
SLVS036L - SEPTEMBER 1981 - REVISED APRIL 2005

- Output Adjustable From 1.25 V to 125 V When Used With an External Resistor Divider
- 700-mA Output Current
- Full Short-Circuit, Safe-Operating-Area, and Thermal-Shutdown Protection
- 0.001%/V Typical Input Voltage Regulation
- 0.15% Typical Output Voltage Regulation
- 76-dB Typical Ripple Rejection

description/ordering information

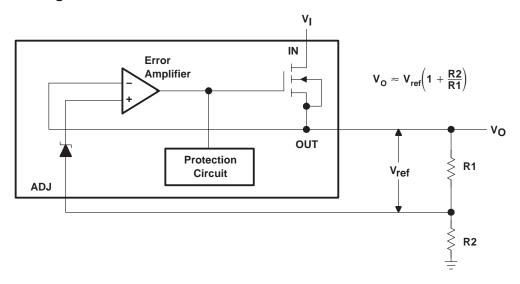
The TL783 is an adjustable three-terminal high-voltage regulator with an output range of 1.25 V to 125 V and a DMOS output transistor capable of sourcing more than 700 mA. It is designed for use in high-voltage applications where standard bipolar regulators cannot be used. Excellent performance specifications, superior to those of most bipolar regulators, are achieved through circuit design and advanced layout techniques.

As a state-of-the-art regulator, the TL783 combines standard bipolar circuitry with high-voltage double-diffused MOS transistors on one chip, to yield a device capable of withstanding voltages far higher than standard bipolar integrated circuits. Because of its lack of secondary-breakdown and thermal-runaway characteristics usually associated with bipolar outputs, the TL783 maintains full overload protection while operating at up to 125 V from input to output. Other features of the device include current limiting, safe-operating-area (SOA) protection, and thermal shutdown. Even if ADJ is disconnected inadvertently, the protection circuitry remains functional.

Only two external resistors are required to program the output voltage. An input bypass capacitor is necessary only when the regulator is situated far from the input filter. An output capacitor, although not required, improves transient response and protection from instantaneous output short circuits. Excellent ripple rejection can be achieved without a bypass capacitor at the adjustment terminal.

ORDERING INFORMATION

TJ	PACKAC	GE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING	
0°C to 125°C	Power Flex (KTE)	Reel of 2000	TL783CKTER	TL783	
	TO 000 (KTT)	Tube of 50	TL783CKTT	DDE//IE/M	
	TO-263 (KTT)	Reel of 1000	TL783CKTTR	PREVIEW	
	TO-220 (KC)	Tube of 50	TL783CKC	TL783C	


[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

functional block diagram

absolute maximum ratings over operating temperature range (unless otherwise noted)

Input-to-output differential voltage, V _I – V _O		125 V
Operating virtual junction temperature, T _J		150°C
Storage temperature range, T _{stg} –65	°C to	150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

package thermal data (see Note 1)

PACKAGE	BOARD	θЈС	θJP [‡]	θЈА
Power Flex (KTE)	High K, JESD 51-5	-	2.7°C/W	23°C/W
TO-263 (KTT)	High K, JESD 51-5	TBD	TBD	TBD
TO-220 (KC)	High K, JESD 51-5	17°C/W	3°C/W	19°C/W

NOTE 1: Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation.

recommended operating conditions

			MIN	MAX	UNIT
VI – VO	Input-to-output voltage differential			125	V
IO	Output current		15	700	mA
ТЈ	Operating virtual junction temperature	TL783C	0	125	°C

[‡] For packages with exposed thermal pads, such as QFN, PowerPAD, or PowerFLEX, θ_{JP} is defined as the thermal resistance between the die junction and the bottom of the exposed pad.

TL783 HIGH-VOLTAGE ADJUSTABLE REGULATOR

SLVS036L - SEPTEMBER 1981 - REVISED APRIL 2005

electrical characteristics at $V_I - V_O = 25$ V, $I_O = 0.5$ A, $T_J = 0$ °C to 125°C (unless otherwise noted)

242445752	TEST CONDITIONS†			TL783C			
PARAMETER		MIN	TYP	MAX	UNIT		
Input voltage	ut voltage $T_J = 25^{\circ}C$		T _J = 25°C		0.001	0.01	%/V
regulation‡	$V_I - V_O = 20 \text{ V to } 125 \text{ V},$	P ≤ rated dissipation	$T_J = 0$ °C to 125°C		0.004	0.02	%/V
Ripple rejection	$\Delta V_{I(PP)} = 10 V$	$V_0 = 10 V$,	f = 120 Hz	66	76		dB
	45 44 700 4	T . 0500	$V_O \le 5 V$		7.5	25	mV
Output voltage	$I_O = 15 \text{ mA to } 700 \text{ mA},$	T _J = 25°C	$V_O \ge 5 V$		0.15	0.5	%
regulation	L- 45 m A to 700 m A	D < make all alice in exticus	$V_0 \le 5 V$		20	70	mV
	$I_O = 15 \text{ mA to } 700 \text{ mA},$	P ≤ rated dissipation	$V_O \ge 5 V$		0.3	1.5	%
Output voltage change with temperature					0.4		%
Output voltage long-term drift	1000 hours at T _J = 125°C,	V _I – V _O = 125 V			0.2		%
Output noise voltage	f = 10 Hz to 10 kHz,	T _J = 25°C			0.003		%
Minimum output current to maintain regulation	V _I – V _O = 125 V					15	mA
	$V_I - V_O = 25 V$,	t = 1 ms			1100		
	$V_I - V_O = 15 V$	t = 30 ms			715		
Peak output current	$V_I - V_O = 25 V$	t = 30 ms	700	900		mA	
	$V_I - V_O = 125 V$	t = 30 ms	100	250			
ADJ input current					83	110	μΑ
Change in ADJ input current	$V_I - V_O = 15 \text{ V to } 125 \text{ V},$	I _O = 15 mA to 700 mA,	P ≤ rated dissipation		0.5	5	μΑ
Reference voltage (OUT to ADJ)	V _I – V _O = 10 V to 125 V, See Note 2	$I_O = 15 \text{ mA to } 700 \text{ mA},$	P ≤ rated dissipation,	1.2	1.27	1.3	V

[†] Pulse-testing techniques maintain the junction temperature as close to the ambient temperature as possible. Thermal effects must be taken into account separately.

[‡] Input voltage regulation is expressed here as the percentage change in output voltage per 1-V change at the input.

NOTE 2: Due to the dropout voltage and output current-limiting characteristics of this device, output current is limited to less than 700 mA at input-to-output voltage differentials of less than 25 V.

PACKAGE OPTION ADDENDUM

13-May-2005

PACKAGING INFORMATION

www ti com

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing		ckage Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TL783CKC	ACTIVE	TO-220	KC	3		TBD	Call TI	Call TI
TL783CKTER	ACTIVE	PFM	KTE	3 2	000	TBD	CU SNPB	Level-1-220C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS) or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.