
LOW-POWER DIFFERENTIAL LINE DRIVER AND RECEIVER PAIRS

- Designed for High-Speed Multipoint Data Transmission Over Long Cables
- Operate With Pulse Durations as Low as 30 ns
- Low Supply Current . . . 5 mA Max
- Meet or Exceed the Requirements of ANSI Standard RS-485 and ISO 8482:1987(E)
- 3-State Outputs for Party-Line Buses
- Common-Mode Voltage Range of –7 V to 12 V
- Thermal Shutdown Protection Prevents
 Driver Damage From Bus Contention
- Positive and Negative Output Current Limiting
- Pin Compatible With the SN75ALS180

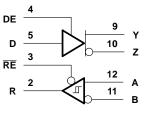
DESCRIPTION

The SN65LBC180 and SN75LBC180 differential driver and receiver pairs are monolithic integrated circuits designed for bidirectional data communication over long cables that take on the characteristics of transmission lines. They are balanced, or differential, voltage mode devices that meet or exceed the requirements of industry standards ANSI RS-485 and ISO 8482:1987(E). Both devices are designed using TI's proprietary LinBiCMOS™ with the low-power consumption of CMOS and the precision and robustness of bipolar transistors in the same circuit.

Both the SN65LBC180 and SN75LBC180 combine a differential line driver and receiver with 3-state outputs and operate from a single 5-V supply. The driver and receiver have active-high and active-low enables, respectively, which can be externally connected to function as a direction control. The driver differential outputs and the receiver differential inputs are connected to separate terminals for full-duplex operation and are designed to present minimum loading to the bus whether disabled or powered off ($V_{\rm CC}=0$). These parts feature a wide common-mode voltage range making them suitable for point-to-point or multipoint data-bus applications.

Function Tables

DRIVER


INPUT	ENABLE	OUTPUTS
D	DE	ΥZ
Н	Н	H L
L	Н	L H
Х	L	Z Z

RECEIVER

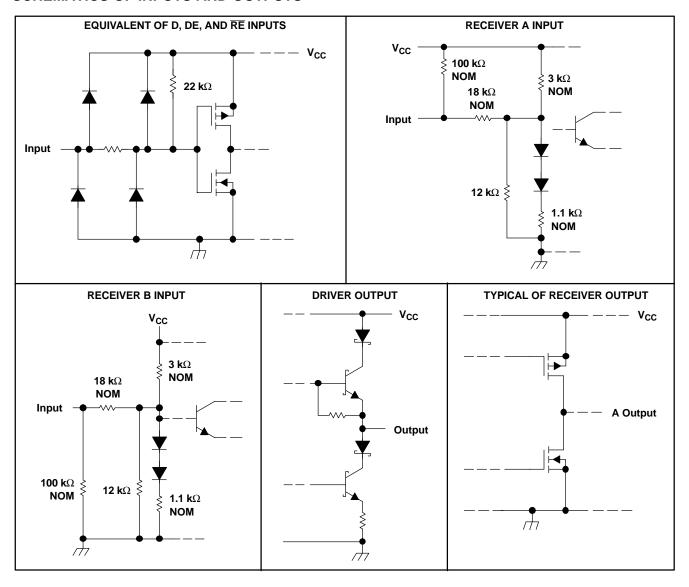
DIFFERENTIAL INPUTS	ENABLE	OUTPUT
A-B	RE	R
V _{ID} ≥ 0.2 V	L	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$	L	?
$V_{ID} \le -0.2 \text{ V}$	L	L
X	Н	Z
Open circuit	L	Н

H = high level, L = low level, ? = indeterminate, X = irrelevant, Z = high impedance (off)

logic diagram (positive logic)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinBiCMOS is a trademark of Texas Instruments.


These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

DESCRIPTION (CONTINUED)

The devices also provide positive and negative output-current limiting and thermal shutdown for protection from line fault conditions. The line driver shuts down at a junction temperature of approximately 172°C.

The SN65LBC180 and SN75LBC180 are available in the 14-pin dual-in-line and small-outline packages. The SN75LBC180 is characterized for operation over the commercial temperature range of 0°C to 70°C. The SN65LBC180 is characterized over the industrial temperature range of -40°C to 85°C.

SCHEMATICS OF INPUTS AND OUTPUTS

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range (unless otherwise noted)(1)

				UNIT
V _{CC}	CC Supply voltage range (2)		-0.3 to 7	V
VI	Input voltage range (A, B) ⁽²⁾		-10 to 15	V
	Voltage range at D, R, DE, RE ⁽²⁾		-0.3 to V _{CC} + 0.5	V
	Continuous total power dissipation (3)		Internally limited	
	Total power dissipation		See Dissipation Rating Table	
_	Operating free-air temperature range	SN65LBC180	-40 to 85	°C
T _A	Operating free-air temperature range	SN75LBC180	0 to 70	°C
T _{stg}	Storage temperature range		-65 to 150	°C
	Lead temperature 1,6 mm (1/16 inch) from	om case for 10 seconds	260	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^\circC$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	950 mW	7.6 mW/°C	608 mW	494 mW
N	1150 mW	9.2 mW/°C	736 mW	598 mW
RGV	2900 mW	23.8 mW/°C	1900 mW	1500 mW

RECOMMENDED OPERATING CONDITIONS

			MIN	NOM	MAX	UNIT
V _{CC}	Supply voltage		4.75	5	5.25	V
V _{IH}	High-level input voltage	D, DE, and RE	2	-		V
V _{IL}	Low-level input voltage	D, DE, and RE			0.8	V
V _{ID}	Differential input voltage		-6 ⁽¹⁾		6	V
V _O , V _I , or V _{IC}	Voltage at any bus terminal (separately or common mode)	A, B, Y, or Z	-7 ⁽¹⁾		12	V
1	IPak lavel setest sement	Y or Z			-60	A
ЮН	High-level output current	R		-	-8	mA
	Lavidaval autout avenue	Y or Z			60	A
IOL	Low-level output current	R			8	mA
_		SN65LBC180	-40		85	00
T _A	Operating free-air temperature	SN75LBC180	0		70	°C

⁽¹⁾ The algebraic convention where the least positive (more negative) limit is designated minimum, is used in this data sheet for the differential input voltage, voltage at any bus terminal, operating temperature, input threshold voltage, and common-mode output voltage.

⁽³⁾ The maximum operating junction temperature is internally limited. Use the dissipation rating table to operate below this temperature.

DRIVER SECTION

ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V _{IK}	Input clamp voltage	I _I = -18 mA			-	-1.5	V
	(0)	$R_1 = 54 \Omega$	SN65LBC180	1.1	2.5	5	
		See Figure 1	SN75LBC180	1.5	2.5	5	\ /
V _{OD}	Differential output voltage magnitude (2)	$R_1 = 60 \Omega$	SN65LBC180	1.1	2	5	V
		See Figure 2	SN75LBC180	1.5	2	5	
Δ V _{OD}	Change in magnitude of differential output voltage (3)	See Figure 1 and Figure 2			-	±0.2	V
V _{oc}	Common-mode output voltage			1	2.5	3	V
Δ V _{OC}	Change in magnitude of common-mode output voltage ⁽³⁾	$R_L = 54\Omega$,	$R_L = 54\Omega$, See Figure 1		,	±0.2	V
Io	Output current with power off	$V_{CC} = 0$,	$V_0 = -7 \text{ V to } 12 \text{ V}$	•		±100	μA
I _{OZ}	High-impedance-state output current	$V_0 = -7 \text{ V to } 1$	2 V			±100	μΑ
I _{IH}	High-level input current	V _I = 2.4 V				100	μΑ
I _{IL}	Low-level input current	V _I = 0.4 V				100	μΑ
Ios	Short-circuit output current	-7 V ≤ V _O ≤ 12	V			±250	mA
	Outside comment	Receiver	Outputs enabled	,		5	Δ
^I cc	Supply current	disabled	Outputs disabled	•		3	mA

SWITCHING CHARACTERISTICS

 $V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT	
t _{d(OD)}	Differential output delay time	$R_L = 54 \Omega$,	See Figure 3	7	12	18	ns	
t _{t(OD)}	Differential output transition time		$K_{L} = 54.22,$	$R_L = 54.52,$	See Figure 5	5	10	20
t _{PZH}	Output enable time to high level	$R_L = 110 \Omega$,	See Figure 4			35	ns	
t _{PZL}	Output enable time to low level	$R_L = 110 \Omega$,	See Figure 5			35	ns	
t _{PHZ}	Output disable time from high level	$R_L = 110 \Omega$,	See Figure 4			50	ns	
t _{PLZ}	Output disable time from low level	$R_L = 110 \Omega$,	See Figure 5			35	ns	

All typical values are at V_{CC} = 5 V and T_A = 25°C. The minimum V_{OD} specification of the SN65LBC180 may not fully comply with ANSI RS-485 at operating temperatures below 0°C. System designers should take the possibly lower output signal into account in determining the maximum signal-transmission distance. $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in the steady-state magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low level.

RECEIVER SECTION

ELECTRICAL CHARACTERISTICS

over recommended operating conditions (unless otherwise noted)

	PARAMETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
V _{IT+}	Positive-going input threshold voltage	$I_O = -8 \text{ mA}$				0.2	V
V _{IT}	Negative-going input threshold voltage	I _O = 8 mA		-0.2			V
V _{hys}	Hysteresis voltage (V _{IT+} - V _{IT-})			,	45		mV
V _{IK}	Enable-input clamp voltage	I _I = -18 mA			-	-1.5	V
V _{OH}	High-level output voltage	V _{ID} = 200 mV,	$I_{OH} = -8 \text{ mA}$	3.5	4.5		V
V _{OL}	Low-level output voltage	$V_{ID} = -200 \text{ mV},$	$I_{OL} = 8 \text{ mA}$		0.3	0.5	V
I _{OZ}	High-impedance-state output current	$V_O = 0 \text{ V to } V_{CC}$				±20	μA
I _{IH}	High-level enable-input current	V _{IH} = 2.4 V				-50	μA
I _{IL}	Low-level enable-input current	V _{IL} = 0.4 V				-100	μA
		$V_{I} = 12 \text{ V}, V_{CC} = 5 \text{ V},$	Other input at 0 V		0.7	1	
١.	Due input current	$V_{I} = 12 \text{ V}, V_{CC} = 0 \text{ V},$	Other input at 0 V		0.8	1	A
11	Bus input current	$V_{I} = -7 \text{ V}, V_{CC} = 5 \text{ V},$	Other input at 0 V		-0.5	-0.8	mA
		$V_{I} = -7 \text{ V}, V_{CC} = 0 \text{ V},$	Other input at 0 V		-0.5	-0.8	
	Supply autropt	Driver disabled	Outputs enabled			5	m ^
Icc	Supply current	Driver disabled	Outputs disabled			3	mA

SWITCHING CHARACTERISTICS

 $V_{CC} = 5 \text{ V}, T_{A} = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _{PHL}	Propagation delay time, high- to low-level output		11	22	33	ns
t _{PLH}	Propagation delay time, low- to high-level output	V 15 V to 15 V Soo Figure 6	11	22	33	ns
t _{sk(p)}	Pulse skew (t _{PHL} - t _{PLH})	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$ See Figure 6		3	6	ns
t _t	Transition time			5	8	ns
t _{PZH}	Output enable time to high level				35	ns
t _{PZL}	Output enable time to low level	Soo Figure 7			30	ns
t _{PHZ}	Output disable time from high level	See Figure 7			35	ns
t _{PLZ}	Output disable time from low level				30	ns

PARAMETER MEASUREMENT INFORMATION

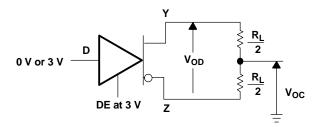


Figure 1. Differential and Common-Mode Output Voltages

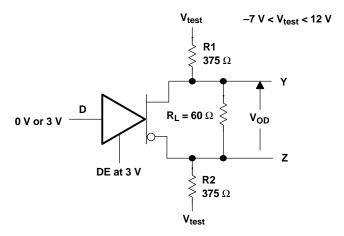
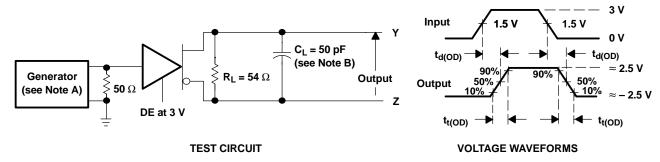



Figure 2. Driver V_{OD} Test Circuit

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR > 1 MHz, 50% duty cycle, $t_r \le 6$ ns, $t_f \le 6$ ns, $Z_O = 50 \ \Omega$.

B. C_L includes probe and jig capacitance.

Figure 3. Driver Test Circuit and Differential Output Delay and Transition Time Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

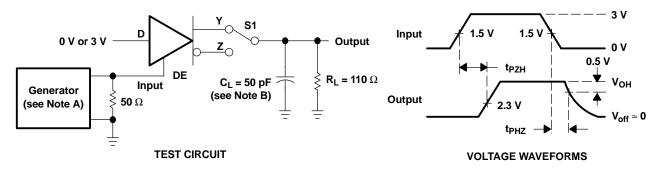


Figure 4. Driver Test Circuit and Enable and Disable Time Waveforms

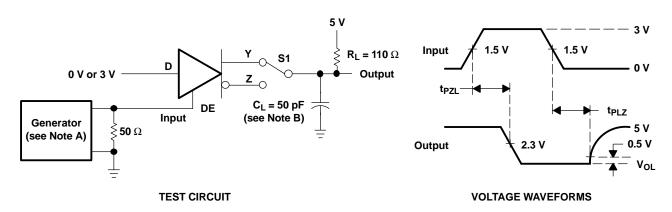
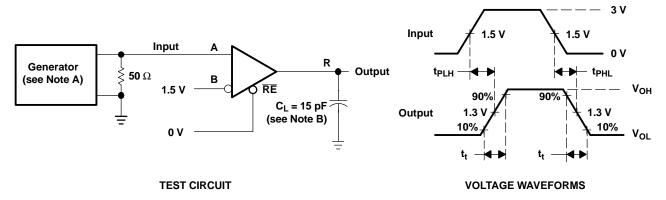
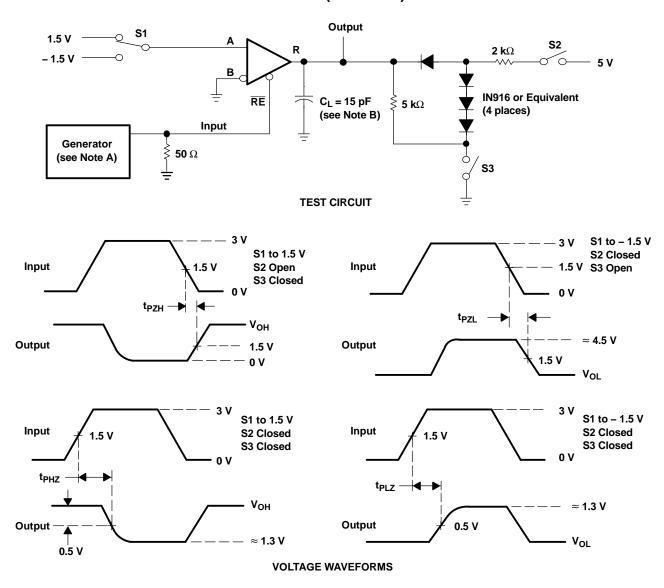



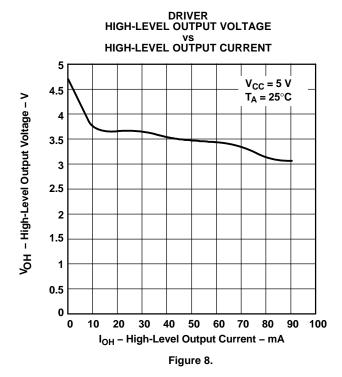
Figure 5. Driver Test Circuit and Enable and Disable Time Voltage Waveforms


NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_r \leq$ 6 ns, $t_f \leq$ 7 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 9 ns, t_f

B. C_L includes probe and jig capacitance.

Figure 6. Receiver Test Circuit and Propagation Delay Time Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)


NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_f \leq$ 6 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 9 ns, t_f

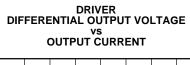

B. C_L includes probe and jig capacitance.

Figure 7. Receiver Output Enable and Disable Times

TYPICAL CHARACTERISTICS

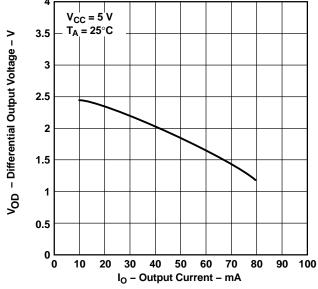


Figure 10.

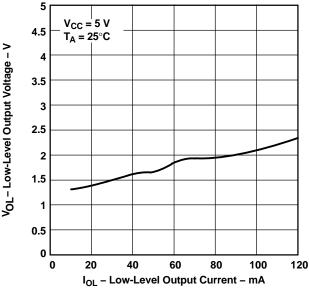


Figure 9.

DRIVER DIFFERENTIAL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

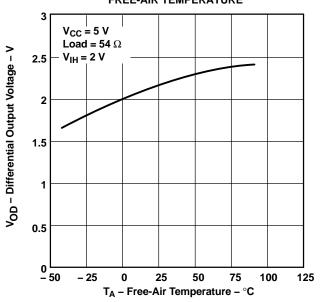
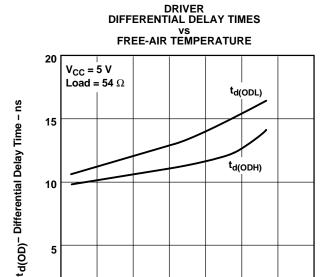


Figure 11.

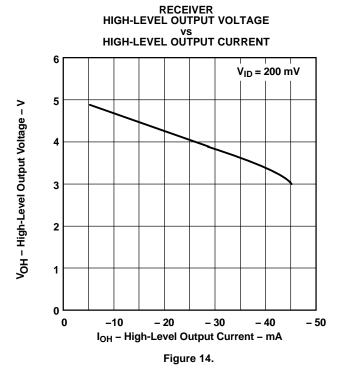

- 50

- 25

0

TYPICAL CHARACTERISTICS (continued)

 T_A – Free-Air Temperature – °C Figure 12.


50

75

100

125

25

DRIVER
OUTPUT CURRENT
vs
SUPPLY VOLTAGE

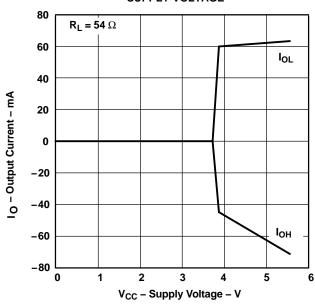


Figure 13.

RECEIVER HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT

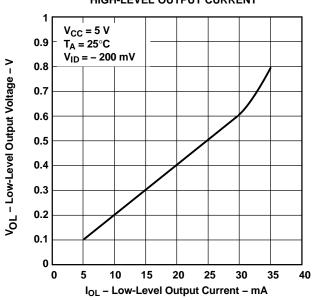


Figure 15.

TYPICAL CHARACTERISTICS (continued)

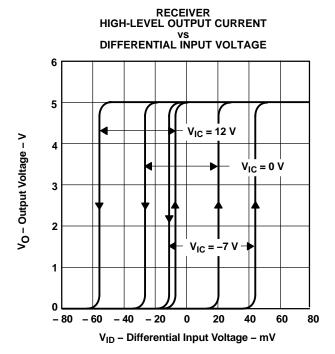
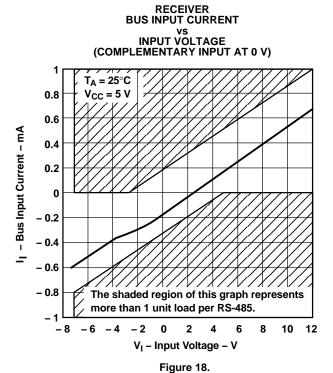



Figure 16.

AVERAGE SUPPLY CURRENT
vs
FREQUENCY

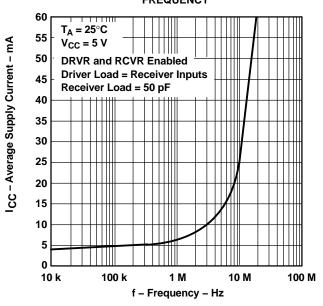


Figure 17.

RECEIVER PROPAGATION DELAY TIME vs FREE-AIR TEMPERATURE

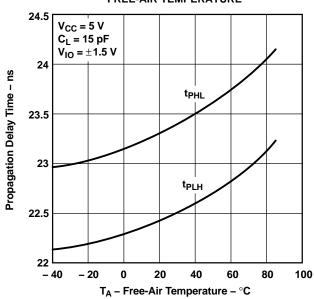


Figure 19.

APPLICATION INFORMATION

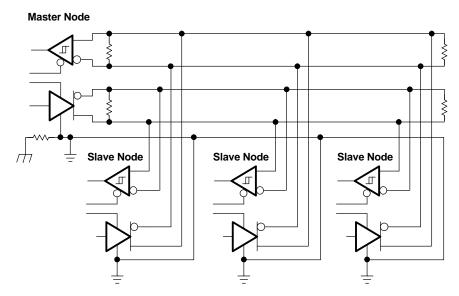
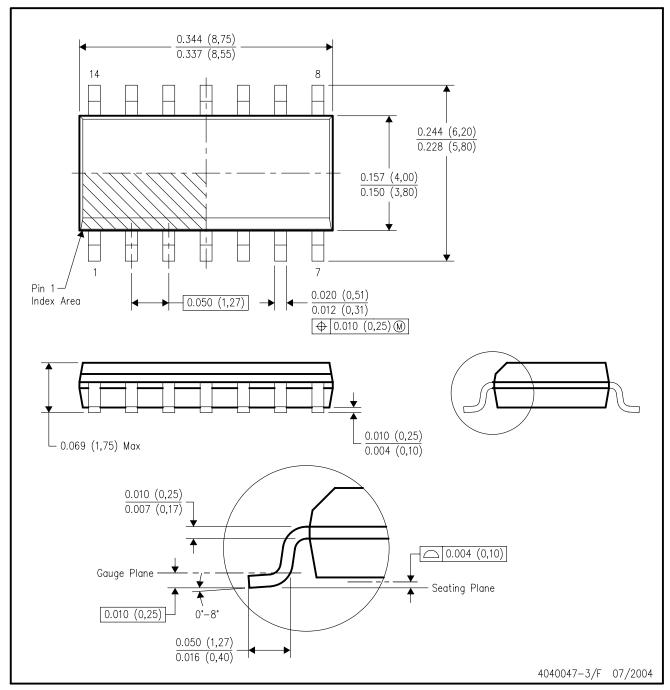


Figure 20. Full Duplex Application Circuit

N (R-PDIP-T**)

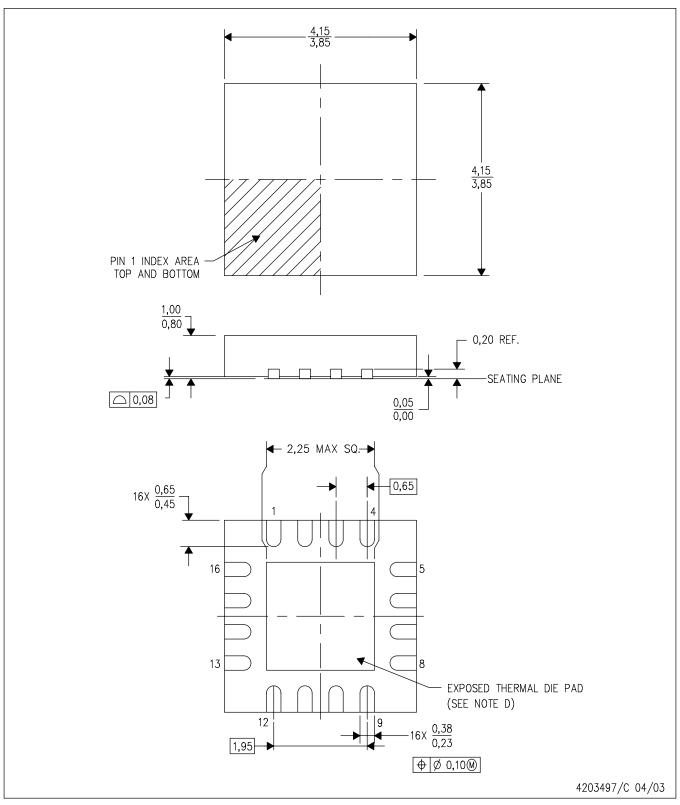
PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G14)


PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AB.

NOTES: A. All linear dimensions are in millimeters.

- This drawing is subject to change without notice.
- Quad Flatpack, No—leads (QFN) package configuration.
 The package thermal performance may be enhanced by bonding the thermal die pad to an external thermal plane.
- E. Falls within JEDEC MO-220.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

e
d
trol
work
d trol wo

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated