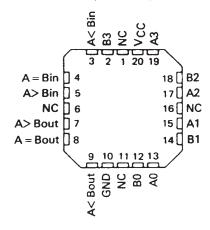

SDLS123 - MARCH 1974 - REVISED MARCH 1988

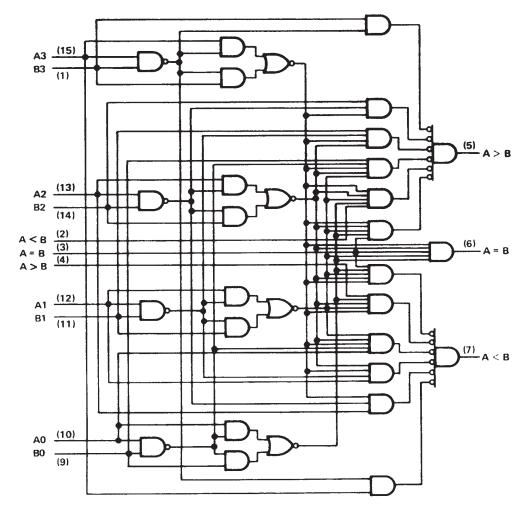
	TYPICAL	TYPICAL
TYPE	POWER	DELAY
	DISSIPATION	(4-BIT WORDS)
'85	275 mW	23 ns
LS85	52 mW	24 ns
' S85	365 mW	11 ns


description

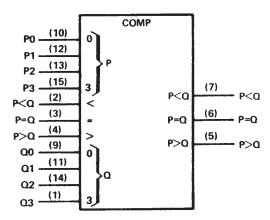
These four-bit magnitude comparators perform comparison of straight binary and straight BCD (8-4-2-1) codes. Three fully decoded decisions about two 4-bit words (A, B) are made and are externally available at three outputs. These devices are fully expandable to any number of bits without external gates. Words of greater length may be compared by connecting comparators in cascade. The A > B, A < B, and A = B outputs of a stage handling less-significant bits are connected to the corresponding A > B, A < B, and A = B inputs of the next stage handling more-significant bits. The stage handling the least-significant bits must have a high-level voltage applied to the A = B input. The cascading paths of the '85, 'LS85, and 'S85 are implemented with only a two-gate-level delay to reduce overall comparison times for long words. An alternate method of cascading which further reduces the comparison time is shown in the typical application data.

SN5485, SN54LS85, SN54S85 . . . J OR W PACKAGE SN7485 : . . N PACKAGE SN74LS85, SN74S85 . . . D OR N PACKAGE (TOP VIEW)

SN54LS85, SN54S85 . . . FK PACKAGE (TOP VIEW)

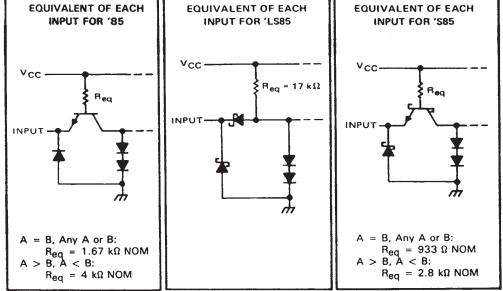


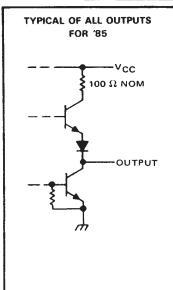
NC - No internal connection

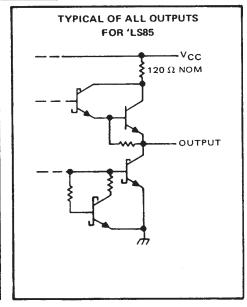

FUNCTION TABLE

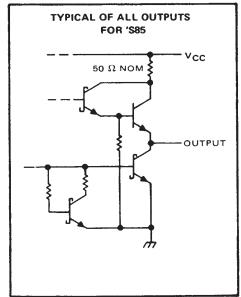
	COMP	ARING UTS			CASCADING INPUTS			OUTPUTS	
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B	A > B	A < B	A = 8
A3 > B3	X	×	×	×	Х	×	Н	L	L
A3 < B3	×	×	×	×	X	×	L	н	L
A3 = B3	A2 > B2	×	×	×	X	×	н	L	L
A3 = B3	A2 < B2	×	×	×	X	×	L	Н	L
A3 = B2	A2 = B2	A1 > B1	×	×	X	×	н	L	L
A3 = B3	A2 = B2	A1 < B1	×	×	X	×	L	н	L
A2 = B3	A2 = B2	A1 = B1	A0 > B0	×	X	×	н	L	L
A3 = B3	A2 = B2	A1 = B1	A0 < B0	×	Х	×	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	L	L	Н	L	L
A3 = B3	A2 = B2	A1 = B1	AO = BO	L	H	L	L	Н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	×	X	Н	L	L	Н
A3 = B3	A2 = B2	A1 = B1	AO = BO	н	н	Ł	L	L	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	L _	L	н	Н	L

logic diagrams (positive logic)


logic symbol†




†This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.



schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN54' SN54S'	SN54LS'	SN74' SN74S'	SN74LS'	UNIT
Supply voltage, V _{CC} (see Note 1)	SN54LS' SN74L	7	V		
Input voltage	5.5	7	5.5	7	V
Interemitter voltage (see Note 2)	5.5		5.5		V
Operating free-air temperature range	- 55	to 125	-0	to 70	°C
Storage temperature range	-65	to 150	- 65	to 150	°C

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter input transistor. This rating applies to each A input in conjunction with its respective B input of the '85 and 'S85.

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS

SDLS123 - MARCH 1974 - REVISED MARCH 1988

recommended operating conditions

		SN5485	5		SN7485	5	
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	٧
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			16			16	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TE	ST CONDIT	IONS†		MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage					-	2			V
VIL	Low-level input voltage						-		0.8	٧
VIK	Input clamp voltage		V _{CC} = MIN,		1 = -1:	2 mA			-1.5	٧
VOH	High-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,		V _{IH} = 2	2 V, –400 μA	2.4	3.4		٧
VOL	Low-level output voltage		V _{CC} = MIN, V _{IL} = 0.8 V,		V _{IH} = 2			0.2	0.4	٧
Ч	Input current at maximum in	put voltage	V _{CC} = MAX,		V _I = 5.5	5 V			1	mA
ΊΗ	High-level input current	A < B, A > B inputs all other inputs	V _{CC} = MAX,		V ₁ = 2.4	4 V			40 120	μА
1 ₁ L	Low-level input current	A < B, A > B inputs	V _{CC} = MAX,		V _I = 0.4	4 V			-1.6 -4.8	mA
los	Short-circuit output current §	}	V _{CC} = MAX,	V ₀ = 0		SN5485 SN7485	-20 -18		-55 -55	mA
¹cc	Supply current		V _{CC} = MAX,	See Note 4	-	5.17 100	"	55	88	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 4: I_{CC} is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER	FROM INPUT	TO OUTPUT	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		·	1			7		
	A A B -	A < B, $A > B$	2			12		ns
^t PLH	Any A or B data input		3]		17	26	115
		A = B	4]		23	35	
			1			11		
		A < B, A > B	2	C _L = 15 pF,	15]	
^t PHL	Any A or B data input	,	3	$R_1 = 400 \Omega$		20	30	ns
		A = B	4	See Note 5		20	30	
^t PLH	A < B or A = B	A > B	1	See Note 5		7	11	ns
^t PHL	A < B or A = B	A > B	1			11	17	ns
t _{PLH}	A = 8	A = B	2			13	20	ns
^t PHL	A = B	A = B	2	1		11	17	ns
^t PLH	A > B or A = B	A < B	1			7	11	ns
tPHL.	A > B or A = B	A < B	1	1		11	17	ns

tpLH = propagation delay time, low-to-high-level output

NOTE 5: Load circuits and voltage waveforms are shown in Section 1.

 $^{^{\}ddagger}$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}$ C.

[§]Not more than one output should be shorted at a time.

tpHL = propagation delay time, high-to-low-level output

SDLS123 - MARCH 1974 - REVISED MARCH 1988

recommended operating conditions

	S	N54LS	35	S	N74LS	35	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	וואטן
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			4			8	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				t	S	N54LS	35	S	N74LS8	15	
	PARA	METER	TEST CON	IDITIONS [†]	MIN	TYP‡	MAX	MIN	TYP [‡]	MAX	UNIT
VIH	High-level input	voltage			2			2			V
VIL	Low-level input	voltage					0.7			0.7	٧
VIK	Input clamp vol	tage	VCC = MIN,	I _I = -18 mA			-1.5			-1.5	٧
	High-level outpu	ut voltage		V _{1H} = 2 V, I _{OH} = -400 μA	2.5	3.4		2.7	3.4		٧
		_	V _{CC} = MIN,	IOL = 4 mA		0.25	0.4		0.25	0.4	V
VOL	Low-level output	it voltage	V _{IH} = 2 V, V _{IL} = V _{IL} max	1 _{OL} = 8 mA					0.35	0.5	Ľ
	Input current	A < B, A > B inputs					0.1			0.1	
11	at maximum input voltage	all other inputs	V _{CC} = MAX,	V ₁ = 7 V			0.3			0.3	mA
	High-level	A < B, A > B inputs	.,	W = 2.7.V			20			20	μА
ΉН	input current	all other inputs	V _{CC} = MAX,	V = 2.7 V			60			60	J # 1
	Low-level	A < B, A > B inputs	1/ - MAY	V = 0.4.V			-0.4			-0.4	mA
IIL	input current	all other inputs	V _{CC} = MAX,	V ₁ = 0.4 V			-1.2			-1.2	
los	Short-circuit ou	tput current §	V _{CC} = MAX		-20		-100	-20		-100	mA
Icc	Supply current		VCC = MAX,	See Note 4		10.4	20		10.4	20	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

NOTE 4: I_{CC} is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

DADAMETED!	FROM	TO	NUMBER OF	TEST CONDITIONS	MIN	TYP	MAX	UNIT
PARAMETER¶	INPUT	OUTPUT	GATE LEVELS	TEST CONDITIONS				
			1			14		
		A < B, A > B	2			19		ns
^t PLH	Any A or B data input		3			24	36] '''
		A = B	4	i		27	45	
			1			11		
		A < B, A > B	2	0 15 5		15		ns
^t PHL	Any A or B data input		3	$C_L = 15 pF$		20	30] "
		A = B	4	$R_L = 2 k\Omega$		23	45	
tPLH	A < B or A = B	A > B	1	See Note 5		14	22	ns
tPHL	A < B or A = B	A > B	1			11	17	ns
^t PLH	A = B	A = B	2			13	20	ns
tPHL	A = B	A = B	2			13	26	ns
tPLH	A > B or A = B	A < B	1	1		14	22	ns
tPHL	A > B or A = B	A < B	1			11	17	ns

 $[\]P_{tPLH}$ = propagation delay time, low-to-high-level output

NOTE 5: Load circuits and voltage waveforms are shown in Section 1.

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C. \$Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

tpHL = propagation delay time, high-to-low-level output

SN5485, SN54LS85, SN54S85 SN7485, SN74LS85, SN74S85 4-BIT MAGNITUDE COMPARATORS

SDLS123 - MARCH 1974 - REVISED MARCH 1988

recommended operating conditions

		SN54S8	5		SN74S8	5	UNIT
	MIN	NOM	MAX	MIN	NOM	MAX	UNII
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-1			-1	mA
Low-level output current, IOL			20			20	mA
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	R	TES	ST CONDITIONS	t	MIN	TYP‡	MAX	UNIT
VIH	High-level input voltage					2			V
VIL.	Low-level input voltage							8.0	V
VIK	Input clamp voltage		VCC = MIN,	I ₁ = -18 mA				-1.2	V
			V _{CC} = MIN,	V _{IH} = 2 V,	SN54S85	2.5	3.4		V
νон	High-level output voltage		$V_{1L} = 0.8 V$	1 _{OH} = -1 mA	SN74S85	2.7	3.4		
	1 - 1 - 1 - 1 - 1 - 1		VCC = MIN,	V _{IH} = 2 V,				0.5	V
VOL	Low-level output voltage		V _{IL} = 0.8 V,	1 _{OL} = 20 mA				0.5	
11	Input current at maximum inpu	t voltage	VCC = MAX,	V _i = 5.5 V				1	mA
		A < B, A > B inputs	V _{CC} = MAX	V 27 V				50	μА
чн	High-level input current	all other inputs	7 VCC - MAA	V1 - 2.7 V				150	<u> </u>
		A < B, A > B inputs	VCC = MAX,	V. = 0.5.V		<u> </u>		-2	mA
11L	Low-level input current	all other inputs	VCC - WAX,	V1 - 0.5 V				-6	
los	Short-circuit output current §		V _{CC} = MAX			-40		-100	mA
			V _{CC} = MAX,	See Note 4			73	115	
¹cc	Supply current		V _{CC} = MAX, See Note 4	T _A = 125°C,	SN54S85W			110	mA

[†]For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

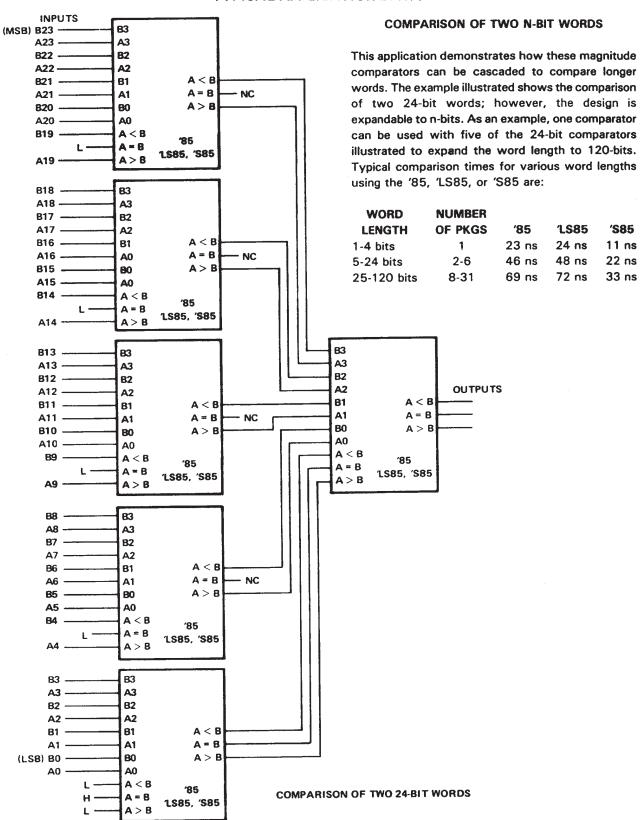
NOTE 4: I_{CC} is measured with outputs open, A = B grounded, and all other inputs at 4.5 V.

switching characteristics, VCC = 5 V, TA = 25°C

PARAMETER¶	FROM INPUT	TO OUTPUT	NUMBER OF GATE LEVELS	TEST CONDITIONS	MIN TYP	MAX	UNIT
			1		5		}
		A < B, A > B	2		7.5		ns
^t PLH	Any A or B data input		3		10.5	16] "
		A = B	4		12	18	
			1		5.5		
		A < B, A > B	2	0 45 5	7		ns
^t PHL	Any A or B data input	•	3	Cլ = 15 pF,	11	16.5	115
		A = B	4	R _L = 280 Ω,	11	16.5	
tPLH	A < B or A = B	A > B	1	See Note 5	5	7.5	ns
tPHL	A < B or A = B	A > B	1		5.5	8.5	ns
tPLH	A = B	A = B	2		7	10.5	ns
tPHL	A = B	A = B	2		5	7.5	ns
tPLH	A > B or A = B	A < 8	1	1	5	7.5	ns
tPHL	A > B or A = B	A < B	1	1	5.5	8.5	ns

 $[\]P_{tPLH}$ = propagation delay time, low-to-high-level output

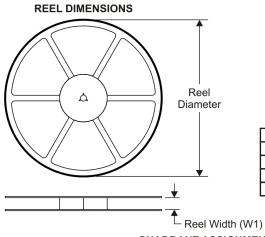
NOTE 5: Load circuits and voltage waveforms are shown in Section 1.

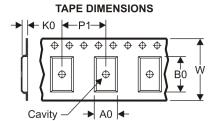


 $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_{A} = 25^{\circ} \text{C}$.

[§]Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

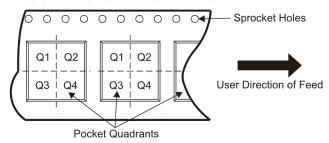
tpHL = propagation delay time, high-to-low-level output


TYPICAL APPLICATION DATA



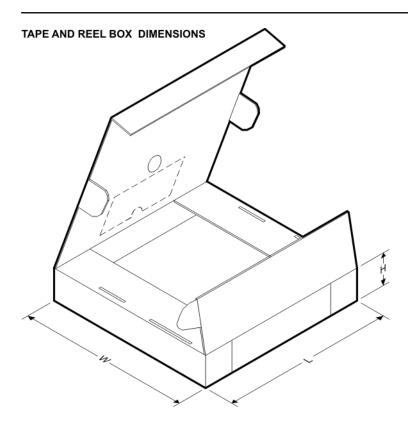
PACKAGE MATERIALS INFORMATION

www.ti.com 29-Jul-2009


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



*All dimensions are nominal

Ī	Device	Package Type	Package Drawing		SPQ	Reel Diameter	Reel Width	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
ı						(mm)	W1 (mm)						
	SN74LS85DR	SOIC	D	16	2500	330.0	16.4	6.5	10.3	2.1	8.0	16.0	Q1
	SN74LS85NSR	SO	NS	16	2000	330.0	16.4	8.2	10.5	2.5	12.0	16.0	Q1

PACKAGE MATERIALS INFORMATION

www.ti.com 29-Jul-2009

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)	
SN74LS85DR	SOIC	D	16	2500	333.2	345.9	28.6	
SN74LS85NSR	SO	NS	16	2000	346.0	346.0	33.0	

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Applications Products Amplifiers amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated