the EPROM (program memory), code in the EPROM
cannot be executed. Therefore, the burn program has to be in RAM (loaded from the

User application inactive,

Monitor Program active

single step, breakpoint,

<ESC>

l Interrupt Vectors

3FEh

3EOh

Identification Bit Pattern

3DEh

Stack Used by
Application

|

Stack Needed From
ROM Monitor, 50 Bytes

Maximum Program,
Stack and Data Size
of User Application
Is Reduced by 50
Bytes, After Return
to the Monitor
Program

214h

RAM Area Always Reserved

For ROM Monitor

212h

200h

Figure 3-3. RAM Area 200h to 3FFh for the MSP430x32x Family

In most cases it is efficient not to initialize the user-stack, but to use the stack pointer set by the monitor.

3-4

3.5 Writing Data Into the EPROM

When data is written into the EPROM address range, software code is written into RAM locations 214h to
23Dh. All addresses 1000h or higher are assumed to be EPROM. After the write operation is completed,
the code inthe RAM s no longer needed. The code is written into RAM when a write into the EPROM address
range is performed. Ensure that the data in these locations are not needed when the EPROM write code
is temporarily loaded into those locations.

A write into EPROM can be done when an application program is executed, or when the monitor is active.
For example, when the mx[n] command is executed:

— T

No write to EPROM active

‘V_/

Available RAM for Available RAM for
User Application User Application
23Eh
Temporary 23Dh
214h Burn Routine 214h
RAM Area Always Reserved 212h RAM Area Always Reserved 212h
for ROM Monitor 200h for ROM Monitor 200h

Figure 3—4. Temporary Burn Routine in the MSP430x32x RAM Area

User application data for the MSP430X33x family should be located within the RAM area (from 200h to
5FFh). The locations used statically (200h to 214h), and dynamically (stack) by the Monitor Program limit
the size of the available RAM.

NOTE:
The Identification Bit Pattern defines if the monitor code or a user’s code (program) is
executed after a power-up or hardware reset (PUC). See Section 5.2. The Temporary
Burn Routine user’s addresses are allocated for the EPROM burn routine which must
run in the RAM. When data is written into the EPROM (program memory), code in the
EPROM can not be executed. Therefore, the burn program has to be in the RAM (loaded
from the EPROM so it can be executed).

3-5

3-6

4 Treatment of Interrupts

This chapter describes the special treatment of interrupts in the Monitor environment.

4.1 Use of Interrupts in the Monitor Environment

The interrupt structure of the MSP430 is fully supported by the terminal program with one exception, the NMI
interrupt has the same interrupt vector as the RESET interrupt.

There are no restrictions on the interrupt flags, but certain restrictions apply to the interrupt vectors. It is
impossible to program the interrupt vectors located in the address range FFECh to FFFEh, because they
are preprogrammed in the EPROM area and can not be modified. The Monitor Program has the flexibility
to allow a second set of interrupt vectors in the RAM address range 3EOh to 3FEh (5EOh-5FEh for the
MSP430X33x family) as shown in Figure 4—1. The Monitor Program branches program execution if an
interrupt occurs to the associated interrupt vector located in the second interrupt vector address range. The
instruction used is an absolute BR command (i.e., BR &0FFEAh for the ADC interrupt). Therefore, during
the use of the Monitor Program, the interrupt vectors are moved by an amount of FCOOh below their normal
location.

Reset FFFEh
NMI

PO0.0 Interrupt

PO0.1 Interrupt

Reset 03FEh
NMI

Interrupt P0.0 Interrupt

PO.1 Interrupt

Watchdog Interrupt

Watchdog Interrupt

Interrupt

ADC Interrupt

Basic Timer Interrupt ADC Interrupt

Port0.2 to 0.7 Interrupt FFEOh

Basic Timer Interrupt
Port0.2 to 0.7 Interrupt 03EOh

Figure 4-1. Monitor Interrupts for the MSP430x32x Family

Figure 4-2 shows the handling of a P0.0 interrupt for the MSP430X32x family. For the MSP430X33x,
replace address 03FAh with O5FAh.

PO0.0 Interrupt

FEFAh [XXXX
\ xxxX | BR & 03FAh 4\

03FAh | YYYY

YYYY

YYYY Is The Start Address
Of The Interrupt Service Routine

Figure 4-2. P0.0 Interrupt Example

The number of cycles an interrupt is additionally delayed in the Monitor Program depends on the type of
interrupt received.

Table 4-1. Type of Interrupt

TYPE OF INTERRUPT DELAY (NUMBER OF CYCLES)
RESET 14
IN_PO1 10
All other interrupts 3

NOTE: Status Register Setting Exception After Interrupts
After entering the interrupt service routine of a Reset or a P0.1 interrupt, the zero-bit Z
and the carry-bit C in the status register SR are not reset as expected.

The interrupt vectors and the associated interrupt vector addresses of the MSP430E325 device are shown
in Table 4-2 (or Table 4-3 for the MSP430E33x).

4-2

Table 4-2. Interrupt Vectors for the MSP430x32x Family

INTERRUPT

SYSTEM

WORD

INTERRUPT SOURCE FLAG INTERRUPT | ADDRESS PRIORITY
Power-up external reset watchdog rsTIT. woit Reset 3FEh 15, highest
NMI NMIIFGT Nonmaskable 3FCh 14
Oscillator fault oFIFGT Nonmaskable
Dedicated I/0 P0.0IFG Maskable 3FAh 13
Dedicated 1/0 PO.1IFG Maskable 3F8h 12

Maskable 3F6h 11
Watchdog timer WDTIFG Maskable 3F4h 10
Maskable 3F2h 9
Maskable 3F0h 8
Maskable 3EEh 7
Maskable 3ECh 6
ADC ADCIFG Maskable 3EAh 5
Timer port ¥ Maskable 3E8h 4
Maskable 3E6h 3
Maskable 3E4h 2
Basic timer BTIFG Maskable 3E2h 1
1/0 Port 0 P0.27IFGT Maskable 3EOh 0, lowest
T Multiple source flags
 Timer Port interrupt flags are located in the module
Table 4-3. Interrupt Vectors for the MSP430x33x Family

INTERRUPT SOURCE INTEBE(;JPT IN?'YESRTREUN;’T AI\DNDORREDSS PRIORITY
Power-up external reset watchdog rsTIt woDit Reset 3FEh 15, highest
NMI NMIIFGT Nonmaskable 3FCh 14
Oscillator fault OFIFGT Nonmaskable
Dedicated I/0 P0.0IFG.0 Maskable 3FAh 13
Dedicated I/0O P0O.1IFG.1 Maskable 3F8h 12

Maskable 3F6h 11
Watchdog Timer WDTIFG Maskable 3F4h 10
Timer A cciFcott Maskable 3F2h 9
Timer A TIFGTT Maskable 3FOh 8
UART Receive URXIFG Maskable 3EEh 7
UART Transmit UTXIFG Maskable 3ECh 6
ADCIFG Maskable 3EAh 5
Timer Port b Maskable 3E8h 4
1/0 Port P2 P2IFG.07t Maskable 3E6h 3
/O Port P1 P1IFG.07T Maskable 3E4h 2
Basic Timer BTIFG Maskable 3E2h 1
I/0 Port 0 P0.27IFGT Maskable 3EOh 0, lowest

T Multiple source flags

% Timer Port interrupt flags are located in the module

4-3

4-4

5 Half Duplex Monitor Software UART

The Monitor Program provides several functions for handling serial data communications using the RS-232
interface. The user can call these functions by using the associated vectors in the terminal program. Use
the absolute address mode to call these functions. For example, a possible syntax for preparing the half
duplex software UART to receive characters is:

CALL &FFD6h ;in address FFD6h the vector of RX Prep is stored
another possible syntax is:

RX_Prep . equ OFFD6h
CALL &RX Prep ;in address FFD6h the vector of RX Prep is stored

The STK/EVK software UART cannot be used for binary transfers for the following two reasons:

* The protocol has only seven data-bits.

* A zero cannot be received because this is the detection scheme for no-character-received.
The vectors related to these functions are stored in the following locations (see Table 5-1):

Table 5-1. Function/Vector

FUNCTION NAME | VECTOR ADDRESS FUNCTION PURPOSE
TX_Word OFFDOh Transmit 1 space and a four digit hex number in R11
TX_CharJr OFFD2h Transmit 1 char in TXData (20Eh)

TX_Tablet OFFD4h Transmit table (string address should be in R11)
RX_PrepT OFFD6h Prepare halfduplex software UART for receive
TX_Prept OFFD8h Prepare halfduplex software UART for transmit
INT_RXTX OFFDAhQ Interrupt service routine for receive and transmit
Ret_Mon OFFDCh Return to the Monitor with a br Ret_Mon statement

1t Calling TX_Char, TX_Table, TX_Prep, or RX_Prep enables the GIE flag in the status register (SR). The GIE bit remains
set even if it was disabled before calling these routines.

5.1 Transmission Parameters of the Software UART
The transmission parameters of the MSP-STK/EVK430x320 and EVK430x330 are:

e 2400 Baud

e 1 start-bit

e 7 data-bits

e 1 parity-bit (even)
e 1 stop-hit

The RTS and DTR pins of the serial port must be set to high to provide the supply voltage for the STK/EVK
if no battery is assembled. This is done automatically in the Windows HyperTerminal program. If other
communication software is used, the specified pin levels must be met.

5.2 ldentification of Bit Pattern AA55h

The interrupt service routine INT_RXTX is used for the receive and transmit function. If another INT_RXTX
service routine is being used, the identification bit pattern AA55h must be stored in memory location 3DEh
(5DEh for the MSP430x33x family). Otherwise, the INT_RXTX service routine will never branch program
execution to the vector located in the user interrupt vector table. This pattern remains in memory until it is
changed by the program or the power is switched off.

5-1

The flow chart in Figure 5-1 I illustrates the entry point of the INT_RXTX interrupt service routine:

5-2

INT_PO.1

Identification ?
Contents Of Memory
Location 3DEh
= AA55h

yes

v

PO0.1 Interrupt Continues Program Execution
Upon The User Interrupt Vector Stored In
Memory Location 3F8h

v

User Interrupt Service Routine Branches
To INT_RXTX Service Routine From
ROM-Monitor ?

(First Instruction = CALL &0FFDAh ?)

v

> Start Of Monitor Interrupt

A4

Service Routine INT_RXTX

Receive/Transmit Interrupt Service
Routine

User Interrupt
Service Routine is
Continued

Y

Half Duplex Software

>

UART Prepared For
Receive or Transmit ?
(PREPRX or PREPTX)

RX

\4

Interrupt Service Handler For Transmit

v

Interrupt Service Handler For Receive

Figure 5-1. Identification of Bit Pattern AA55h for the MSP430X32x Family

NOTE: Init Command
Do not use the Monitor init command out of the terminal emulator while the bit pattern
AA55h is stored in memory location 3DEh on the MSP430X32x, or 5DEh on the
MSP430X33x family. Otherwise, the user application with the reset vector stored at 3FEh
(5FEh for the MSP430X33x family) will be started.

To use the INT_RXTX interrupt service routine, first load the P0.1 interrupt-vector, which is responsible for
the timer interrupt used in the software UART. The P0.1 interrupt vector is stored in the user interrupt vector
table at address 3F8h.

The following code is an example of the user interrupt vector table and the associated branch to the
INT_RXTX routine.

UART: br &OFFDAh
RESET: br &OFFFEh
.sect “Int_Vect”,03EOh ; Use O5EOh for the MSP430X33x family
.word RESET ; PortO, bit 2 to bit 7
.word RESET : Basic Tinmer
.word RESET ; No source
.word RESET ; No source
.word RESET ;' No source
.word RESET ;. EOC from ADC
.word RESET ; No source
.word RESET ;' No source
.word RESET ; No source
.word RESET ; No source
.word RESET ; Wat chdog/ Ti mer, Ti mer node
.word RESET ; No source
.word UART ; Address of UART handl er
.word RESET : PO.0O
.word NM ; NM, Gsc. fault
.word RESET ; POR, ext. Reset, Watchdog
end

In this example, all other interrupts will continue program execution at the reset vector of the terminal
program stored at address FFFEh.

NOTE: Identification Pattern AA55h
The identification pattern must be programmed as the last word of the complete download. To
assure this, the section containing only the identification, is the last section in the source file.

5-3

5.3 Special Treatment of <ESC> in the Software UART

The software UART treats a received ESC character in two different ways:

*« The software UART receives the ESC character and stores it at address 210h. The condition,
therefore, is that bit 0 in memory location 200h is reset.

¢ The software UART receives the ESC and returns back to the Hyperterminal. The condition is
that bit 0 in memory location 200h be set.

End of ROM-Monitor
Interrupt Service Routine

Contents of
Memory Location
3DEh is AA55h for
MSP430X32x
(or 5DEh is AA55h
for MSP430X33x)

Bit 0 in Memory yes
Location 200h Set ?

Received Character
is <ESC>

Y vy

Normal Return Out of
INT_RXTX
Interrupt
Service

The Return From Interrupt
is By-Passed
Into ROM-
Monitor

Figure 5-2. Special Treatment of ESC

BI C #01h, &00h ; reset bit 0, because no special treatment of <ESC> is
; want ed

Bl S #01h, &00h ; reset bit 0, because special treatnment of <ESC> is
;. want ed

NOTE: Memory Location 200h
Only bit 0 in memory location 200h may be modified. A modification of the higher bits may result
in an unpredictable behavior of the terminal program.

5-4

5.4 Transmitting One Character

To transmit one character, copy AA55h to memory location 3DEh, or memory location 5DEh for the
MSP430X33x family. Store the character to transmit in RAM-location 020Eh.

™ MoV #0AA55h, &03DEh ;. &0O5DEh for MSP430X33x
MOV. B # a', &TX Data ; put char to TX Data

Call the function TX_Char to transmit the character stored at location 20Eh.
cal | &OFFD2h ; call of TX Char

The function TX_Char includes the call of TX_prep implicit which prepares the half-duplex software UART
to receive. Therefore, it is not necessary to call TX_Prep before calling TX_Char.

5-5

The following code in Figure 5-3 is an example of transmission of the single character s.

WDTCTL .equ 0120h
WDTHol d .equ 80h
WDT_wr key . equ 05a00h
TXCHAR . equ OFFD2h
TXTABLE . equ OFFD4h
PREPRX . equ OFFD6h
PREPTX . equ OFFD8h
I NT_RXTX . equ OFFDAh
TXDATA .equ 020Eh
RXBUF .equ 0210h
.text 0240h
RESET: MoV #03DEh, SP ; use #05DEh on the MSP430X33x
MoV #(WDTHol d+WDT_wr key) , &ADTCTL ; stop Watchdog Ti ner
El NT ; enabl e interrupt
X MoV #0AA55h, &03DEh ; prepare software UART for the use
; in user application
(05DEh FOR MSP430X33x)
MOV. B #' a’ , &TXDATA ; put char to TXDATA
; Bl C #01h, &00h ; use only if no special
; treatnment of ESC is wanted
CALL &TXCHAR :call transmit sub-routine in
;. nonitor
CALL &PREPRX ; prepare software UART for receive
; to get back to nmonitor with ESC
MoV #00h, &03DEh ; prepare software UART only for
; the use in the Hyperterm nal
(05DEh FOR MSP430X33x)
ENDL: JWP ENDL
UART: BR &l NT_RXTX
.sect “Int_Vect”, 03EOh ; (use O5EOh on the MSP430X33x)
.word RESET ;. Reset
.word RESET ;. Reset
.word RESET ;. Reset
.word RESET . Reset
.word RESET ;. Reset
.word RESET ;. Reset
.word RESET . Reset
.word RESET i Reset
.word RESET ;. Reset
.word RESET . Reset
.word RESET i Reset
.word RESET ;. Reset
.word UART : UART Routi ne
.word RESET ; Reset
.word RESET ; Reset
.word RESET . Reset
.end

Figure 5-3. Transmitting the s Character

5-6

In Figure 5-3, the endless loop at the end of the program can be interrupted by pressing <ESC> in the
HyperTerminal. If no special treatment of <KESC> is required in the software UART, bit 0 in RAM location 200h
must be cleared. This bit is the ESC-active-flag and allows itself to return back to the Hyperterminal when

pressing the ESC key.

Conditions for implementation:

¢ Correct setting of the P0.1 interrupt vector in the user interrupt vector table

* Thefirst statement of the user interrupt handler is an absolute branch to the INT_RXTX interrupt

service routine.

¢ GIE is enabled.

e The halfduplex software UART is set up to receive.

NOTE: Clear the Bit Pattern AA55h
Do not try to load a program while the bit pattern AA55h is stored at address 3DEh on
the MSP430x32x, or 5DEh on the MSP430x33x. To load a new program, clear the bit
pattern AA55h at address 3DEh on the MSP430x32x, or 5DEh on the MSP430x33x, or
switch off the STK/EVK for a short time to clear the RAM.

5.5 Transmitting a String

The first step to transmit a string is to move the bit pattern AA55h to memory location 3DEh on the
MSP430x32x, or 5DEh on the MSP430x33x. The address of the string must be stored in register R11.

The following program transmits the TEST String:

WDTCTL .equ 0120h

WDTHol d .equ 80h

WDT_wr key . equ 05a00h

TXCHAR . equ OFFD2h

TXTABLE .equ OFFD4h

PREPRX . equ OFFD6h

PREPTX . equ OFFD8h

I NT_RXTX . equ OFFDAh

TXDATA .equ 020Eh

RXBUF .equ 0210h
. data 0300h

STRI NG .string “TEST"
. byte Oh
. text 0240h

RESET: MOV #03DEh, SP ;
MoV #(WDTHol d+WDT_wr ke
El NT ;

TX: MoV #0AA55h, &O3DEh
MoV #STRI NG R11 ;

; BI C #01h, &00h ;
CALL &TXTABLE ;
CALL &PREPRX ;

#05DEh on t he MSP430X33x

y), &ADTCTL ; stop Watchdog Ti ner

enabl e i nterrupt

prepare software UART for the
use in user application
(&05DEh on t he MSP430X33x
Test: TX table

use only if no special
treatment of ESC is wanted
call transmit sub-routine in
noni t or

(O5DEh on t he MSP430X33x
prepare software UART for

5-7

MOV #00h, &03DEh

ENDL JWP ENDL
UART BR &l NT_RXTX
.sect “Int_Vect”, 03EOh
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word UART
.word RESET
.word RESET
.word RESET
.end

5.6 Receiving a Character

receive to get back to nonitor
with ESC

prepare software UART only for
use in the ROV Monitor

(&05DEh on the MSP430X33

O5EOh on the MSP430X33x
Reset

Reset

Reset

Reset

Reset

Reset

Reset

Reset

Reset

Reset

Reset

Reset

UART Routi ne
Reset

Reset

Reset

A character received using the RS232 interface is written from the INT_RXTX interrupt routine into memory
location 210h. After performing a reset, this memory location contains zeros. Each byte (not equal to zero)

received is stored in memory location 210h.

The content of memory location 210h is checked to determine whether or not a byte has been received. After
reading the byte, this location must be cleared. The next-received character will overwrite memory location

210h with a new byte.

The following code is an example of receiving a character and transmitting the same character back.

WDTCTL .equ 0120h

WDTHol d .equ 80h

WDT_wr key . equ 05a00h

TXCHAR . equ OFFD2h

TXTABLE . equ OFFD4h

PREPRX . equ OFFD6h

PREPTX . equ OFFD8h

I NT_RXTX . equ OFFDAh

TXDATA .equ 020Eh

RXBUF .equ 0210h
.text 0240h

RESET MOV #03DEh, SP ; #05DEh on t he MSP430X33x
MOV #(WDTHol d+WDT_wr key) , &ADTCTL ; stop Watchdog Ti nmer
El NT ; enable interrupt

RX MOV #0AA55h, &03DEh ; select user interrupt vector

CALL &PREPRX

5-8

tabl e (& 5DEh on MSP430X33x)
prepare software UART for

VWAI T

X

UART

TST.B
JEQ
MOV. B
CLR B
BIC

CALL

CALL

JWP
BR

&RXBUF

VWAI T

&RXBUF, &TXDATA
&RXBUF

#01h, &00h

&TXCHAR

&PREPRX

VAI T
& NT_RXTX

.sect “Int_Vect”, 03EOh

.word
.wor d
.word
.word
. wor d
.word
.word
. wor d
.word
.word
. wor d
.wor d
.word
.wor d
.wor d
.word
. end

RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
RESET
UART

RESET
RESET
RESET

receive to get back to nonitor
with ESC

char. in rxbuf ?

no, then wait

put char to TXDATA

use only if no specia
treatment of ESC is wanted
call transmit sub-routine in
noni t or

prepare software UART for
receive to get back to nonitor
with ESC

050Eh on the MSP430X33x
Reset

Reset

Reset

Reset

Reset

Reset

Reset

Reset

Reset

Reset

Reset

Reset

UART Routi ne
Reset

Reset

Reset

The next example receives a string with a maximum of 100 (100=64h) characters, stores them, and then
transmits them after the <ENTER> key is pressed.

WDTCTL
WDTHol d
WDT_wr key
TXCHAR
TXTABLE
PREPRX
PREPTX

| NT_RXTX
TXDATA
RXBUF

cr

STRI NG

RESET:

.equ O

120h

.equ 80h
. equ 05a00h

.equ O
.equ O
.equ O
.equ O
.equ O

FFD2h
FFD4h
FFD6h
FFD8h
FFDAh

.equ 020Eh
.equ 0210h
.equ 0dh

. data 0300h

. space
.text
MOV
MoV

0064h
00240H
#03DEh, SP

reserves receive buffer

#05DEh on t he MSP430X33x

#(WDOTHol d+WDT_wr key) , &ADTCTL ; stop Wat chdog Ti ner

5-9

VWAI T

1P

ENDL
UART:

CALL &PREPRX
MoV #0AA55h, &3DEh
MoV #STRI NG, R7
MOV. B #RXBUF, R6
CWP. B #0h, r6

JEQ VAI T

CLR B &RXBUF

CVP. B #cr, R6

JEQ TX

MOV. B R6, O(R7)

I NC R7

CWP #064h, R7

JL WAI T

MoV #STRI NG, R11
MoV #0h, 1(R7)

BI C #01h, &200h
CALL &TXTABLE
CALL &PREPRX
MoV #00h, &03DEh
JWP ENDL

BR &l NT_RXTX

.sect “Int_Vect”, 03EOh
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word RESET
.word UART
.word RESET
.word RESET
.word RESET
. end

enabl e i nterrupt

&05DEh on t he MSP430X33x
| oad string address
char. in rxbuf ?

no, then wait

end of line
recei ved?

put char. into string

all 100 characters are
received ?

| oad string address
end of text character
use only if no speci al

treatnent of ESC is wanted

&05DEh on the MSP430X33x

&05E0h on t he MSP430X33x
Reset

Reset

Reset

Reset

Reset

Reset

Reset

Reset

Reset

Reset

Reset

Reset

UART Routi ne
Reset

Reset

Reset

6 Using Interrupt Vectors in the EPROM

This chapter describes how to use interrupt vectors stored in the EPROM. The interrupt vectors are stored
in EPROM so they are not lost when power is removed.

6.1 The Identification Bit Pattern After a Reset

The reset start-up sequence checks the contents of memory location E9DEh to see if its contents are equal
to AA5S5h. If the memory location contents equal AA55h, the EPROM interrupt vector table with addresses
ranging from E9EOh to E9FEh is copied to the interrupt table in the RAM locations 3EOh to 3FEh on the
MSP430x32x, or 5EO0h to 5FEh on the MSP430x33x family, and the key for the software UART is set to
AA55h to switch the monitor off. If the contents of memory location E9DEh are equal to 0000h, the next set
of interrupt vectors, located at 22h below the previous location, is tested like the first set previously
described. If the valid identification is set to AA55h after each power up or hardware reset, the user program
starts and the EPROM monitor is switched off. The only way back to the monitor is an indirect branch to
Ret_Mon (OFFDCh). The user program code implements a branch, as well as the condition for the branch.

6-1

Set Location of Identification
Address Pointer to E9DEh

Decrement Identification
Y Address Pointer By 22h

Identification 2 "\ yes ?

Contents of Identification
Address = 0000h

no

Identification ?
Contents of Identification
Address = AA55h

¢-—————— _I \4
| Copy EPROM Interrupt Vectors
| And Identification AA55h
| To RAM Interrupt Vectors
v : v
Start Monit | Jump To New Reset Vector
art Monitor | Address In RAM
| Y
| / Emergency Return \
yes Ve To Monitor ? N
—— X (Optional — User Defined

\ Yes: BR Ret_Mon)

| SR ——

Figure 6-1. Identifying AA55h After Reset

NOTE:
Itis important that the emergency return to the Monitor routine works properly and
has been tested in RAM before burning it into the EPROM. If the actual
identification address contains address AA55h, the Monitor will NEVER start again.
Be sure to program the key as the last step in the evaluation of a program, after all
errors have been fixed.

The following example demonstrates how to implement and test the emergency come-back to the monitor
routine:

1. Setthe variable DVLP to 0 after the routine has been successfully tested in RAM. The variable
TRIAL indicates the number of interrupt tables that have been burned. The last necessary input
is the start address BEGIN.

2. Insert the address where the program is stored. To find a free section in EPROM, use the m or
the e command.

3. The terminal is switched off and the program enters an endless loop after burning the program
and executing a reset, or after starting it with the go command.

4. To come back to the monitor, press and hold down the demo button and press the button.

EEE I S R R S O O O O S
’

; Denp for Energency Burn-over of already witten I D = AA55h

EEE R ok R o o kO R R R S o R IR R o kb S b ok R o kS b O R R
’

DVKO . set 1 ; Development = 1, Final =0
TRIAL . set 1 ; Progressing trial number)start=1)
BEG N . set 0C000h ; Startaddress of (new) code in EPROM

;——— definition of testpin

pin . set 01h ; testpinis PO.0
PODI R . set 12h ; Port O direction control register
POIN . set 10h ; Port O input register

; —— ddfi ne working sections

.if DVLP =1

.text 00240h ; code in RAM during devel opnment
. el se

.text BEG N ; code in EPROM at final run
.endif

;—— test routine is waiting for low at testpin

start
bic.b #pin, POD R ; testpin is input
bit.b #pin, POIN ; test testpin
jnz user_prg ; junp to user programif testpin =1
clr 003DEh ; clear IDin RAM (005DEh on MSP430X33x)
br OFFDCh ; branch indirect to Monitor

;——— insert here the start up of your user program

user _prg
j mp user_prg ; Dummy endl ess | oop

; —— define reset vector in RAMfor devel opnent

. sect “RAM RES”’, O03FEh ; O5FEh on MSP430X33x

6-3

.word start

;—— additionally define reset vector in EPROMif fi nal

.if DVLP = 0

.sect “EPRM RES,

.word start

; wite identification to EPROMif final version. This MJSt be the LAST

section !
.sect “IDENT",
.word O0AA55h
.endif

OE9FEh—((TRI AL—1) * 22h)

OE9DEh—((TRI AL—-1) * 22h)

NOTE: Identification Pattern AA55h

Program the identification pattern as the last word of the download. To assure this, the section
containing the identification should be the last section in the source file.

The following code is an example of the EPROM user interrupt vector table and the associated key for its

activation.

.sect “Int_Vect”, OEQOEh—((TRI AL—1) * 22h)
.word PO FG 27 ;

.word BTIFG
.word RESET
.word RESET
.word RESET
.word ADCI FG
.word RESET
.word RESET
.word RESET
.word RESET
.word VDTI FG
.word RESET
.word PO FG 1
.word PO FG 0
.word COFI FG
.word WDTI FG

1/O Port O
Basi ¢ Ti mer

(Ti mer B)

ADC, Tiner/Port
Ti mer/ Port
(sa)

(Ti mer A)

(Ti mer A)

Wat chdog ti mer
(SPI)

Dedicated I/ 0O
Dedi cated 1/ 0O
OSC. fault
Power - up, ext. Reset,

.sect “I DENT”, OE9DEh—((TRl AL-1) * 22h)

.word O0AA55h
.end

6-4

ver si on

Wat chdog

7 Memory Configurations for MSP430 Devices

The MSP430 is well suited for the development cycle. The Monitor Program provides the commands s and
c to set and clear breakpoints, and SPACE to perform a single step execution in the RAM area for these
devices.

FFFFh FFFFh FFFFh
Monitor Monitor Monitor
EAO00h EAOOh EAOQOh
One-Time
Programmable EPROM EPROM
EPROM
C000h CO000h 8000h
03FFh 03FFh 05FFh
RAM RAM RAM
0200h 0200h 0200h
16 Bit Peripheral 16 Bit Peripheral 16 Bit Peripheral
Modul
Modules 0100h Modules 0100h odules 0100h
8 Bit Peripheral 8 Bit Peripheral 8 Bit Peripheral
Modules 0000h Modules 0000h Modules 0000h
MSP430P325 in MSP430E325in MSP430E337 in
MSP-STK430x320 MSP-EVK430x320 MSP-EVK430x330

Figure 7-1. Memory Map of the STK/EVK

7-1

7-2

Address RAM

3FEh RESET
User
Interrupt
Vectors
User
RAM
3EOh
3DEh Ident. (AA55h)
3DCh
User
Program, Data
and Stack
23Eh
23Dh
Temporary
EPROM
Programming
Routinet
214h
212h
Reserved
For
Monitor
200h

MSP430P325 in
MSP-STK430x320

Address EPROM
FFFEh
MONITOR
EAO00h
E9FEh RESET
User
Interrupt
Vectors
EQEOh
E9DEh| Ident. (AA55h)
E9DCh
User
N Program -
(- 11K)
CO000h

MSP430E325 in
MSP-EVK430x320

Figure 7-2. Memory Map of the STK/EVK430x32x

Address RAM

5FEh RESET
User
Interrupt
Vectors
User
RAM
5EOh
5DEh Ident. (AA55h)
5DCh
User
Program, Data
and Stack
23Eh
23Dh
Temporary
EPROM
Programming
Routinet
214h
212h
Reserved
For
Monitor
200h
MSP430P325

MSP-EVK430x320

Address EPROM
FFFEh
MONITOR
EAO00h
E9FEh RESET
User
Interrupt
Vectors
EQEOh
E9DEh| Ident. (AA55h)
E9DCh
User
N Program -
(- 28K)
8000h
MSP430E337

MSP-EVK430x330

Figure 7-3. Memory Map of the STK/EVK430x33x

7-3

7-4

Appendix A
Difference Between STK and EVK

STK

EVK

Initialization banner

MSP-STK430x320

MSP-EVK430x320/MSP-EVK430x330

Device One mounted OTP device | Two windowed unbearable devices PMS430E325FZ or
MSP430P325I1PM PMS430E337HFD
Monitor Programmed Programmed in only one device. After erasing the device, the
monitor program (mon_140.txt for the MSP-EVK430x320, and
mon_160.txt for the MSP—EVK430x330) in the STK directory
must be programmed again. See Programming Adapter Manual.
LCD Assembled Not assembled

Sensor demo

Hardware assembled

Hardware not included

