SN65LBC175, SN75LBC175 QUADRUPLE LOW-POWER DIFFERENTIAL LINE RECEIVERS

SLLS171F - OCTOBER 1993 - REVISED NOVEMBER 2001

- Meets or Exceeds the EIA Standards RS-422-A, RS-423-A, RS-485, and CCITT Recommendation V.11
- Designed to Operate With Pulse Durations as Short as 20 ns
- Designed for Multipoint Transmission on Long Bus Lines in Noisy Environments
- Input Sensitivity . . . ±200 mV
- Low-Power Consumption . . . 20 mA Max
- Open-Circuit Fail-Safe Design
- Common-Mode Input Voltage Range of –7 V to 12 V
- Pin Compatible With SN75175 and LTC489

D, DW, OR N PACKAGE (TOP VIEW) 16 V_{CC} 1В [15 AB 1A [2 1Y Π 3 14**∏** 4A 1,2EN [] 13 ¶ 4Y 2Y 🛭 12 ¶ 3.4EN 11 3Y 2A L 2B 🛛 10 3A GND [8 9**∏** 3B

description

The SN65LBC175 and SN75LBC175 are monolithic, quadruple, differential line receivers with 3-state outputs designed to meet the requirements of the EIA standards RS-422-A, RS-423-A, RS-485, and CCITT Recommendation V.11. The devices are optimized for balanced multipoint bus transmission at data rates up to and exceeding 10 million bits per second. The receivers are enabled in pairs, with an active-high enable input. Each differential receiver input features high impedance, hysteresis for increased noise immunity, and sensitivity of ±200 mV over a common-mode input voltage range of 12 V to −7 V. The fail-safe design ensures that when the inputs are open-circuited, the outputs are always high. Both devices are designed using the TI proprietary LinBiCMOS™technology allowing low power consumption, high switching speeds, and robustness.

These devices offer optimum performance when used with the SN75LBC172 or SN75LBC174 quadruple line drivers. The SN65LBC175 is available in the 16-pin DIP (N), small-outline package (D), and the wide small-outline package (DW). The SN75LBC175 is available in the 16-pin DIP (N) and the small-outline package (D).

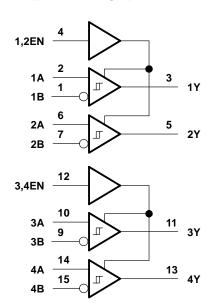
The SN65LBC175 is characterized over the industrial temperature range of -40° C to 85° C. The SN75LBC175 is characterized for operation over the commercial temperature range of 0° C to 70° C.

AVAILABLE OPTIONS

PACKAGE	TEMPERATURE RANGE				
PACKAGE	0°C to 70°C	-40°C to 85°C			
SOIC	SN75LBC175D	SN65LBC175D			
Wide SOIC	_	SN65LBC175DW			
PDIP	SN75LBC175N	SN65LBC175N			

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinBiCMOS is a trademark of Texas Instruments.

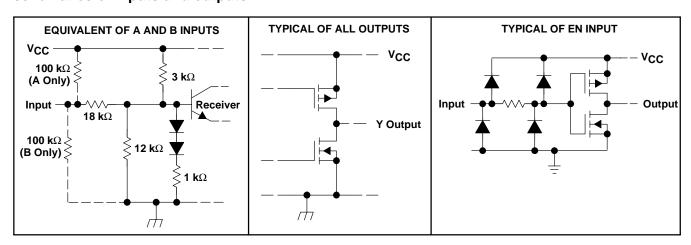


logic symbol†

1,2EN ΕN ⅎ 3 1Y 1A 1 1B 6 2A 7 2Y 2B 12 ΕN 3,4EN 10 ⅎ 11 3A 3Y 3B 14 4A 13 15 4B

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)



FUNCTION TABLE (each receiver)

DIFFERENTIAL INPUTS A-B	ENABLE	OUTPUT Y		
V _{ID} ≥ 0.2 V	Н	Н		
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	Н	?		
$V_{ID} \le -0.2 V$	Н	L		
X	L	Z		
Open circuit	Н	Н		

 $H = high level, \quad L = low level, \quad X = irrelevant,$ $Z = high impedance (off), \quad ? = indeterminate$

schematics of inputs and outputs

SN65LBC175, SN75LBC175 QUADRUPLE LOW-POWER DIFFERENTIAL LINE RECEIVERS

SLLS171F - OCTOBER 1993 - REVISED NOVEMBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} (see Note 1)	0.3 V to 7 V
Input voltage, V _I (A or B inputs)	
Differential input voltage, V _{ID} (see Note 2)	
Voltage range at Y, 1/2EN, 3/4EN	
Continuous total dissipation	
Operating free-air temperature range, T _A : SN65LBC175	–40°C to 85°C
	0°C to 70°C
Storage temperature range, T _{stq}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to GND.

2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.

DISSIPATION RATING TABLE

PACKAGE T _A ≤ 25°C POWER RATING		DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	
D	1100 mW	8.7 mW/°C	709 mW	578 mW	
DW	1200 mW	9.6 mW/°C	770 mW	625 mW	
N	1150 mW	9.2 mW/°C	736 mW	598 mW	

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75 5 5.25		V	
Common-mode input voltage, V _{IC}		-7		12	V
Differential input voltage, V _{ID}				±6	V
High-level input voltage, VIH	EN inputs				V
Low-level input voltage, V _{IL}				8.0	V
High-level output current, IOH				-8	mA
Low-level output current, IOL				8	mA
Operating free-air temperature, T _A	SN65LBC175	-40		85	°C
	SN75LBC175	0		70	C

SN65LBC175, SN75LBC175 QUADRUPLE LOW-POWER DIFFERENTIAL LINE RECEIVERS

SLLS171F - OCTOBER 1993 - REVISED NOVEMBER 2001

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP†	MAX	UNIT		
VIT+	Positive-going input thres	shold voltage	$I_O = -8 \text{ mA}$	$I_O = -8 \text{ mA}$				0.2	V
V _{IT} -	Negative-going input three	eshold voltage	I _O = 8 mA			-0.2			V
V _{hys}	Hysteresis voltage (V _{IT} -	- V _{IT} _)					45		mV
٧ıĸ	Enable input clamp volta	ge	I _I = –18 mA				-0.9	-1.5	V
Vон	High-level output voltage	ı	$V_{ID} = 200 \text{ mV},$	I _{OH} = -8 m/	Α	3.5	4.5		V
VOL	Low-level output voltage		$V_{ID} = -200 \text{ mV},$	$I_{OL} = 8 \text{ mA}$			0.3	0.5	V
loz	High-impedance-state ou	utput current	$V_O = 0 V \text{ to } V_{CC}$					±20	μΑ
			V _{IH} = 12 V,	$V_{CC} = 5 V$,	Other inputs at 0 V		0.7	1	
l	Bus input current	A or B inpute	V _{IH} = 12 V,	$V_{CC} = 0 V$	Other inputs at 0 V		0.8	1	mA
'1	Bus input current	A or B inputs	$V_{IH} = -7 V$,	$V_{CC} = 5 V$	Other inputs at 0 V		-0.5	-0.8	ША
			$V_{IH} = -7 V$,	$V_{CC} = 0 V$	Other inputs at 0 V		-0.4	-0.8	
lн	High-level enable input c	urrent	V _{IH} = 5 V					±20	μΑ
IIL	Low-level enable input co	urrent	V _{IL} = 0 V				-20	μΑ	
Ios	Short-circuit output curre	nt	V _O = 0				-80	-120	mA
loo	Supply current		Outputs enabled,	$I_{O} = 0$,	V _{ID} = 5 V		11	20	mA
Icc			Outputs disabled				0.9	1.4	IIIA

 $[\]overline{\dagger}$ All typical values are at $V_{CC} = 5$ V and $T_A = 25$ °C.

switching characteristics, V_{CC} = 5 V, C_L = 15 pF, T_A = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP†	MAX	UNIT
^t PHL	Propagation delay time, high- to low-level output	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$	11	22	30	ns
^t PLH	Propagation delay time, low- to high-level output	See Figure 1	11	22	30	ns
^t PZH	Output enable time to high level	See Figure 2		17	30	ns
tPZL	Output enable time to low level	See Figure 3		18	30	ns
^t PHZ	Output disable time from high level	See Figure 2		30	40	ns
tPLZ	Output disable time from low level	See Figure 3		23	30	ns
tsk(p)	Pulse skew (tpHL - tpLH)	See Figure 2		4	6	ns
t _t	Transition time	See Figure 1		3	10	ns

PARAMETER MEASUREMENT INFORMATION

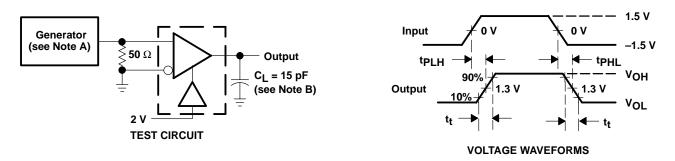
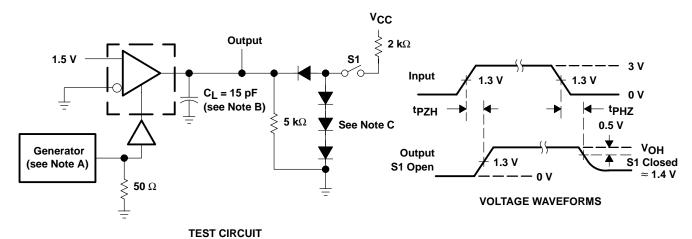
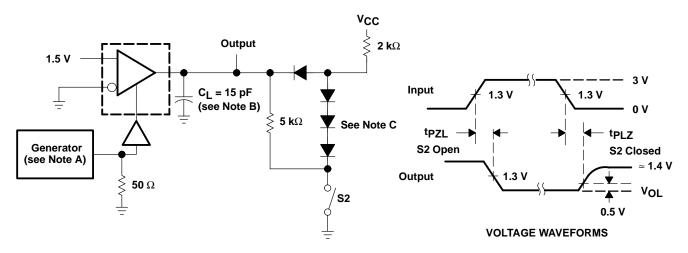



Figure 1. tpLH and tpHL Test Circuit and Voltage Waveforms

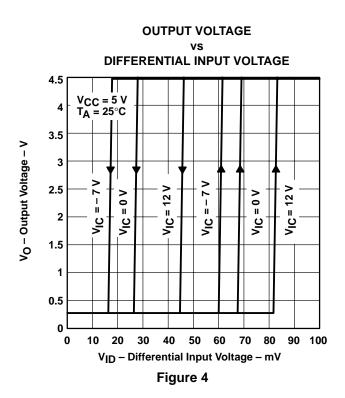


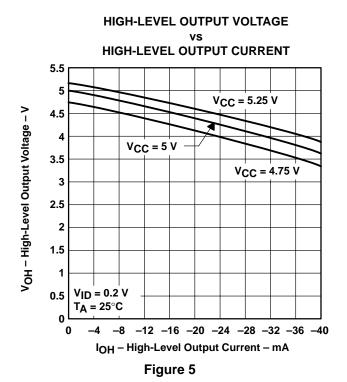
NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle = 50%, $t_{f} \le 6$ ns, $Z_{O} = 50 \Omega$.

- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N916 or equivalent.

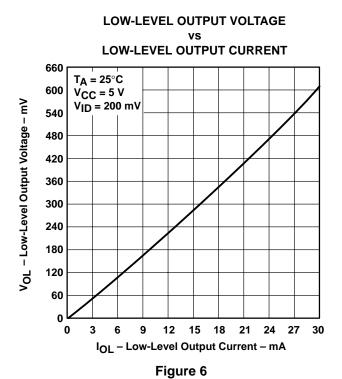
Figure 2. $t_{\mbox{\scriptsize PHZ}}$ and $t_{\mbox{\scriptsize PZH}}$ Test Circuit and Voltage Waveforms

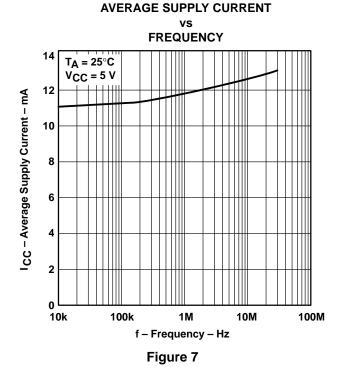
PARAMETER MEASUREMENT INFORMATION

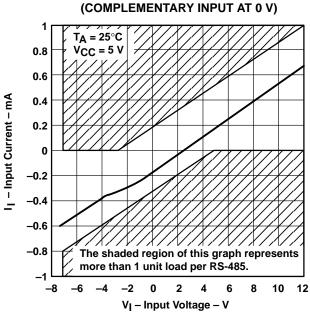

TEST CIRCUIT


NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, duty cycle = 50%, $t_{\Gamma} \le 6$ ns, $t_$

- B. C_L includes probe and jig capacitance.
- C. All diodes are 1N916 or equivalent.


Figure 3. tpzL and tpLZ Test Circuit and Voltage Waveforms


TYPICAL CHARACTERISTICS

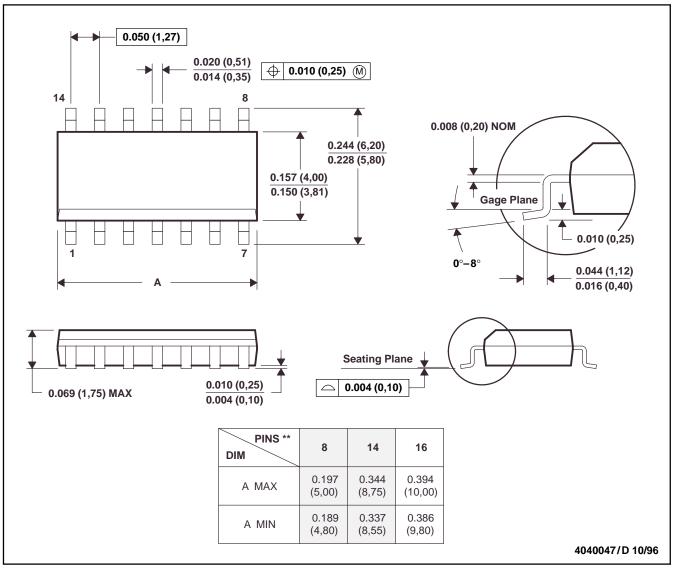


TYPICAL CHARACTERISTICS

FREE-AIR TEMPERATURE 24.5 V_{CC} = 5 V $C_L = 15 pF$ $V_{10} = \pm 1.5 \text{ V}$ pd - Propagation Delay Time - ns 24 ^tPHL 23.5 23 ^tPLH 22.5 22 -40 -20 20 40 60 80 100 T_A - Free-Air Temperature - °C

PROPAGATION DELAY TIME

Figure 8 Figure 9


SLLS171F - OCTOBER 1993 - REVISED NOVEMBER 2001

MECHANICAL DATA

D (R-PDSO-G**)

14 PIN SHOWN

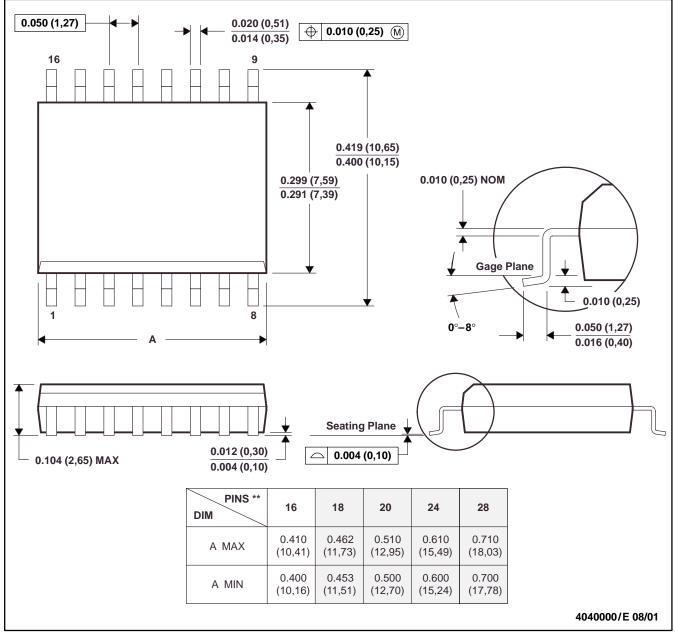
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012


SLLS171F - OCTOBER 1993 - REVISED NOVEMBER 2001

MECHANICAL DATA

DW (R-PDSO-G**)

16 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013


SLLS171F - OCTOBER 1993 - REVISED NOVEMBER 2001

MECHANICAL DATA

N (R-PDIP-T**)

16 PIN SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 (20 pin package is shorter then MS-001.)

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265