
- Wide Range of Supply Voltages 1.4-V to 16-V
- **True Single-Supply Operation**
- **Common-Mode Input Voltage Range** Includes the Negative Rail
- Low Noise . . . 30 nV/√Hz Typ at 1-kHz (High Bias)
- **ESD Protection Exceeds 2000 V Per** MIL-STD-833C, Method 3015.1

description

The TLC251C, TLC251AC, and TLC251BC are low-cost, low-power programmable operational amplifiers designed to operate with single or dual supplies. Unlike traditional metal-gate CMOS operational amplifiers, these devices utilize Texas Instruments silicon-gate LinCMOS™ process, giving them stable input offset voltages without sacrificing the advantages of metal-gate CMOS.

symbol

This series of parts is available in selected grades of input offset voltage and can be nulled with one external potentiometer. Because the input common-mode range extends to the negative rail and the power consumption is extremely low, this family is ideally suited for battery-powered or energy-conserving applications. A bias-select pin can be used to program one of three ac performance and power-dissipation levels to suit the application. The series features operation down to a 1.4-V supply and is stable at unity gain.

These devices have internal electrostatic-discharge (ESD) protection circuits that prevent catastrophic failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.1. However, care should be exercised in handling these devices as exposure to ESD may result in a degradation of the device parametric performance.

Because of the extremely high input impedance and low input bias and offset currents, applications for the TLC251C series include many areas that have previously been limited to BIFET and NFET product types. Any circuit using high-impedance elements and requiring small offset errors is a good candidate for cost-effective use of these devices. Many features associated with bipolar technology are available with LinCMOS™ operational amplifiers without the power penalties of traditional bipolar devices. Remote and inaccessible equipment applications are possible using the low-voltage and low-power capabilities of the TLC251C series.

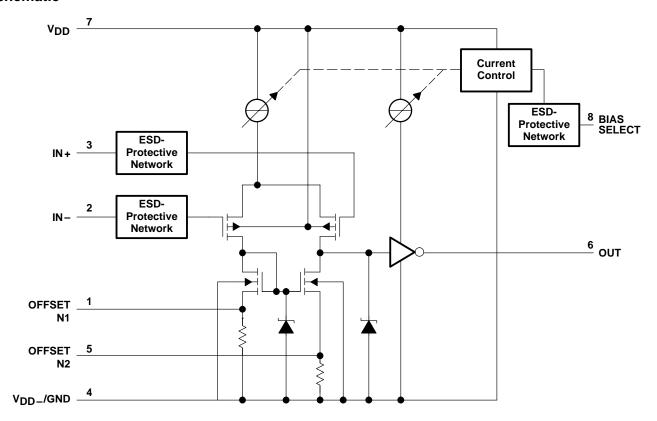
In addition, by driving the bias-select input with a logic signal from a microprocessor, these operational amplifiers can have software-controlled performance and power consumption. The TLC251C series is well suited to solve the difficult problems associated with single battery and solar cell-powered applications.

The TLC251C series is characterized for operation from 0°C to 70°C.

AVAILABLE OPTIONS

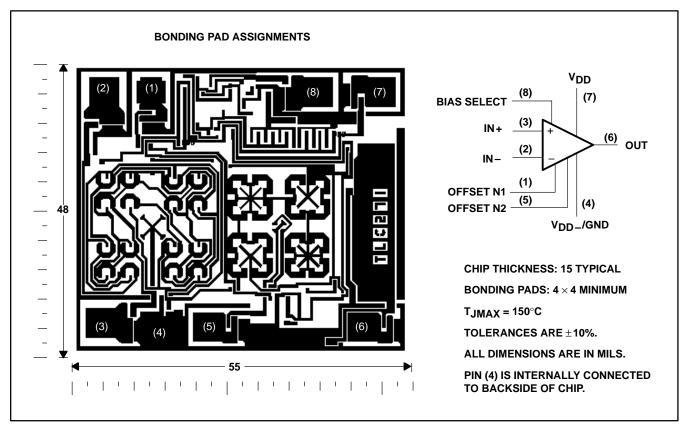
	.,	DEVICES	CHIP FORM
IOmax T 25°C	SMALL OUTLINE PLASTIC DIP (D) (P)		(Y)
I0 mV	TLC251CD	TLC251CP	TLC251Y
5 mV	TLC251ACD	TLC251ACP	_
	T 25°C 0 mV	T 25°C SMALL OUTLINE (D) 0 mV TLC251CD 5 mV TLC251ACD	T 25°C SMALL OUTLINE (D) PLASTIC DIP (P) 0 mV TLC251CD TLC251CP 5 mV TLC251ACD TLC251ACP

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TLC251CDR). Chips are tested at 25°C.


LinCMOS is a trademark of Texas Instruments.

TLC251, TLC251A, TLC251B, TLC251Y LinCMOS™ PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS

SLOS001F - JULY 1983 - REVISED MARCH 2001


schematic

TLC251Y chip information

These chips, properly assembled, display characteristics similar to the TLC251C. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. Chips may be mounted with conductive epoxy or a gold-silicon preform.

TLC251, TLC251A, TLC251B, TLC251Y LinCMOS™ PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS

SLOS001F - JULY 1983 - REVISED MARCH 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{DD} (see Note 1)	
Differential input voltage, V _{ID} (see Note 2)	±18 V
Input voltage range, V _I (any input)	0.3 V to 18 V
Duration of short circuit at (or below) 25°C free-air temperature (see Note 3)	unlimited
Continuous total dissipation	. See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range	–65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to V_{DD}_/GND.
 - 2. Differential voltages are at IN+ with respect to IN-.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	$T_{\mbox{\scriptsize A}} \le 25^{\circ}\mbox{\scriptsize C}$ POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW
Р	1000 mW	8.0 mW/°C	640 mW

recommended operating conditions

		MIN	MAX	UNIT
Supply voltage, V _{DD}		1.4	16	V
	V _{DD} = 1.4 V	0	0.2	
Common mode input voltage V	V _{DD} = 5 V	-0.2	4	V
Common-mode input voltage, V _{IC}	V _{DD} = 10 V	-0.2	9	V
	V _{DD} = 16 V	-0.2	14	
Operating free-air temperature, TA		0	70	°C
Bias-select voltage			e Applica Informati	

HIGH-BIAS MODE

electrical characteristics at specified free-air temperature

					Т	LC251C	, TLC25	1AC, TL	C251BC		
	PARAMETER		TEST CONDITIONS	T _A †	V	DD = 5 \	<i>,</i>	٧	D = 10	v	UNIT
			CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
		TI 00540		25°C		1.1	10		1.1	10	
		TLC251C	\/_ 4 4 \/	Full range			12			12	
.,		TI 005440	$V_O = 1.4 \text{ V},$ $V_{IC} = 0 \text{ V},$	25°C		0.9	5		0.9	5	.,
VIO	Input offset voltage	TLC251AC	$R_S = 50 \Omega$	Full range			6.5			6.5	mV
		TI 0054D0	$R_L = 10 \text{ k}\Omega$	25°C		0.34	2		0.39	2	
		TLC251BC		Full range			3			3	
αγιο	Average temperature input offset voltage	coefficient of		25°C to 70°C		1.8			2		μV/°C
		Not- 4\	$V_O = V_{DD}/2$,	25°C		0.1	60		0.1	60	^
ΙΟ	Input offset current (s	ee Note 4)	$V_{IC} = V_{DD}/2$	70°C		7	300		7	300	рA
1	Input bigg gurrent (ag	o Noto 4)	$V_O = V_{DD}/2$,	25°C		0.6	60		0.7	60	- A
lΒ	Input bias current (se	e Note 4)	$V_{IC} = V_{DD}/2$	70°C		40	600		50	600	pΑ
.,	Common-mode input	voltage		25°C	-0.2 to 4	-0.3 to 4.2		-0.2 to 9	-0.3 to 9.2		V
VICR	range (see Note 5)	ŭ		Full range	-0.2 to 3.5			-0.2 to 8.5			٧
				25°C	3.2	3.8		8	8.5		
Vон	High-level output volt	age	$V_{ID} = 100 \text{ mV},$ $R_L = 10 \text{ k}\Omega$	0°C	3	3.8		7.8	8.5		V
			KL = 10 K22	70°C	3	3.8		7.8	8.4		
				25°C		0	50	-	0	50	
VOL	Low-level output volta	age	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	0°C		0	50		0	50	mV
			I OL - V	70°C		0	50		0	50	
				25°C	5	23		10	36		
A_{VD}	Large-signal different amplification	ial voltage	R_L = 10 kΩ, See Note 6	0°C	4	27		7.5	42		V/mV
	ampilioation		000 11010 0	70°C	4	20		7.5	32		
				25°C	65	80		65	85		
CMRR	Common-mode rejec	tion ratio	V _{IC} = V _{ICR} min	0°C	60	84		60	88		dB
				70°C	60	85		60	88		
	Complement of the second	in a matte	V F.V 40.V	25°C	65	95		65	95		
ksvr	Supply-voltage reject (ΔV _{DD} /ΔV _{IO})	ion ratio	$V_{DD} = 5 \text{ V to } 10 \text{ V},$ $V_{O} = 1.4 \text{ V}$	0°C	60	94		60	94		dB
	· DD 10/		Ŭ .	70°C	60	96		60	96		
I _I (SEL)	Input current (BIAS S	ELECT)	V _{I(SEL)} = 0	25°C		-1.4			-1.9		μΑ
			$V_O = V_{DD}/2$,	25°C		675	1600		950	2000	
IDD	Supply current		V _{IC} = V _{DD} /2,	0°C		775	1800		1125	2200	μΑ
			No load	70°C		575	1300		750	1700	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

- 5. This range also applies to each input individually.
- 6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

HIGH-BIAS MODE

operating characteristics, $V_{DD} = 5 \text{ V}$

	PARAMETER	т	EST CONDITION	ONS	TA	TLC2510	C, TLC2 C251B0		UNIT
						MIN	TYP	MAX	
					25°C		3.6		
				V _{I(PP)} = 1 V	0°C		4		
SR	Slow rote at unity gain	R _L = 10 kΩ,	C 20 pE		70°C		3		\//ua
J SK	Slew rate at unity gain	$KL = 10 \text{ K}_{2}$	CL = 20 pr		25°C		2.9		V/μs
				V _{I(PP)} = 2.5 V	0°C		3.1		
					70°C		2.5		
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$		25°C		25		nV/√ Hz
					25°C		320		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$	$C_{L} = 20 pF$,	$R_L = 10 \text{ k}\Omega$	0°C		340		kHz
					70°C		260		
					25°C		1.7		
B ₁	Unity-gain bandwidth	V _I = 10 mV,	$C_L = 20 pF$		0°C		2		MHz
					70°C		1.3		
					25°C		46°		
φm	Phase margin	V _I = 10 mV,	$f = B_1$,	C _L = 20 pF	0°C		47°		
					70°C		44°		

operating characteristics, $V_{DD} = 10 \text{ V}$

	PARAMETER	1	EST CONDITION	ONS	TA	TLC251	UNIT		
						MIN	TYP	MAX	
					25°C		5.3		
				V _{I(PP)} = 1 V	0°C		5.9		
SR	Slew rate at unity gain	P 10 kO	C _L = 20 pF		70°C		4.3		V/μs
SK	Siew rate at unity gain	$K = 10 \text{ K}_{2}$	CL = 20 pr		25°C		4.6		ν/μ5
				$V_{I(PP)} = 5.5 V$	0°C		5.1		
					70°C		3.8		
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$		25°C		25		nV/√ Hz
					25°C		200		
B _{OM}	Maximum output-swing bandwidth	$V_O = V_{OH}$	$C_{L} = 20 pF$,	$R_L = 10 \text{ k}\Omega$	0°C		220		kHz
					70°C		140		
					25°C		2.2		
B ₁	Unity-gain bandwidth	V _I = 10 mV,	$C_L = 20 pF$		0°C		2.5		MHz
					70°C		1.8		
					25°C		49°		
φm	Phase margin	V _I = 10 mV,	$f = B_1$,	$C_L = 20 pF$	0°C		50°		
					70°C		46°		

MEDIUM-BIAS MODE

electrical characteristics at specified free-air temperature

					Т	LC251C	, TLC25	1AC, TL	C251BC		
	PARAMETER		TEST	T _A †	V	DD = 5 \	/	٧٢	D = 10 '	٧	UNIT
			CONDITIONS	^	MIN	TYP	MAX	MIN	TYP	MAX	
				25°C		1.1	10		1.1	10	
		TLC251C	V- 4.4.V	Full range		•	12			12	
.		TI 005440	V _O = 1.4 V, V _{IC} = 0 V,	25°C		0.9	5		0.9	5	.,
VIO	Input offset voltage	TLC251AC	$R_S = 50 \Omega$	Full range			6.5			6.5	mV
İ		TI COCADO	$R_L = 10 \text{ k}\Omega$	25°C		0.34	2		0.39	2	
		TLC251BC		Full range			3			3	
ανιο	Average temperature input offset voltage	coefficient of		25°C to 70°C		1.7			2.1		μV/°C
		Not- 4\	$V_O = V_{DD}/2$,	25°C		0.1	60		0.1	60	^
10	Input offset current (s	ee Note 4)	$V_{IC} = V_{DD}/2$	70°C		7	300		7	300	pА
	Input bigg gurrent (go	o Noto 4)	$V_O = V_{DD}/2$,	25°C		0.6	60		0.7	60	n A
ΙΒ	Input bias current (se	e Note 4)	$V_{IC} = V_{DD}/2$	70°C		40	600		50	600	pА
	Common-mode input	voltage		25°C	-0.2 to 4	-0.3 to 4.2		-0.2 to 9	-0.3 to 9.2		V
VICR	range (see Note 5)	ŭ		Full range	-0.2 to 3.5			-0.2 to 8.5			V
				25°C	3.2	3.9		8	8.7		
∨он	High-level output volt	age	$V_{ID} = 100 \text{ mV},$ $R_L = 10 \text{ k}\Omega$	0°C	3	3.9		7.8	8.7		V
				70°C	3	4		7.8	8.7		
				25°C		0	50		0	50	
VOL	Low-level output volta	age	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	0°C		0	50		0	50	mV
			IOL = 0	70°C		0	50		0	50	
			D 4010	25°C	25	170		25	275		
A_{VD}	Large-signal different amplification	ial voltage	$R_L = 10 kΩ$, See Note 6	0°C	15	200		15	320		V/mV
				70°C	15	140		15	230		
				25°C	65	91		65	94		
CMRR	Common-mode reject	tion ratio	V _{IC} = V _{ICR} min	0°C	60	91		60	94		dB
				70°C	60	92		60	94		
	Supply-voltage reject	ion ratio	V _{DD} = 5 V to 10 V,	25°C	70	93		70	93		
ksvr	Supply-voltage reject (ΔV _{DD} /ΔV _{IO})	IOII IAIIU	$V_{O} = 5 \text{ V to 10 V},$ $V_{O} = 1.4 \text{ V}$	0°C	60	92		60	92		dB
			_	70°C	60	94		60	94		
I _I (SEL)	Input current (BIAS S	ELECT)	$V_{I(SEL)} = V_{DD}/2$	25°C		-130			-160		nA
			$V_O = V_{DD}/2$,	25°C		105	280		143	300	
IDD	Supply current		V _{IC} = V _{DD} /2, No load	0°C		125	320		173	400	μΑ
			140 1000	70°C		85	220		110	280	

[†] Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

- 5. This range also applies to each input individually.
- 6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

MEDIUM-BIAS MODE

operating characteristics, $V_{DD} = 5 \text{ V}$

	PARAMETER	т	EST CONDITIO	ONS	TA	TLC251	C, TLC2 .C251B0		UNIT
						MIN	TYP	MAX	
					25°C		0.43		
				V _{I(PP)} = 1 V	0°C		0.46		
SR	Class rate at units rain	D. 400 kg	C: 20 pF		70°C		0.36		\//··a
SK	Slew rate at unity gain	$R_L = 100 \text{ k}\Omega$,	CL = 20 pr		25°C		0.40		V/μs
				V _{I(PP)} = 2.5 V	0°C		0.43		
					70°C		0.34		
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$		25°C		32		nV/√ Hz
					25°C		55		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$	$C_{L} = 20 pF$,	$R_L = 100 \text{ k}\Omega$	0°C		60		kHz
					70°C		50		
					25°C		525		
В1	Unity-gain bandwidth	$V_{I} = 10 \text{ mV},$	$C_L = 20 pF$		0°C		600		kHz
					70°C		400		
					25°C		40°		
φm	Phase margin	V _I = 10 mV,	f = B ₁ ,	C _L = 20 pF	0°C		41°		
					70°C		39°		

operating characteristics, $V_{DD} = 10 \text{ V}$

	PARAMETER	т	EST CONDITION	ONS	TA	TLC251C, TLC251AC, TLC251BC			UNIT
					, ,	MIN	TYP	MAX	
					25°C		0.62		
				V _{I(PP)} = 1 V	0°C		0.67		
SR	Slow rate at unity gain	$R_L = 100 \text{ k}\Omega$	C: - 20 pE		70°C		0.51		\//uo
SK	Slew rate at unity gain	K = 100 KS2,	CL = 20 pr		25°C		0.56		V/μs
				$V_{I(PP)} = 5.5 V$	0°C		0.61		
					70°C		0.46		
v_n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$		25°C		32		nV/√Hz
					25°C		35		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$	$C_L = 20 pF$,	$R_L = 100 \text{ k}\Omega$	0°C		40		kHz
					70°C		30		
					25°C		635		
В1	Unity-gain bandwidth	$V_{I} = 10 \text{ mV},$	$C_L = 20 pF$		0°C		710		kHz
					70°C		510		
					25°C		43°		
φm	Phase margin	$V_{I} = 10 \text{ mV},$	$f = B_1$,	$C_L = 20 pF$	0°C		44°		
					70°C		42°		

LOW-BIAS MODE

electrical characteristics at specified free-air temperature

					Т	LC251C	, TLC25	1AC, TL	C251BC		
	PARAMETER		TEST CONDITIONS	T _A †	V	DD = 5 \	<i>,</i>	٧	OD = 10	V	UNIT
			CONDITIONS		MIN	TYP	MAX	MIN	TYP	MAX	
		TI 00540		25°C		1.1	10		1.1	10	
		TLC251C	V _O = 1.4 V,	Full range			12			12	
.	hand offer trades	TI 005440	$V_{IC} = 0 V$	25°C		0.9	5		0.9	5	>/
VIO	Input offset voltage	TLC251AC	$R_S = 50 \Omega$	Full range			6.5			6.5	mV
		TLC251BC	$R_L = 10 M\Omega$	25°C		0.24	2		0.26	2	
		TLC25TBC		Full range			3			3	
ανιο	Average temperature input offset voltage	coefficient of		25°C to 70°C		1.1			1		μV/°C
1	lanut offeet current (e	on Note 4)	$V_O = V_{DD}/2$,	25°C		0.1	60		0.1	60	- A
ΙO	Input offset current (s	ee Note 4)	$V_{IC} = V_{DD}/2$	70°C		7	300		7	300	pА
	Input bias current (se	o Noto 4)	$V_O = V_{DD}/2$,	25°C		0.6	60		0.7	60	n /
lВ	input bias current (se	e Note 4)	$V_{IC} = V_{DD}/2$	70°C		40	600		50	600	pА
.,	Common-mode input	voltage		25°C	-0.2 to 4	-0.3 to 4.2		-0.2 to 9	-0.3 to 9.2		V
VICR	range (see Note 5)	Ü		Full range	-0.2 to 3.5			-0.2 to 8.5			V
				25°C	3.2	4.1		8	8.9		
VOH	High-level output volta	age	V_{ID} = 100 mV, R _L = 1 M Ω	0°C	3	4.1		7.8	8.9		V
				70°C	3	4.2		7.8	8.9		
				25°C		0	50		0	50	
VOL	Low-level output volta	ige	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$	0°C		0	50		0	50	mV
			IOL - V	70°C		0	50		0	50	
				25°C	50	520		50	870		
A_{VD}	Large-signal different amplification	iai voltage	$R_L = 1 M\Omega$, See Note 6	0°C	50	700		50	1030		V/mV
	apoa.io.i		000 11010 0	70°C	50	380		50	660		
				25°C	65	94		65	97		
CMRR	Common-mode reject	tion ratio	V _{IC} = V _{ICR} min	0°C	60	95		60	97		dB
				70°C	60	95		60	97		
	Cupply voltage reject	on rotio	\/ = 5 \/ to 10 \/	25°C	70	97		70	97		
ksvr	Supply-voltage rejecti (ΔV _{DD} /ΔV _{IO})	เบเาเลแบ	$V_{DD} = 5 \text{ V to } 10 \text{ V},$ $V_{O} = 1.4 \text{ V}$	0°C	60	97		60	97		dB
				70°C	60	98		60	98		
l(SEL)	Input current (BIAS S	ELECT)	V _{I(SEL)} = V _{DD}	25°C		65			95		nA
			$V_O = V_{DD}/2$,	25°C		10	17		14	23	
IDD	Supply current		V _{IC} = V _{DD} /2, No load	0°C		12	21		18	33	μΑ
			INO IOAU	70°C		8	14		11	20	

† Full range is 0°C to 70°C.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.

- 5. This range also applies to each input individually.
- 6. At $V_{DD} = 5 \text{ V}$, $V_{O} = 0.25 \text{ V}$ to 2 V; at $V_{DD} = 10 \text{ V}$, $V_{O} = 1 \text{ V}$ to 6 V.

LOW-BIAS MODE

operating characteristics, $V_{DD} = 5 V$

	PARAMETER	т	EST CONDITIO	NS	TA	TLC2510 TL	C, TLC2 C251B0		UNIT
						MIN	TYP	MAX	
					25°C		0.03		
				V _{I(PP)} = 1 V	0°C		0.04		
SR	Slow rate at unity gain	B. = 1 MO	C: - 20 pE		70°C		0.03		\//uo
J SK	Slew rate at unity gain	$R_L = 1 M\Omega$,	$C_L = 20 pF$		25°C		0.03		V/μs
				V _{I(PP)} = 2.5 V	0°C		0.03		
					70°C		0.02		
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$		25°C		68		nV/√ Hz
					25°C		5		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$	$C_{L} = 20 pF$,	$R_L = 1 M\Omega$	0°C		6		kHz
					70°C		4.5		
					25°C		85		
B ₁	Unity-gain bandwidth	$V_{I} = 10 \text{ mV},$	$C_L = 20 pF$		0°C		100		kHz
					70°C		65		
					25°C		34°		
φm	Phase margin	V _I = 10 mV,	$f = B_1$,	C _L = 20 pF	0°C		36°		
					70°C		30°		

operating characteristics, $V_{DD} = 10 \text{ V}$

	PARAMETER	1	EST CONDITION	ONS	TA	TLC251C, TLC251AC, TLC251BC			UNIT
						MIN	TYP	MAX	
					25°C		0.05		
			V _{I(PP)} = 1 V	0°C		0.05			
SR	Slow rate at unity gain	$R_L = 1 M\Omega$,	Cı = 20 pE		70°C		0.04		Mus
J SK	Slew rate at unity gain	K = 1 IVIS2,	$C_L = 20 pF$		25°C		0.04		V/μs
				$V_{I(PP)} = 5.5 V$	0°C		0.05		
					70°C		0.04		
٧n	Equivalent input noise voltage	f = 1 kHz,	$R_S = 20 \Omega$		25°C		68		nV/√Hz
					25°C		1		
ВОМ	Maximum output-swing bandwidth	$V_O = V_{OH}$	$C_{L} = 20 pF$,	$R_L = 1 M\Omega$	0°C		1.3		kHz
					70°C		0.9		
					25°C		110		
В1	Unity-gain bandwidth	$V_{I} = 10 \text{ mV},$	$C_L = 20 pF$		0°C		125		kHz
					70°C		90		
					25°C		38°		
φm	Phase margin	$V_{ } = 10 \text{ mV},$	$f = B_1$	$C_{L} = 20 \text{ pF}$	0°C		40°		
					70°C		34°		

electrical characteristics at specified free-air temperature, $V_{DD} = 1.4 \text{ V}$

	PARAMETE	R	TEST CONDI	ITIONS†	T _A ‡	BIAS	TLC251	C, TLC2 .C251B0		UNIT
							MIN	TYP	MAX	
		TLC251C			25°C	Any			10	
		1202310			Full range	Ally			12	
V _{IO}	Input offset	TLC251AC	$V_{O} = 0.2 \text{ V}, R_{S} = 50 \Omega$		25°C	Any			5	mV
1 10	voltage	120201710	VO = 0.2 v,	113 - 00 22	Full range	7 (11)			6.5	٧
		TLC251BC			25°C	Any			2	
		TEOZOTBO			Full range	Ally			3	
αVIO	Average temp coefficient of i voltage				25°C to 70°C	Any		1		μV/°C
IIO	Input offset cu	rrent	V _O = 0.2 V		25°C	Any		1	60	pА
10	input onset ou	incin	VO = 0.2 V	VO = 0.2 V		Ally			300	РΛ
I _{IB}	Input bias cur	rent	V _O = 0.2 V		25°C	Any		1	60	рA
'ID	input blub cult	One	VO = 0.2 V		Full range	7 (11)			600	Ρ/ (
VICR	Common-mod voltage range	le input			25°C	Any	0 to 0.2			V
V _{OM}	Peak output v swing§	oltage	V _{ID} = 100 mV		25°C	Any	450	700		mV
A) (D	Large-signal o	lifferential	V _O = 100 to 300 mV,	Po = 50 O	25°C	Low		20		
AVD	D voltage amplification		VO = 100 to 300 mV,	1/5 = 30 22	23 0	High		10		
CMRR	Common-moo ratio	le rejection	$R_S = 50 \Omega$, $V_{IC} = V_{ICR}$ min	$V_0 = 0.2 V$,	25°C	Any	60	77	·	dB
IDD	La Cupply ourront	Supply current $V_{\Omega} = 0.2 \text{ V}$. No load	25°C	Low		5	17	μΑ		
טטין	OD Supply current		$V_O = 0.2 V$, No load		25 0	High		150	190	μΛ

 $[\]bar{T}$ All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. Unless otherwise noted, an output load resistor is connected from the output to ground and has the following values: for low bias, $R_L = 1 \, M\Omega$, for medium bias, $R_L = 100 \, k\Omega$, and for high bias, $R_L = 10 \, k\Omega$.

operating characteristics, V_{DD} = 1.4 V, T_A = 25°C

	PARAMETER	TEST CONDITIONS	BIAS	TLC251 TL		UNIT	
				MIN	TYP	MAX	
Б.	Unity-gain bandwidth	C 100 pF	Low		12		kHz
B ₁	Officy-gain bandwidth	C _L = 100 pF	High		12		KITZ
SR	Clow rate at unity gain	Soo Figure 1	Low		0.001		\//us
J SK	Slew rate at unity gain	See Figure 1	High		0.1		V/μs
	Overshoot factor	Soo Figure 1	Low		35%		
	Overshoot factor	See Figure 1	High		30%		

Full range is 0°C to 70°C.

[§] The output swings to the potential of V_{DD}_/GND.

TLC251, TLC251A, TLC251B, TLC251Y LinCMOS™ PROGRAMMABLE LOW-POWER OPERATIONAL AMPLIFIERS

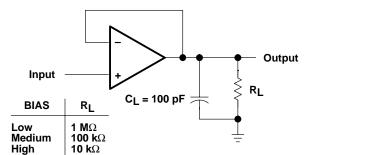
SLOS001F - JULY 1983 - REVISED MARCH 2001

electrical characteristics, V_{DD} = 5 V, T_A = 25°C

						1	LC251	′				
	PARAMETER	TEST CONDITIONS		GH-BIA MODE	S		DIUM-B MODE	IAS	L	OW-BIA MODE	S	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
VIO	Input offset voltage	$\begin{split} &V_O = 1.4 \text{ V}, \\ &V_{IC} = 0 \text{ V}, \\ &R_S = 50 \Omega, \end{split}$		1.1	10		1.1	10		1.1	10	mV
αΝΙΟ	Average temperature coefficient of input offset voltage			1.8			1.7			1.1		μV/°C
lio	Input offset current (see Note 4)	$V_O = V_{DD}/2,$ $V_{IC} = V_{DD}/2$		0.1	60		0.1	60		0.1	60	pA
I _{IB}	Input bias current (see Note 4)	$V_O = V_{DD}/2,$ $V_{IC} = V_{DD}/2$		0.6	60		0.6	60		0.6	60	pA
VICR	Common-mode input voltage range (see Note 5)		-0.2 to 4	-0.3 to 4.2		-0.2 to 4	-0.3 to 4.2		-0.2 to 4	-0.3 to 4.2		V
Vон	High-level output voltage	V _{ID} = 100 mV, R _L †	3.2	3.8		3.2	3.9		3.2	4.1		V
VOL	Low-level output voltage	$V_{ID} = -100 \text{ mV},$ $I_{OL} = 0$		0	50		0	50		0	50	mV
AVD	Large-signal differential voltage amplification	V _O = 0.25 V, R _L †	5	23		25	170		50	480		V/mV
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$	65	80		65	91		65	94		dB
ksvr	Supply-voltage rejection ratio $(\Delta V_{DD}/\Delta V_{IO})$	V _{DD} = 5 V to 10 V, V _O = 1.4 V	65	95		70	93		70	97		dB
I _{I(SEL)}	Input current (BIAS SELECT)	$V_{I(SEL)} = V_{DD}/2$		-1.4			-0.13			0.065		μΑ
I _{DD}	Supply current	$V_O = V_{DD}/2,$ $V_{IC} = V_{DD}/2,$ No load		675	1600		105	280		10	17	μΑ

† For high-bias mode, R_L = 10 kΩ; for medium-bias mode, R_L = 100 kΩ; and for low-bias mode, R_L = 1 MΩ.

NOTES: 4. The typical values of input bias current and input offset current below 5 pA were determined mathematically.


5. This range also applies to each input individually.

operating characteristics, V_{DD} = 5 V, T_A = 25°C

							Т	LC251\	1				
	PARAMETER	TEST CO	TEST CONDITIONS			S		DIUM-BI MODE	IAS		OW-BIA MODE	S	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
SR	Slew rate at	RL [†] ,	V _{I(PP)} = 1 V		3.6			0.43			0.03		V/μs
SK	unity gain	$C_L = 20 pF$	$V_{I(PP)} = 2.5 V$		2.9			0.40			0.03		ν/μ5
٧n	Equivalent input noise voltage	f = 1 kHz,	R _S = 20 Ω		25			32			68		nV/√ Hz
ВОМ	Maximum output swing bandwidth	$V_O = V_{OH}$, $R_L = 10 \text{ k}\Omega$	C _L = 20 pF,		320			55			4.5		kHz
B ₁	Unity-gain bandwidth	V _I = 10 mV,	C _L = 20 pF		1700			525			65		kHz
φm	Phase margin	$f = B_1,$ $C_L = 20 pF$	V _I = 10 mV,		46°			40°			34°		

[†] For high-bias mode, R_L = 10 k Ω ; for medium-bias mode, R_L = 100 k Ω ; and for low-bias mode, R_L = 1 M Ω .

PARAMETER MEASUREMENT INFORMATION

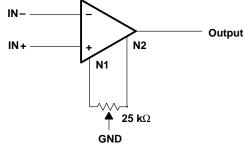


Figure 1. Unity-Gain Amplifier

Figure 2. Input Offset Voltage Null Circuit

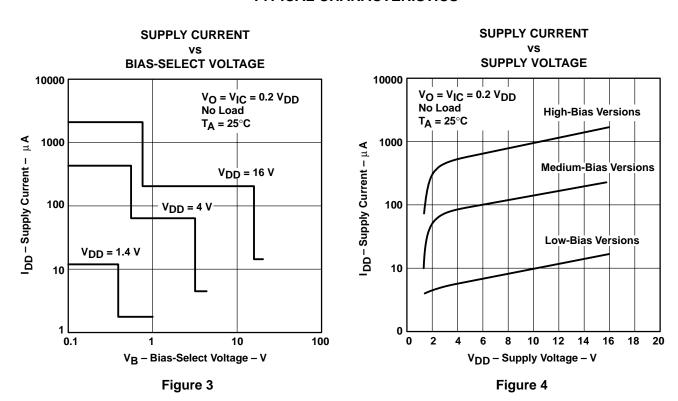

TYPICAL CHARACTERISTICS

Table of Graphs

				FIGURE
IDD	Supply current	vs Bias-select voltage vs Supply voltage vs Free-air temperature	3 4 5	
	Low bia		vs Frequency	6
AVD	Large-signal differential voltage amplification	Medium bias	vs Frequency	7
		High bias	vs Frequency	8
		Low bias	vs Frequency	6
	Phase shift	Medium bias	vs Frequency	7
		High bias	vs Frequency	8

TYPICAL CHARACTERISTICS

SUPPLY CURRENT vs FREE-AIR TEMPERATURE 10000 $V_{DD} = 10 V$ V_{IC} = 0 V V_O = 2 V **High-Bias Versions** No Load 1000 I_{DD} - Supply Current - μA **Medium-Bias Versions** 100 **Low-Bias Versions** 10 0 10 30 40 50 70 80 T_A – Free-Air Temperature – $^{\circ}C$

Figure 5

TYPICAL CHARACTERISTICS

LOW-BIAS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

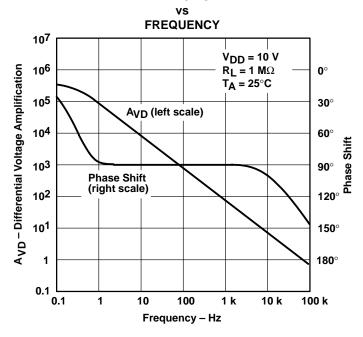
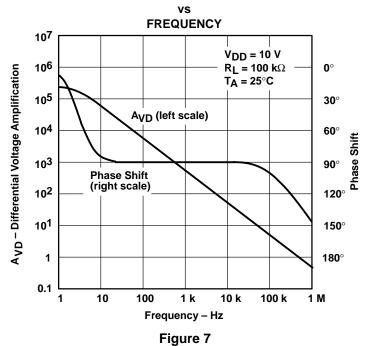
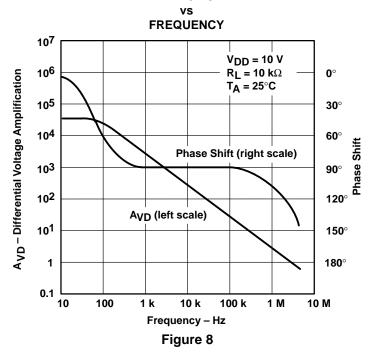



Figure 6


MEDIUM-BIAS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

TYPICAL CHARACTERISTICS

HIGH-BIAS LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

APPLICATION INFORMATION

latch-up avoidance

Junction-isolated CMOS circuits have an inherent parasitic PNPN structure that can function as an SCR. Under certain conditions, this SCR may be triggered into a low-impedance state, resulting in excessive supply current. To avoid such conditions, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the operational amplifier supplies should be applied simultaneously with, or before, application of any input signals.

APPLICATION INFORMATION

using BIAS SELECT

The TLC251 has a terminal called BIAS SELECT that allows the selection of one of three I_{DD} conditions (10, 150, and 1000 μ A typical). This allows the user to trade-off power and ac performance. As shown in the typical supply current (I_{DD}) versus supply voltage (V_{DD}) curves (Figure 4), the I_{DD} varies only slightly from 4 V to 16 V. Below 4 V, the I_{DD} varies more significantly. Note that the I_{DD} values in the medium- and low-bias modes at $V_{DD} = 1.4$ V are typically 2 μ A, and in the high mode are typically 12 μ A. The following table shows the recommended BIAS SELECT connections at $V_{DD} = 10$ V.

	BIAS MODE	AC PERFORMANCE	BIAS SELECT CONNECTION [†]	TYPICAL I _{DD} ‡
ſ	Low	Low	V_{DD}	10 μΑ
1	Medium	Medium	0.8 V to 9.2 V	150 μΑ
١	High	High	Ground pin	1000 μΑ

[†] Bias selection may also be controlled by external circuitry to conserve power, etc. For information regarding BIAS SELECT, see Figure 3 in the typical characteristics curves.

output stage considerations

The amplifier's output stage consists of a source-follower-connected pullup transistor and an open-drain pulldown transistor. The high-level output voltage (V_{OH}) is virtually independent of the I_{DD} selection and increases with higher values of V_{DD} and reduced output loading. The low-level output voltage (V_{OL}) decreases with reduced output current and higher input common-mode voltage. With no load, V_{OL} is essentially equal to the potential of V_{DD} –/GND.

input offset nulling

The TLC251C series offers external offset null control. Nulling may be achieved by adjusting a 25-k Ω potentiometer connected between the offset null terminals with the wiper connected to the device V_{DD-}/GND pin as shown in Figure 2. The amount of nulling range varies with the bias selection. At an I_{DD} setting of 1000 μ A (high bias), the nulling range allows the maximum offset specified to be trimmed to zero. In low or medium bias or when the amplifier is used below 4 V, total nulling may not be possible for all units.

supply configurations

Even though the TLC251C series is characterized for single-supply operation, it can be used effectively in a split-supply configuration when the input common-mode voltage (V_{ICR}), output swing (V_{OL} and V_{OH}), and supply voltage limits are not exceeded.

circuit layout precautions

The user is cautioned that whenever extremely high circuit impedances are used, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup, as well as excessive dc leakages.

[‡] For I_{DD} characteristics at voltages other than 10 V, see Figure 4 in the typical characteristics curves.

24-Jul-2010

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TLC251ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Request Free Samples
TLC251ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Request Free Samples
TLC251ACDR	ACTIVE	SOIC	D	8		TBD	Call TI	Call TI	Purchase Samples
TLC251ACDRG4	ACTIVE	SOIC	D	8		TBD	Call TI	Call TI	Purchase Samples
TLC251ACP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Request Free Samples
TLC251ACPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Request Free Samples
TLC251BCP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Request Free Samples
TLC251BCPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Request Free Sample
TLC251CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Request Free Samples
TLC251CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Request Free Samples
TLC251CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
TLC251CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
TLC251CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Request Free Sample
TLC251CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	Request Free Sample
TLC251CPSR	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples
TLC251CPSRG4	ACTIVE	SO	PS	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	Purchase Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

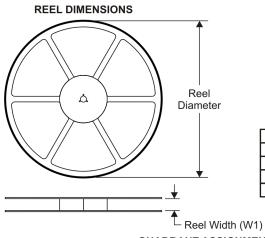
24-Jul-2010

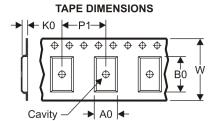
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

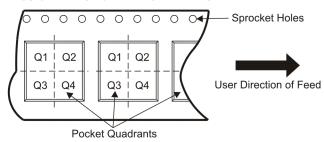
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

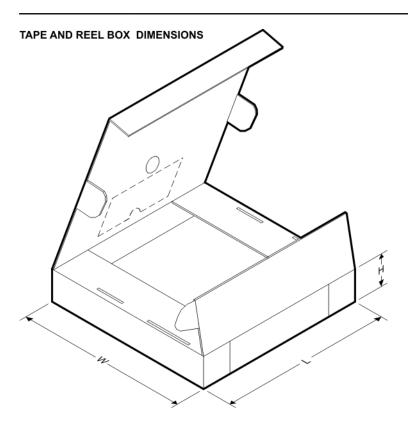

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 17-Aug-2010


TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All difficultions are norminal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLC251CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC251CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLC251CPSR	SO	PS	8	2000	330.0	16.4	8.2	6.6	2.5	12.0	16.0	Q1

www.ti.com 17-Aug-2010

*All dimensions are nominal

7 till dillitorioriorio di o riorimital							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLC251CDR	SOIC	D	8	2500	340.5	338.1	20.6
TLC251CDR	SOIC	D	8	2500	346.0	346.0	29.0
TLC251CPSR	SO	PS	8	2000	346.0	346.0	33.0

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	<u>dsp.ti.com</u>	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps