
SCES078E - JULY 1996 - REVISED JANUARY 1999

- State-of-the-Art Advanced BiCMOS
 Technology (ABT) Widebus™ Design for
 2.5-V and 3.3-V Operation and Low Static
 Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V V_{CC})
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- High-Drive (-24/24 mA at 2.5-V and -32/64 mA at 3.3-V V_{CC})
- Power Off Disables Outputs, Permitting Live Insertion
- High-Impedance State During Power Up and Power Down Prevents Driver Conflict
- Uses Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating
- Auto3-State Eliminates Bus Current Loading When Output Exceeds V_{CC} + 0.5 V
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model; and Exceeds 1000 V Using Charged-Device Model, Robotic Method
- Flow-Through Architecture Facilitates
 Printed Circuit Board Layout
- Distributed V_{CC} and GND Pin Configuration Minimizes High-Speed Switching Noise
- Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink Small-Outline (DGG), Thin Very Small-Outline (DGV) Packages, and 380-mil Fine-Pitch Ceramic Flat (WD) Package

SN54ALVTH16821 . . . WD PACKAGE SN74ALVTH16821 . . . DGG, DGV, OR DL PACKAGE (TOP VIEW)

description

The 'ALVTH16821 devices are 20-bit bus-interface flip-flops with 3-state outputs designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment.

The devices can be used as two 10-bit flip-flops or one 20-bit flip-flop. The 20-bit flip-flops are edge-triggered D-type flip-flops. On the positive transition of the clock (CLK), the flip-flops store the logic levels set up at the D inputs.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments Incorporated.

TEXAS INSTRUMENTS

SCES078E - JULY 1996 - REVISED JANUARY 1999

description (continued)

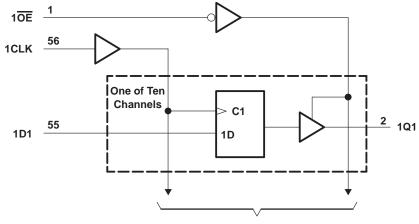
A buffered output-enable (\overline{OE}) input can be used to place the ten outputs in either a normal logic state (high or low level) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without need for interface or pullup components.

OE does not affect the internal operation of the flip-flops. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

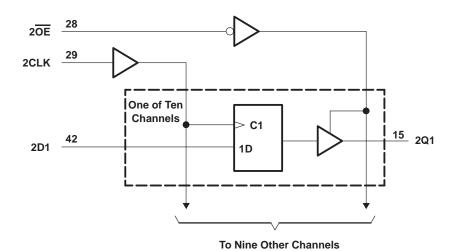
When V_{CC} is between 0 and 1.2 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

The SN54ALVTH16821 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ALVTH16821 is characterized for operation from –40°C to 85°C.


FUNCTION TABLE (each 10-bit section)

	INPUTS		OUTPUT
ŌĒ	CLK	D	Q
L	\uparrow	Н	Н
L	\uparrow	L	L
L	H or L	Χ	Q ₀
Н	X	Χ	Z



SCES078E - JULY 1996 - REVISED JANUARY 1999

logic diagram (positive logic)

To Nine Other Channels

SCES078E - JULY 1996 - REVISED JANUARY 1999

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (see Note 1)	0.5 V to 7 V
Voltage range applied to any output in the high state, V _O (see Note 1)	0.5 V to 7 V
Output current in the low state, IO: SN54ALVTH16821	96 mA
SN74ALVTH16821	128 mA
Output current in the high state, IO: SN54ALVTH16821	–48 mA
SN74ALVTH16821	–64 mA
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 2): DGG package	81°C/W
DGV package	86°C/W
DL package	74°C/W
Storage temperature range, T _{stq}	−65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

recommended operating conditions, V_{CC} = 2.5 V \pm 0.2 V (see Note 3)

			SN54	ALVTH1	6821	SN74	ALVTH1	6821	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VCC	Supply voltage		2.3		2.7	2.3		2.7	V
V _{IH}	High-level input voltage		1.7		7	1.7			V
V _{IL}	Low-level input voltage			Š	0.7			0.7	V
VI	Input voltage		0	VCC	5.5	0	VCC	5.5	V
loн	High-level output current			7	-6			-8	mA
la	Low-level output current			2	6			8	mA
lor	Low-level output current; current duty cycle ≤ 50%; f ≥ 1 kHz		~	5	18			24	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	Q		10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200		·	200			μs/V
TA	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES078E - JULY 1996 - REVISED JANUARY 1999

recommended operating conditions, $V_{\mbox{\footnotesize{CC}}}$ = 3.3 V \pm 0.3 V (see Note 3)

			SN54	ALVTH1	6821	SN74/	ALVTH1	6821	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VCC	Supply voltage		3		3.6	3		3.6	V
VIH	High-level input voltage		2		W	2			V
V _{IL}	Low-level input voltage			Š	0.8			0.8	V
VI	Input voltage		0	Vcc	5.5	0	VCC	5.5	V
ІОН	High-level output current			1	-24			-32	mA
lai	Low-level output current			2	24			32	mA
lor	Low-level output current; current duty cycle ≤	50%; f ≥ 1 kHz		5	48			64	IIIA
Δt/Δν	Input transition rise or fall rate	Outputs enabled	Q		10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate		200			200			μs/V
TA	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES078E - JULY 1996 - REVISED JANUARY 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

D _A	DAMETED	TEST CO	NOITIONS	SN54	ALVTH1	6821	SN74	ALVTH1	6821	UNIT
PA	RAMEIER	lesi cc	פאטוווטאכ	MIN	TYP†	MAX	MIN	-1.2 -0.2 .8 0.4 0.5 ±1 10 10 1 -5 ±100 115 -10	UNII	
VIK		V _{CC} = 2.3 V,	I _I = -18 mA			-1.2			-1.2	V
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	$I_{OH} = -100 \mu A$	V _{CC} -0	.2		V _{CC} -0	.2		
$V_{OH} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$						V				
		vCC = 2.3 v	I _{OH} = -8 mA				1.8		0.2 0.4 0.5 ±1 10 1 -5 ±100 5 0.1 125 ±100 5 -5 4 0.1	
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V},$	I _{OL} = 100 μA			0.2			0.2	
			I _{OL} = 6 mA			0.4				
VOL		Vaa - 2.2.V	I _{OL} = 8 mA						0.4	V
		VCC = 2.3 V	I _{OL} = 18 mA			0.5				
			I _{OL} = 24 mA						0.2 0.4 0.5 ±1 10 10 1=1 125 ±100 5 -5 0.1 4.5	
	Control inputs	$V_{CC} = 2.7 \text{ V},$	$V_I = V_{CC}$ or GND			±1			±1	
	Control inputs	$V_{CC} = 0 \text{ or } 2.7 \text{ V},$	V _I = 5.5 V			<u>\$</u> 10			10	
l _l			V _I = 5.5 V		, A	10			10	μΑ
	Data inputs	V _{CC} = 2.7 V	I = -18 mA							
			V _I = 0		1	- 5			0.2 0.4 0.5 ±1 10 10 1 -5 ±100 125 ±100 5 0.1 4.5 0.1	
l _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V		2				±100	μΑ
I _{BHL} ‡		$V_{CC} = 2.3 \text{ V},$	V _I = 0.7 V		115			115		μΑ
IBHH§		$V_{CC} = 2.3 \text{ V},$	V _I = 1.7 V	Q	-10			-10		μΑ
IBHLO	П	$V_{CC} = 2.7 \text{ V},$	$V_I = 0$ to V_{CC}	300			300			μΑ
Івнно	#	$V_{CC} = 2.7 \text{ V},$	$V_I = 0$ to V_{CC}	-300			-300			μΑ
		V _{CC} = 2.3 V,	V _O = 5.5 V			125			125	μΑ
I _{OZ(PU}	J/PD)☆	$V_{CC} \le 1.2 \text{ V}, V_{O} = \underline{0.5} \text{ V}$ $V_{I} = \text{GND or } V_{CC}, \overline{\text{OE}} =$	to V _{CC} , don't care			±100			±100	μΑ
lozh		V _{CC} = 2.7 V				5			5	μА
lozL		V _{CC} = 2.7 V	V _O = 0.5 V,			-5			-5	μΑ
		V-0 - 2 7 V	•		0.04	0.1		0.04	0.1	
l _{CC}			<u> </u>							mA
	ICC				0.04			0.04	0.1	
Ci		V _C C = 2.5 V,	<u> </u>	1						pF
Co		V _{CC} = 2.5 V,	•	1						pF
+ 411 (

 $[\]dagger$ All typical values are at V_{CC} = 2.5 V, T_A = 25°C.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

[§] The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

[¶] An external driver must source at least I_{BHLO} to switch this node from low to high.

[#]An external driver must sink at least IBHHO to switch this node from high to low.

Current into an output in the high state when VO > VCC

SCES078E - JULY 1996 - REVISED JANUARY 1999

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

PARAMETER		TEST	CONDITIONS	SN54	ALVTH1	6821	SN74ALVTH16821			UNIT	
P	ARAWEIER	lesi (CONDITIONS	MIN	TYP†	MAX	MIN	TYP†	MAX	UNII	
VIK		V _{CC} = 3 V,	I _I = -18 mA			-1.2			-1.2	V	
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0.	.2		V _{CC} -0	.2			
VOL Control inputs Control inputs Data inputs Inpu	V 2V	I _{OH} = -24 mA	2						V		
		$^{\wedge}CC = ^{2} ^{\wedge}$	$I_{OH} = -32 \text{ mA}$				2		MAX		
		$V_{CC} = 3 \text{ V to } 3.6 \text{ V},$	I _{OL} = 100 μA			0.2			0.2		
			I _{OL} = 16 mA						0.4		
\/a.			$I_{OL} = 24 \text{ mA}$			0.5] _v	
VOL		V _{CC} = 3 V	$I_{OL} = 32 \text{ mA}$						0.5	V	
VIK VOH VOL Control inputs Ioff IBHL‡ IBHLO¶ IBHHO# IEX IOZ(PU/PD)* IOZH IOZL		$I_{OL} = 48 \text{ mA}$			0.55						
			## TEST CONDITIONS MIN TYPT MAX MIN TYPT MAX	0.55							
	Control inputs	$V_{CC} = 3.6 \text{ V},$	$V_I = V_{CC}$ or GND			<u>≯</u> ±1			±1		
	Control inputs	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V		Š	10			10		
II			V _I = 5.5 V		PA	10			10	μΑ	
	Data inputs	V _{CC} = 3.6 V	VI = VCC		1	1			1		
			V _I = 0		2	- 5			- 5		
l _{off}		$V_{CC} = 0$,	V_I or $V_O = 0$ to 4.5 V		5				±100	μΑ	
I _{BHL} ‡		V _{CC} = 3 V,	V _I = 0.8 V	75			75			μΑ	
I _{BHH} §	}	V _{CC} = 3 V,	V _I = 2 V	-75			-75			μΑ	
IBHLC)¶	$V_{CC} = 3.6 \text{ V},$	$V_I = 0$ to V_{CC}	500			500			μΑ	
IBHH	D [#]	$V_{CC} = 3.6 \text{ V},$	$V_I = 0$ to V_{CC}	-500			-500			μΑ	
IEX		$V_{CC} = 3 V$,	$V_0 = 5.5 \text{ V}$			125			125	μΑ	
I _{OZ(P}	U/PD)☆	$V_{CC} \le 1.2 \text{ V}, V_{O} = \underline{0.5}$ $V_{I} = \text{GND or } V_{CC}, \overline{\text{OE}}$	V to V _{CC} , = don't care			±100			±100	μΑ	
lozh		V _{CC} = 3.6 V	1 *			5			5	μΑ	
						_			_		
IOZL		V _{CC} = 3.6 V	V _I = 0.8 V or 2 V			-5			-5	μΑ	
		V _{CC} = 3.6 V,	Outputs high		0.07	0.1		0.07	0.1		
ICC		$I_{O} = 0$,	Outputs low		3.2	5.5		3.2	5	mA	
		$V_I = V_{CC}$ or GND	Outputs disabled		0.07	0.1		0.07	0.1		
ΔICC						0.4			0.4	mA	
Ci		$V_{CC} = 3.3 \text{ V},$	$V_{I} = 3.3 \text{ V or } 0$		3.5			3.5		pF	
Со		$V_{CC} = 3.3 \text{ V},$	V _O = 3.3 V or 0		6			6		pF	

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[□]This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

[§] The bus-hold circuit can source at least the minimum high sustaining current at VIH min. IBHH should be measured after raising VIN to VCC and then lowering it to VIH min.

 $[\]P$ An external driver must source at least IBHLO to switch this node from low to high.

[#] An external driver must sink at least IBHHO to switch this node from high to low.

Current into an output in the high state when VO > VCC

[★]High-impedance state during power up or power down

SCES078E - JULY 1996 - REVISED JANUARY 1999

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

			SN54ALVT	H16821	SN74ALVT	UNIT		
			MIN	MAX	MIN	MAX	UNII	
fclock	Clock frequency			150		150	MHz	
t _W	Pulse duration, CLK high or low		1.6	14	1.5		ns	
	Cating time adata hafana CLIVA	Data high	1.6		1.5			
t _{su}	Setup time, data before CLK↑	Data low	2.1		2		ns	
4. 11-1-1-1-	Hold time data ofter OLVA	Data high	0.4		0.3		no	
t _h	Hold time, data after CLK↑ Data low		Q 1.1		1		ns	

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

			SN54ALVT	H16821	SN74ALVT	SN74ALVTH16821		
		MIN MAX M			MIN	MAX	UNIT	
fclock	Clock frequency			150		150	MHz	
t _W	Pulse duration, CLK high or low		1.6	14	1.5		ns	
	Catum times data hafara CLIV	Data high	1.6	,	1.5			
^t su	Setup time, data before CLK↑	Data low	1.6		1.5		ns	
t.	Hold time, data after CLK↑	Data high	9.1		1	_	ne	
t _h	Data low		2 1.1		1		ns	

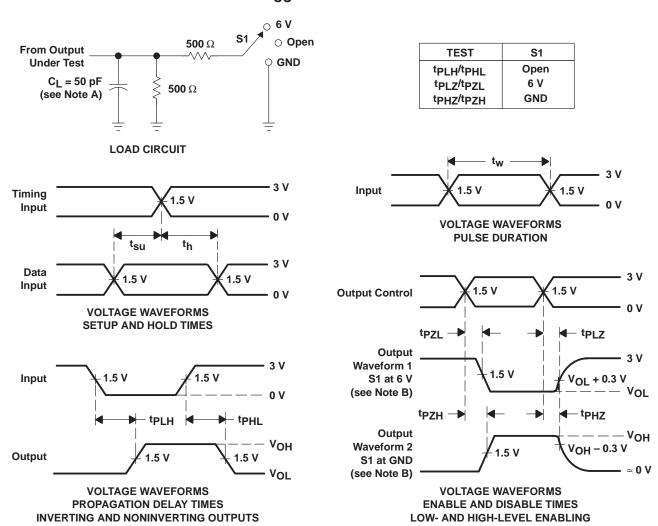
switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

PARAMETER	FROM	то	SN54ALVT	H16821	SN74ALVT	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
f _{max}			150	N.	150		MHz
^t PLH	CLK	Q	1	4.2	1	4.1	no
t _{PHL}	CLK	Q	1 0	4.5	1	4.4	ns
^t PZH	ŌĒ	Q	1.5	4.7	1.5	4.6	ns
t _{PZL}	OE .	Q	70	4.2	1	4.1	115
^t PHZ	ŌĒ	Q	1.5	4.6	1.5	4.5	ns
t _{PLZ}) UE		1	5	1	4.9	115

switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

DARAMETER	FROM	то	SN54ALVT	H16821	SN74ALVT	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	UNIT
f _{max}			150	3	150		MHz
^t PLH	CLK	Q	1	3.6	1	3.5	ns
t _{PHL}	OLK	Q	1 6	3.6	1	3.5	115
^t PZH	ŌĒ	Q	5	4.2	1	4.1	ns
^t PZL	OE	Q	70	3.7	1	3.6	115
t _{PHZ}	ŌĒ	Q	Q 1	4.9	1	4.8	ns
^t PLZ	OE	Q Q	1	4.8	1	4.6	115

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 2.5 \text{ V} \pm 0.2 \text{ V}$


NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_f \leq 2$ ns. $t_f \leq 2$ ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SCES078E - JULY 1996 - REVISED JANUARY 1999

PARAMETER MEASUREMENT INFORMATION $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$

- NOTES: A. C_I includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform22 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \Omega$, $t_{f} \leq$ 2.5 ns, $t_{f} \leq$ 2.5 ns.
 - D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated