SLOS437K - APRIL 2004 - REVISED OCTOBER 2010

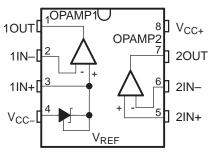
# DUAL OPERATIONAL AMPLIFIERS WITH INTERNAL REFERENCE

Check for Samples: TL103W, TL103WA

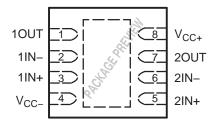
### **FEATURES**

#### OPERATIONAL AMPLIFIER

- Low Offset Voltage Max of:
  - TL103WA...3 mV (25°C) and 5 mV (Full Temperature)
  - TL103W...4 mV (25°C) and 5 mV (Full Temperature)
- Low Supply Current...350 μA/Channel (Typ)
- Unity Gain Bandwidth...0.9 MHz (Typ)
- Input Common-Mode Range Includes GND
- Large Output-Voltage Swing...
   0 V to V<sub>CC</sub> 1.5 V
- Wide Supply-Voltage Range...3 V to 32 V
- 2-kV ESD Protection (HBM)


#### VOLTAGE REFERENCE

- Fixed 2.5-V Reference
- Tight Tolerance Max of:
  - TL103WA...0.4% (25°C) and 0.8% (Full Temperature)
  - TL103W . . . 0.7% (25°C) and 1.4% (Full Temperature)
- Low Temperature Drift...7 mV (Typ) Over Operating Temperature Range
- Wide Sink-Current Range . . .0.5 mA (Typ) to 100 mA
- Output Impedance...0.2 Ω (Typ)


### TYPICAL APPLICATIONS

- Battery Chargers
- Switch-Mode Power Supplies
- Linear Voltage Regulation
- Data-Acquisition Systems

### D (SOIC) PACKAGE (TOP VIEW)



### DRJ (QFN) PACKAGE (TOP VIEW)



NOTE: Exposed thermal pad is connected internally to  $V_{CC-}$  via die attach.

### DESCRIPTION/ORDERING INFORMATION

The TL103W and TL103WA combine the building blocks of a dual operational amplifier and a fixed voltage reference – both of which often are used in the control circuitry of both switch-mode and linear power supplies. OPAMP1 has its noninverting input internally tied to a fixed 2.5-V reference, while OPAMP2 is independent, with both inputs uncommitted.

For the A grade, especially tight voltage regulation can be achieved through low offset voltages for both operational amplifiers (typically 0.5 mV) and tight tolerances for the voltage reference (0.4% at 25°C and 0.8% over operating temperature range).

The TL103W and TL103WA are characterized for operation from -40°C to 105°C.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



### **ORDERING INFORMATION**

| T <sub>A</sub> | MAX V <sub>IO</sub> AND V <sub>REF</sub><br>TOLERANCE<br>(25°C) | PACKAGE <sup>(1)</sup> |              | ORDERABLE PART NUMBER | TOP-SIDE MARKING |
|----------------|-----------------------------------------------------------------|------------------------|--------------|-----------------------|------------------|
|                |                                                                 | QFN (DRJ)              | Reel of 1000 | TL103WAIDRJR          | PREVIEW          |
|                | A grade<br>3 mV, 0.4%                                           | COIC (D)               | Tube of 75   | TL103WAID             | 74.00\\\\        |
| 400C to 4050C  |                                                                 | SOIC (D)               | Reel of 2500 | TL103WAIDR            | Z103WA           |
| –40°C to 105°C |                                                                 | QFN (DRJ)              | Reel of 1000 | TL103WIDRJR           | PREVIEW          |
|                | Standard grade<br>4 mV. 0.7%                                    | SOIC (D)               | Tube of 75   | TL103WID              | 74.02\\\         |
|                | 4 IIIV, 0.7 76                                                  | SOIC (D)               | Reel of 2500 | TL103WIDR             | Z103W            |

<sup>(1)</sup> Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

## **Typical Application Circuit**

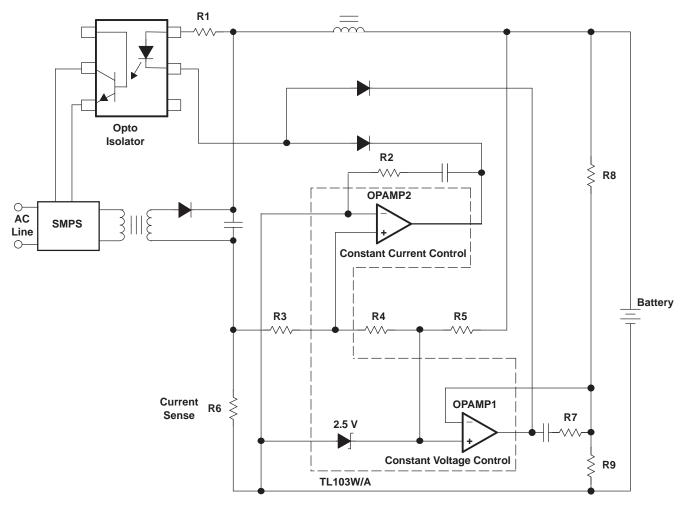



Figure 1. TL103W/A in a Constant-Current and Constant-Voltage Battery Charger

## Absolute Maximum Ratings(1)

over operating free-air temperature range (unless otherwise noted)

|                  |                                                  |                                | MIN  | MAX | UNIT   |  |
|------------------|--------------------------------------------------|--------------------------------|------|-----|--------|--|
| V <sub>CC</sub>  | Supply voltage                                   |                                |      | 36  | V      |  |
| $V_{\text{ID}}$  | Operational amplifier input differential voltage |                                |      | 36  | V      |  |
| VI               | Operational amplifier input voltage range        |                                | -0.3 | 36  | V      |  |
| I <sub>KA</sub>  | Voltage reference cathode current                |                                |      | 100 | mA     |  |
| 0                | Park and the good from the con-                  | D package <sup>(2)</sup> (3)   |      | 97  | 00/11/ |  |
| $\theta_{JA}$    | Package thermal impedance                        | DRJ package <sup>(2) (4)</sup> |      | TBD | °C/W   |  |
| TJ               | Maximum junction temperature                     |                                |      | 150 | °C     |  |
| T <sub>stg</sub> | Storage temperature range                        |                                | -65  | 150 | °C     |  |

- (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability
- (2) Maximum power dissipation is a function of  $T_J(max)$ ,  $\theta_{JA}$ , and  $T_A$ . The maximum allowable power dissipation at any allowable ambient temperature is  $P_D = (T_J(max) T_A)/\theta_{JA}$ . Selecting the maximum of 150°C can affect reliability.
- (3) The package thermal impedance is calculated in accordance with JESD 51-7.
- (4) The package thermal impedance is calculated in accordance with JESD 51-5.

### **Recommended Operating Conditions**

over operating free-air temperature range (unless otherwise noted)

|                 |                                | MIN | MAX | UNIT |
|-----------------|--------------------------------|-----|-----|------|
| $V_{\text{IN}}$ | Supply voltage                 | 3   | 32  | V    |
| I <sub>K</sub>  | Cathode current                | 1   | 100 | mA   |
| T <sub>A</sub>  | Operating free-air temperature | -40 | 105 | °C   |



# OPAMP1, Operational Amplifier With Noninverting Input Connected to the Internal $V_{\text{REF}}$ Electrical Characteristics

 $V_{CC+} = 5 V$ ,  $V_{CC} = GND$ ,  $T_A = 25$ °C (unless otherwise noted)

|                        | PARAMETER               |               | TEST CONDITIONS                                                                                                                              | T <sub>A</sub> | MIN | TYP  | MAX | UNIT  |  |
|------------------------|-------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|------|-----|-------|--|
|                        |                         | TL103W        | V -0.V                                                                                                                                       | 25°C           |     | 1    | 4   |       |  |
| M                      | land offert veltage     | ILIUSVV       | $V_{icm} = 0 V$                                                                                                                              | Full range     |     |      | 5   | \/    |  |
| $V_{10}$               | Input offset voltage    | TI 402\\/     | V 0 V                                                                                                                                        | 25°C           |     | 0.5  | 3   | mV    |  |
|                        |                         | TL103WA       | V <sub>icm</sub> = 0 V                                                                                                                       | Full range     |     |      | 5   |       |  |
| $\alpha V_{\text{IO}}$ | Input offset-voltage d  | rift          |                                                                                                                                              | 25°C           |     | 7    |     | μV/°C |  |
| $I_{IB}$               | Input bias current (ne  | gative input) |                                                                                                                                              | 25°C           |     | 20   |     | nA    |  |
| A <sub>VD</sub>        | Large-signal voltage    | gain          | $V_{CC+} = 15 \text{ V}, R_L = 2 \text{ k}\Omega, V_{icm} = 0 \text{ V}$                                                                     | 25°C           |     | 100  |     | V/mV  |  |
| k <sub>SVR</sub>       | Supply-voltage rejecti  | ion ratio     | V <sub>CC+</sub> = 5 V to 30 V, V <sub>icm</sub> = 0 V                                                                                       | 25°C           | 65  | 100  |     | dB    |  |
| I <sub>O(source)</sub> | Output source curren    | t             | $V_{CC+} = 15 \text{ V}, V_{O} = 2 \text{ V}, V_{id} = 1 \text{ V}$                                                                          | 25°C           | 20  | 40   |     | mA    |  |
| I <sub>SC</sub>        | Short circuit to GND    |               | V <sub>CC+</sub> = 15 V                                                                                                                      | 25°C           |     | 40   | 60  | mA    |  |
| I <sub>O(sink)</sub>   | Output ainly aureant    |               | $V_{CC+} = 15 \text{ V}, V_{O} = 2 \text{ V}, V_{id} = -1 \text{ V}$                                                                         | 25°C           | 10  | 12   |     | mA    |  |
|                        | Output sink current     |               | $V_{CC+} = 15 \text{ V}, V_{O} = 0.2 \text{ V}, V_{id} = -1 \text{ V}$                                                                       | 25 0           | 12  | 50   |     | μΑ    |  |
|                        |                         |               | $V_{CC} = 30 \text{ V}, R_1 = 2 \text{ k}\Omega$                                                                                             | 25°C           | 26  | 27   |     |       |  |
| V                      | High-level output volt  |               | $V_{CC} = 30 \text{ V}, \text{ R}_{L} = 2 \text{ K}\Omega$                                                                                   | Full range     | 26  |      |     | V     |  |
| V <sub>OH</sub>        | High-level output voit  | aye           | $V_{CC} = 30 \text{ V}, R_1 = 10 \text{ k}\Omega$                                                                                            | 25°C           | 27  | 28   |     | V     |  |
|                        |                         |               | V <sub>CC</sub> = 50 V, K <sub>L</sub> = 10 KΩ                                                                                               | Full range     | 27  |      |     |       |  |
| M                      | Low lovel output valte  |               | B 4010                                                                                                                                       | 25°C           |     | 5    | 20  | mV    |  |
| V <sub>OL</sub>        | Low-level output volta  | age           | $R_L = 10 \text{ k}\Omega$                                                                                                                   | Full range     |     |      | 20  | IIIV  |  |
| SR                     | Slew rate at unity gain | n             | $V_{CC+} = 15 \text{ V}, C_L = 100 \text{ pF},$<br>$R_L = 2 \text{ k}\Omega, V_I = 0.5 \text{ V} \text{ to 2 V}, \text{ unity gain}$         | 25°C           | 0.2 | 0.4  |     | V/μs  |  |
| GBW                    | Gain bandwidth produ    | uct           | $V_{CC+} = 30 \text{ V}, V_I = 10 \text{ mV}, \\ C_L = 100 \text{ pF}, R_L = 2 \text{ k}\Omega, f = 100 \text{ kHz}$                         | 25°C           | 0.5 | 0.9  |     | MHz   |  |
| THD                    | Total harmonic distor   | tion          | $V_{CC+} = 30 \text{ V}, V_O = 2 \text{ V}_{pp}, C_L = 100 \text{ pF},$<br>$R_L = 2 \text{ k}\Omega, f = 1 \text{ kHz}, A_V = 20 \text{ dB}$ | 25°C           |     | 0.02 |     | %     |  |

## **OPAMP2**, Independent Operational Amplifier Electrical Characteristics

 $V_{CC+} = 5 \text{ V}, V_{CC} = \text{GND}, V_{O} = 1.4 \text{ V}, T_{A} = 25^{\circ}\text{C}$  (unless otherwise noted)

|                        | PARAMETER                   |               | TEST CONDITIONS                                                                                                                                                    | T <sub>A</sub> | MIN | TYP  | MAX                    | UNIT               |  |
|------------------------|-----------------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-----|------|------------------------|--------------------|--|
|                        |                             | TI 400\\      | V 0 V                                                                                                                                                              | 25°C           |     | 1    | 4                      |                    |  |
| .,                     |                             | TL103W        | $V_{icm} = 0 V$                                                                                                                                                    | Full range     |     |      | 5                      | .,                 |  |
| $V_{IO}$               | Input offset voltage        | TI 400\444    |                                                                                                                                                                    | 25°C           |     | 0.5  | 3                      | mV                 |  |
|                        |                             | TL103WA       | $V_{icm} = 0 V$                                                                                                                                                    | Full range     |     |      | 5                      |                    |  |
| $\alpha V_{IO}$        | Input offset voltage d      | rift          |                                                                                                                                                                    | 25°C           |     | 7    |                        | μV/°C              |  |
|                        | land effect comment         |               |                                                                                                                                                                    | 25°C           |     | 2    | 75                     | A                  |  |
| I <sub>IO</sub>        | Input offset current        |               |                                                                                                                                                                    | Full range     |     |      | 150                    | nA                 |  |
|                        | Leaved Idda a summer        |               |                                                                                                                                                                    | 25°C           |     | 20   | 150                    | 0                  |  |
| I <sub>IB</sub>        | Input bias current          |               |                                                                                                                                                                    | Full range     |     |      | 200                    | nA                 |  |
| ^                      | Laura Sarahaskana           |               | $V_{CC+} = 15 \text{ V}, R_L = 2 \text{ k}\Omega,$                                                                                                                 | 25°C           | 50  | 100  |                        | \ //\ /            |  |
| $A_{VD}$               | Large-signal voltage        | gain          | V <sub>O</sub> = 1.4 V to 11.4 V                                                                                                                                   | Full range     | 25  |      |                        | V/mV               |  |
| k <sub>SVR</sub>       | Supply-voltage reject       | ion ratio     | V <sub>CC+</sub> = 5 V to 30 V                                                                                                                                     | 25°C           | 65  | 100  |                        | dB                 |  |
|                        | land a same a               |               | V <sub>CC+</sub> = 30 V <sup>(1)</sup>                                                                                                                             | 25°C           | 0   |      | V <sub>CC+</sub> – 1.5 |                    |  |
| $V_{ICR}$              | Input common-mode           | voitage range | Strage range VCC+ = 50 V F                                                                                                                                         |                | 0   |      | V <sub>CC+</sub> – 2   | V                  |  |
| OMPD                   | 0                           | C             |                                                                                                                                                                    | 25°C           | 70  | 85   |                        | -ID                |  |
| CMRR                   | Common-mode rejec           | tion ratio    |                                                                                                                                                                    | Full range     | 60  |      |                        | dB                 |  |
| I <sub>O(source)</sub> | Output source curren        | t             | V <sub>CC+</sub> = 15 V, V <sub>O</sub> = 2 V, V <sub>id</sub> = 1 V                                                                                               | 25°C           | 20  | 40   |                        | mA                 |  |
| I <sub>SC</sub>        | Short circuit to GND        |               | V <sub>CC+</sub> = 15 V                                                                                                                                            | 25°C           |     | 40   | 60                     | mA                 |  |
|                        | Output sink summent         |               | $V_{CC+} = 15 \text{ V}, V_O = 2 \text{ V}, V_{id} = -1 \text{ V}$                                                                                                 | 25.0           | 10  | 12   |                        | mA                 |  |
| I <sub>O(sink)</sub>   | Output sink current         |               | $V_{CC+} = 15 \text{ V}, V_O = 0.2 \text{ V}, V_{id} = -1 \text{ V}$                                                                                               | 25°C           | 12  | 50   |                        | μΑ                 |  |
|                        |                             |               | V 20 V B 210                                                                                                                                                       | 25°C           | 26  | 27   |                        |                    |  |
|                        | I Park James Landon de Land |               | $V_{CC} = 30 \text{ V}, R_L = 2 \text{ k}\Omega$                                                                                                                   | Full range     | 26  |      |                        |                    |  |
| V <sub>OH</sub>        | High-level output volt      | age           | V 00 V D 10 LO                                                                                                                                                     | 25°C           | 27  | 28   |                        | V                  |  |
|                        |                             |               | $V_{CC} = 30 \text{ V}, R_L = 10 \text{ k}\Omega$                                                                                                                  | Full range     | 27  |      |                        |                    |  |
| \/                     | Low love Landard Call       |               | B 40 k0                                                                                                                                                            | 25°C           |     | 5    | 20                     | mr\/               |  |
| $V_{OL}$               | Low-level output volta      | age           | $R_L = 10 \text{ k}\Omega$                                                                                                                                         | Full range     |     |      | 20                     | mV                 |  |
| SR                     | Slew rate at unity gai      | n             | $\begin{split} &V_{CC+} = 15 \text{ V, } C_L = 100 \text{ pF,} \\ &R_L = 2 \text{ k}\Omega, \text{ V}_I = 0.5 \text{ V to 3 V,} \\ &\text{unity gain} \end{split}$ | 25°C           | 0.2 | 0.4  |                        | V/μs               |  |
| GBW                    | Gain bandwidth produ        | uct           | $V_{CC+} = 30 \text{ V}, V_I = 10 \text{ mV}, \\ C_L = 100 \text{ pF}, R_L = 2 \text{ k}\Omega, \\ f = 100 \text{ kHz}$                                            | 25°C           | 0.5 | 0.9  |                        | MHz                |  |
| THD                    | Total harmonic distor       | tion          | $V_{CC+} = 30 \text{ V}, V_O = 2 \text{ V}_{pp},$ $C_L = 100 \text{ pF}, R_L = 2 \text{ k}\Omega,$ $f = 1 \text{ kHz}, A_V = 20 \text{ dB}$                        | 25°C           |     | 0.02 |                        | %                  |  |
| V <sub>n</sub>         | Equivalent input noise      | e voltage     | $V_{CC} = 30 \text{ V}, R_S = 100 \Omega,$<br>f = 1 kHz                                                                                                            | 25°C           |     | 50   |                        | nV/√ <del>Hz</del> |  |

<sup>(1)</sup> The input common-mode voltage of either input should not be allowed to go below −0.3 V. The upper end of the common-mode voltage range is V<sub>CC+</sub> − 1.5 V, but either input can go to V<sub>CC+</sub> + 0.3 V (but ≤36 V) without damage.



## Voltage Reference Electrical Characteristics

|                  | PARAMETER                                                |                                                                                                                 | TEST CONDITIONS                            | T <sub>A</sub> | MIN   | TYP | MAX   | UNIT |
|------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------------|-------|-----|-------|------|
|                  |                                                          | TL103W                                                                                                          | 1 - 10 mA                                  | 25°C           | 2.482 | 2.5 | 2.518 |      |
| V                | Deference valtage                                        | 1110300                                                                                                         | I <sub>K</sub> = 10 mA                     | Full range     | 2.465 |     | 2.535 | V    |
| $V_{REF}$        | ·                                                        | TL103WA                                                                                                         | 1 10 mA                                    | 25°C           | 2.49  | 2.5 | 2.51  |      |
|                  |                                                          | ILIUSWA                                                                                                         | I <sub>K</sub> = 10 mA                     | Full range     | 2.48  |     | 2.52  |      |
| $\Delta V_{REF}$ | Reference input voltage deviation over temperature range |                                                                                                                 | $V_{KA} = V_{REF}$ , $I_K = 10 \text{ mA}$ | Full range     |       | 7   | 30    | mV   |
| I <sub>min</sub> | Minimum cathode current for regulation                   |                                                                                                                 | $V_{KA} = V_{REF}$                         | 25°C           |       | 0.5 | 1     | mA   |
| z <sub>ka</sub>  | Dynamic impedance <sup>(1</sup>                          | Dynamic impedance <sup>(1)</sup> $V_{KA} = V_{REF}, \Delta I_{K} = 1 \text{ mA to } 100 \text{ mA}, $ f < 1 kHz |                                            | 25°C           |       | 0.2 | 0.5   | Ω    |

$$|z_{ka}| = \frac{\Delta V_{KA}}{\Delta I_{K}}$$

# **Total Device Electrical Characteristics**

|     | PARAMETER                           | TEST CONDITIONS                  | T <sub>A</sub> | MIN | TYP | MAX | UNIT |
|-----|-------------------------------------|----------------------------------|----------------|-----|-----|-----|------|
|     | Total supply current,               | V <sub>CC+</sub> = 5 V, No load  | Full rongs     |     | 0.7 | 1.2 | A    |
| ICC | excluding cathode-current reference | V <sub>CC+</sub> = 30 V, No load | Full range     |     |     | 2   | mA   |

Submit Documentation Feedback

<sup>(1)</sup> The dynamic impedance is defined as

SLOS437K - APRIL 2004 - REVISED OCTOBER 2010

### **REVISION HISTORY**

| Cł | hanges from Revision J (September 2010) to Revision K | Page |
|----|-------------------------------------------------------|------|
| •  | Changed topside marking to fix typo Z103WQ to Z103WA  | 2    |



6-Oct-2010

### **PACKAGING INFORMATION**

| Orderable Device | Status (1) | Package Type | Package<br>Drawing | Pins | Package Qty | Eco Plan <sup>(2)</sup>    | Lead/<br>Ball Finish | MSL Peak Temp <sup>(3)</sup> | Samples<br>(Requires Login)            |
|------------------|------------|--------------|--------------------|------|-------------|----------------------------|----------------------|------------------------------|----------------------------------------|
| TL103WAID        | ACTIVE     | SOIC         | D                  | 8    | 75          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           | Contact TI Distributor or Sales Office |
| TL103WAIDE4      | ACTIVE     | SOIC         | D                  | 8    | 75          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           | Contact TI Distributor or Sales Office |
| TL103WAIDG4      | ACTIVE     | SOIC         | D                  | 8    | 75          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           | Contact TI Distributor or Sales Office |
| TL103WAIDR       | ACTIVE     | SOIC         | D                  | 8    | 2500        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           | Request Free Samples                   |
| TL103WAIDRE4     | ACTIVE     | SOIC         | D                  | 8    | 2500        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           | Request Free Samples                   |
| TL103WAIDRG4     | ACTIVE     | SOIC         | D                  | 8    | 2500        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           | Request Free Samples                   |
| TL103WID         | ACTIVE     | SOIC         | D                  | 8    | 75          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           | Purchase Samples                       |
| TL103WIDE4       | ACTIVE     | SOIC         | D                  | 8    | 75          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           | Purchase Samples                       |
| TL103WIDG4       | ACTIVE     | SOIC         | D                  | 8    | 75          | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           | Purchase Samples                       |
| TL103WIDR        | ACTIVE     | SOIC         | D                  | 8    | 2500        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           | Request Free Samples                   |
| TL103WIDRE4      | ACTIVE     | SOIC         | D                  | 8    | 2500        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           | Request Free Samples                   |
| TL103WIDRG4      | ACTIVE     | SOIC         | D                  | 8    | 2500        | Green (RoHS<br>& no Sb/Br) | CU NIPDAU            | Level-1-260C-UNLIM           | Request Free Samples                   |

<sup>(1)</sup> The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

**LIFEBUY:** TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.



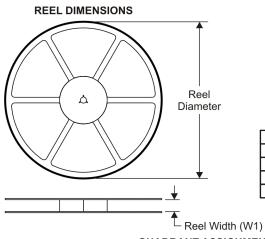
### PACKAGE OPTION ADDENDUM

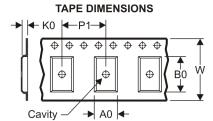
6-Oct-2010

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

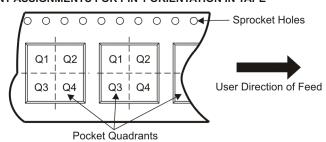
(3) MSL. Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

## PACKAGE MATERIALS INFORMATION

www.ti.com 5-Oct-2010

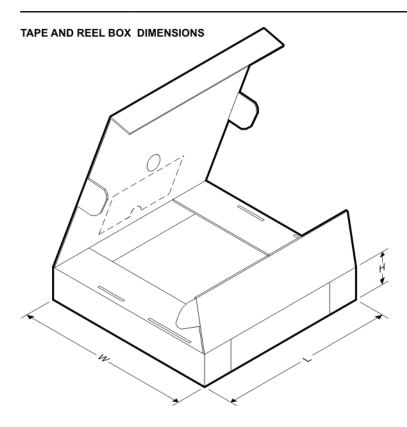

### TAPE AND REEL INFORMATION





| A0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

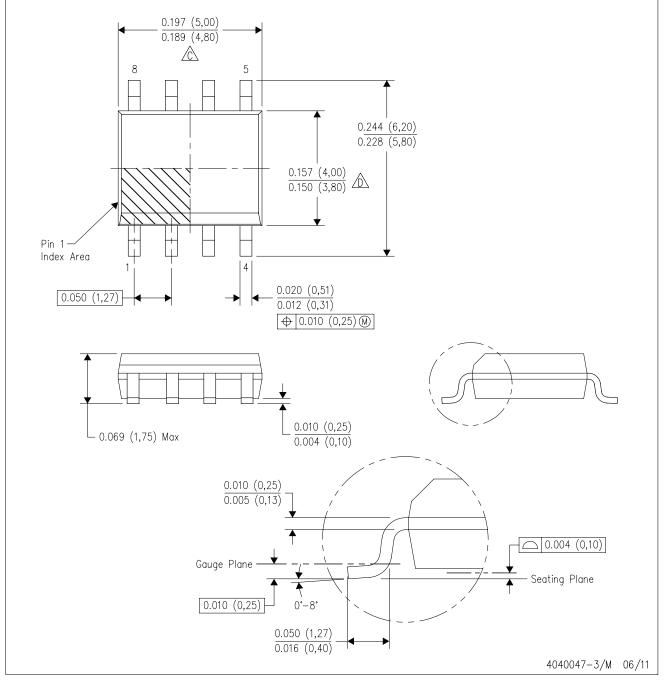



### \*All dimensions are nominal

| 1 | 7 til dillionolollo alo nominal |                 |                    |   |      |                          |                          |            |            |            |            |           |                  |
|---|---------------------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
|   | Device                          | Package<br>Type | Package<br>Drawing |   | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|   | TL103WAIDR                      | SOIC            | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |
|   | TL103WIDR                       | SOIC            | D                  | 8 | 2500 | 330.0                    | 12.4                     | 6.4        | 5.2        | 2.1        | 8.0        | 12.0      | Q1               |

**PACKAGE MATERIALS INFORMATION** 

www.ti.com 5-Oct-2010



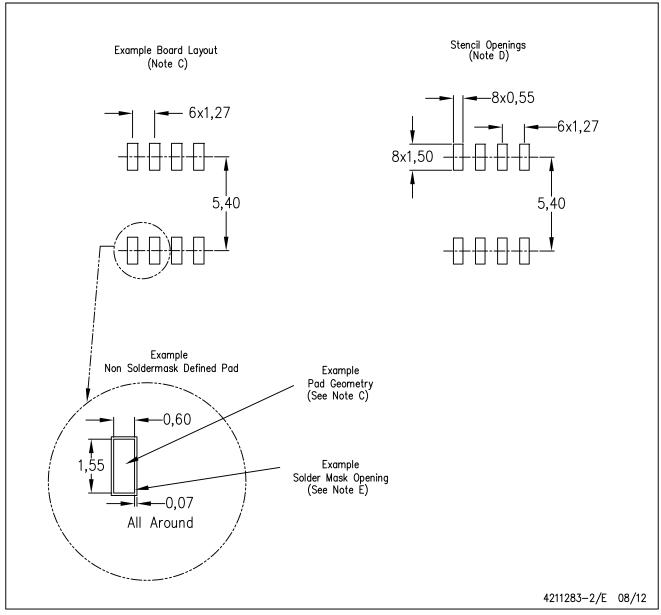

### \*All dimensions are nominal

| Device     | Package Type | e Package Drawing |   | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|------------|--------------|-------------------|---|------|-------------|------------|-------------|
| TL103WAIDR | SOIC         | D                 | 8 | 2500 | 340.5       | 338.1      | 20.6        |
| TL103WIDR  | SOIC         | D                 | 8 | 2500 | 340.5       | 338.1      | 20.6        |

## D (R-PDSO-G8)

### PLASTIC SMALL OUTLINE




NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.



## D (R-PDSO-G8)

## PLASTIC SMALL OUTLINE



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.



#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

| roducts |              | Applications |
|---------|--------------|--------------|
|         | ti aaaa/adia | A            |

Pr

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

www.ti-rfid.com