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FEATURES DESCRIPTION
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SLOS212E–AUGUST 1998–REVISED JUNE 2004

150-mW STEREO AUDIO POWER AMPLIFIER

• 150-mW Stereo Output The TPA112 is a stereo audio power amplifier pack-
aged in an 8-pin PowerPAD™ MSOP package• Wide Range of Supply Voltages
capable of delivering 150 mW of continuous RMS– Fully Specified for 3.3-V and 5-V Operation
power per channel into 8-Ω loads. Amplifier gain is

– Operational From 2.5 V to 5.5 V externally configured by means of two resistors per
• Thermal and Short-Circuit Protection input channel and does not require external compen-

sation for settings of 1 to 10.• Surface-Mount Packaging
THD+N when driving an 8-Ω load from 5 V is 0.1% at– PowerPAD™ MSOP
1 kHz, and less than 2% across the audio band of 20– SOIC
Hz to 20 kHz. For 32-Ω loads, the THD+N is reduced

• Standard Operational Amplifier Pinout to less than 0.06% at 1 kHz, and is less than 1%
across the audio band of 20 Hz to 20 kHz. For 10-kΩ
loads, the THD+N performance is 0.01% at 1 kHz,
and less than 0.02% across the audio band of 20 Hz
to 20 kHz.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas
Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PowerPAD is a trademark of Texas Instruments.

PRODUCTION DATA information is current as of publication date. Copyright © 1998–2004, Texas Instruments Incorporated
Products conform to specifications per the terms of the Texas
Instruments standard warranty. Production processing does not
necessarily include testing of all parameters.
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ABSOLUTE MAXIMUM RATINGS

DISSIPATION RATING TABLE

TPA112

SLOS212E–AUGUST 1998–REVISED JUNE 2004

These devices have limited built-in ESD protection. The leads should be shorted together or the device
placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

AVAILABLE OPTIONS

PACKAGED DEVICES
MSOPTA SMALL OUTLINE (1) MSOP (1)

SYMBOLIZATION
(D) (DGN)

–40°C to 85°C TPA112D TPA112DGN TI AAD

(1) The D and DGN packages are available in left-ended tape and reel only (e.g., TPA112DR,
TPA112DGNR).

Terminal Functions

TERMINAL
I/O DESCRIPTION

NAME NO.

GND 4 I GND is the ground connection.

IN1- 2 I IN1- is the inverting input for channel 1.

IN1+ 3 I IN1+ is the noninverting input for channel 1.

IN2- 6 I IN2- is the inverting input for channel 2.

IN2+ 5 I IN2+ is the noninverting input for channel 2.

VDD 8 I VDD is the supply voltage terminal.

VO1 1 O VO1 is the audio output for channel 1.

VO2 7 O VO2 is the audio output for channel 2.

over operating free-air temperature range (unless otherwise noted) (1)

UNIT

VDD Supply voltage 6 V

VI Differential input voltage –0.3 V to VDD + 0.3 V

II Input current ±2.5 µA

IO Output current ±250 mA

Continuous total power dissipation Internally llimited

TJ Operating junction temperature range –40°C to 150°C

Tstg Storage temperature range –65°C to 150°C

Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C

(1) Stresses beyond those listed under "absolute maximum ratings” may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating
conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

TA ≤ 25°C DERATING FACTOR TA = 70°C TA = 85°CPACKAGE POWER RATING ABOVE TA = 25°C POWER RATING POWER RATING

D 725 mW 5.8 mW/°C 464 mW 377 mW

DGN 2.14 W (1) 17.1 mW/°C 1.37 W 1.11 W

(1) See the Texas Instruments document, PowerPAD Thermally Enhanced Package Application Report
(SLMA002), for more information on the PowerPAD package. The thermal data was measured on a
PCB layout based on the information in the section entitled Texas Instruments Recommended Board
for PowerPAD, of that document.
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RECOMMENDED OPERATING CONDITIONS

DC ELECTRICAL CHARACTERISTICS

AC OPERATING CHARACTERISTICS

DC ELECTRICAL CHARACTERISTICS

AC OPERATING CHARACTERISTICS

TPA112

SLOS212E–AUGUST 1998–REVISED JUNE 2004

MIN MAX UNIT

VDD Supply voltage 2.5 5.5 V

TA Operating free-air temperature –40 85 °C

at TA = 25°C, VDD = 3.3 V

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VOO Output offset voltage 10 mV

PSRR Power supply rejection ratio VDD = 3.2 V to 3.4 V 83 dB

IDD(q) Supply current 1.5 3 mA

ZI Input impedance > 1 MΩ

VDD = 3.3 V, TA = 25°C, RL = 8 Ω

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

PO Output power (each channel) THD ≤ 0.1% 70 (1) mW

THD+N Total harmonic distortion + noise PO = 70 mW, 20 Hz–20 kHz 2%

BOM Maximum output power BW G = 10, THD < 5% > 20 kHz

Phase margin Open loop 58°

SVRR Supply ripple rejection f = 1 kHz 68 dB

Channel/channel output separation f = 1 kHz 86 dB

SNR Signal-to-noise ratio PO = 100 mW 100 dB

Vn Noise output voltage 9.5 µV(rms)

(1) Measured at 1 kHz

at TA = 25°C, VDD = 5 V

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

VOO Output offset voltage 10 mV

PSRR Power supply rejection ratio VDD = 4.9 V to 5.1 V 76 dB

IDD(q) Supply current 1.5 3 mA

ZI Input impedance > 1 MΩ

VDD = 5 V, TA = 25°C, RL = 8 Ω

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

PO Output power (each channel) THD ≤ 0.1% 70 (1) mW

THD+N Total harmonic distortion + noise PO = 150 mW, 20 Hz–20 kHz 2%

BOM Maximum output power BW G = 10, THD < 5% > 20 kHz

Phase margin Open loop 56°

SVRR Supply ripple rejection f = 1 kHz 68 dB

Channel/channel output separation f = 1 kHz 86 dB

SNR Signal-to-noise ratio PO = 150 mW 100 dB

Vn Noise output voltage 9.5 µV(rms)

(1) Measured at 1 kHz
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AC OPERATING CHARACTERISTICS

AC OPERATING CHARACTERISTICS

TPA112

SLOS212E–AUGUST 1998–REVISED JUNE 2004

VDD = 3.3 V, TA = 25°C, RL = 32 Ω

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

PO Output power (each channel) THD ≤ 0.1% 40 (1) mW

THD+N Total harmonic distortion + noise PO = 30 mW, 20 Hz–20 kHz 0.5%

BOM Maximum output power BW G = 10, THD < 2% > 20 kHz

Phase margin Open loop 58°

SVRR Supply ripple rejection f = 1 kHz 68 dB

Channel/channel output separation f = 1 kHz 86 dB

SNR Signal-to-noise ratio PO = 100 mW 100 dB

Vn Noise output voltage 9.5 µV(rms)

(1) Measured at 1 kHz

VDD = 5 V, TA = 25°C, RL = 32 Ω

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT

PO Output power (each channel) THD ≤ 0.1% 40 (1) mW

THD+N Total harmonic distortion + noise PO = 60 mW, 20 Hz–20 kHz 0.4%

BOM Maximum output power BW G = 10, THD < 2% > 20 kHz

Phase margin Open loop 56°

SVRR Supply ripple rejection f = 1 kHz 68 dB

Channel/channel output separation f = 1 kHz 86 dB

SNR Signal-to-noise ratio PO = 150 mW 100 dB

Vn Noise output voltage 9.5 µV(rms)

(1) Measured at 1 kHz
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TYPICAL CHARACTERISTICS

Table of Graphs
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FIGURE
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Phase margin vs Frequency 29, 30
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ICC Supply current vs Supply voltage 33
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Figure 1. Figure 2.
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TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs

OUTPUT POWER FREQUENCY

Figure 3. Figure 4.

TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs

FREQUENCY OUTPUT POWER

Figure 5. Figure 6.
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TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs

FREQUENCY FREQUENCY

Figure 7. Figure 8.

TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs

OUTPUT POWER FREQUENCY

Figure 9. Figure 10.
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TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs

FREQUENCY OUTPUT POWER

Figure 11. Figure 12.

TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs

FREQUENCY FREQUENCY

Figure 13. Figure 14.
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TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs

OUTPUT POWER FREQUENCY

Figure 15. Figure 16.

TOTAL HARMONIC DISTORTION + NOISE TOTAL HARMONIC DISTORTION + NOISE
vs vs

FREQUENCY OUTPUT POWER

Figure 17. Figure 18.
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POWER SUPPLY REJECTION RATIO POWER SUPPLY REJECTION RATIO
vs vs

FREQUENCY FREQUENCY

Figure 19. Figure 20.

OUTPUT NOISE VOLTAGE OUTPUT NOISE VOLTAGE
vs vs

FREQUENCY FREQUENCY

Figure 21. Figure 22.
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CROSSTALK CROSSTALK
vs vs

FREQUENCY FREQUENCY

Figure 23. Figure 24.

CROSSTALK CROSSTALK
vs vs

FREQUENCY FREQUENCY

Figure 25. Figure 26.
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MUTE ATTENUATION MUTE ATTENUATION
vs vs

FREQUENCY FREQUENCY

Figure 27. Figure 28.

OPEN-LOOP GAIN AND PHASE MARGIN
vs

FREQUENCY

Figure 29.
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OPEN-LOOP GAIN AND PHASE MARGIN
vs

FREQUENCY

Figure 30.

OUTPUT POWER OUTPUT POWER
vs vs

LOAD RESISTANCE LOAD RESISTANCE

Figure 31. Figure 32.
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SUPPLY CURRENT TOTAL HARMONIC DISTORTION + NOISE
vs vs

SUPPLY VOLTAGE FREQUENCY

Figure 33. Figure 34.

SIGNAL-TO-NOISE RATIO TOTAL HARMONIC DISTORTION + NOISE
vs vs

VOLTAGE GAIN FREQUENCY

Figure 35. Figure 36.
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CROSSTALK CROSSTALK
vs vs

FREQUENCY FREQUENCY

Figure 37. Figure 38.

CLOSED-LOOP GAIN AND PHASE
vs

FREQUENCY

Figure 39.
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CLOSED-LOOP GAIN AND PHASE
vs

FREQUENCY

Figure 40.

CLOSED-LOOP GAIN AND PHASE
vs

FREQUENCY

Figure 41.
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CLOSED-LOOP GAIN AND PHASE
vs

FREQUENCY

Figure 42.

CLOSED-LOOP GAIN AND PHASE
vs

FREQUENCY

Figure 43.
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CLOSED-LOOP GAIN AND PHASE
vs

FREQUENCY

Figure 44.

POWER DISSIPATION/AMPLIFIER POWER DISSIPATION/AMPLIFIER
vs vs

OUTPUT POWER OUTPUT POWER

Figure 45. Figure 46.
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APPLICATION INFORMATION

GAIN SETTING RESISTORS, RF and RI

Gain � � �RF
RI
�

(1)

Effective Impedance �

RFRI
RF � RI (2)

fco(lowpass) �
1

2�RFCF (3)

INPUT CAPACITOR, CI

fco(highpass) �
1

2�RICI (4)

CI �
1

2�RI fco(highpass) (5)

TPA112
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The gain for the TPA112 is set by resistors RF and RI according to Equation 1.

Given that the TPA112 is an MOS amplifier, the input impedance is high. Consequently, input leakage currents
are not generally a concern, although noise in the circuit increases as the value of RF increases. In addition, a
certain range of RF values is required for proper start-up operation of the amplifier. Taken together, it is
recommended that the effective impedance seen by the inverting node of the amplifier be set between 5 kΩ and
20 kΩ. The effective impedance is calculated in Equation 2.

As an example, consider an input resistance of 20 kΩ and a feedback resistor of 20 kΩ. The gain of the amplifier
would be -1 and the effective impedance at the inverting terminal would be 10 kΩ, which is within the
recommended range.

For high-performance applications, metal film resistors are recommended because they tend to have lower noise
levels than carbon resistors. For values of RF above 50 kΩ, the amplifier tends to become unstable due to a pole
formed from RF and the inherent input capacitance of the MOS input structure. For this reason, a small
compensation capacitor of approximately 5 pF should be placed in parallel with RF. In effect, this creates a
low-pass filter network with the cutoff frequency defined in Equation 3.

For example, if RF is 100 kΩ and CF is 5 pF then fco(lowpass) is 318 kHz, which is well outside the audio range.

In the typical application, input capacitor CI is required to allow the amplifier to bias the input signal to the proper
dc level for optimum operation. In this case, CI and RI form a high-pass filter with the corner frequency
determined in Equation 4.

The value of CI is important to consider, as it directly affects the bass (low-frequency) performance of the circuit.
Consider the example where RI is 20 kΩ and the specification calls for a flat bass response down to 20 Hz.
Equation 4 is reconfigured as Equation 5.

In this example, CI is 0.4 µF, so one would likely choose a value in the range of 0.47 µF to 1 µF. A further
consideration for this capacitor is the leakage path from the input source through the input network (RI, CI) and
the feedback resistor (RF) to the load. This leakage current creates a dc offset voltage at the input to the amplifier
that reduces useful headroom, especially in high-gain applications (> 10). For this reason a low-leakage tantalum
or ceramic capacitor is the best choice. When polarized capacitors are used, the positive side of the capacitor
should face the amplifier input in most applications, as the dc level there is held at VDD/2, which is likely higher
that the source dc level. It is important to confirm the capacitor polarity in the application.
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POWER SUPPLY DECOUPLING, CS

MIDRAIL VOLTAGE

_
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VDD
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CBYPASS
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Midrail

CBYPASS

TLV2460

a) Midrail Voltage Generator Using a Simple 
Resistor-Divider

b) Buffered Midrail Voltage Generator to Provide
 Low Output Impedance
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APPLICATION INFORMATION (continued)

The TPA112 is a high-performance CMOS audio amplifier that requires adequate power supply decoupling to
ensure that the output total harmonic distortion (THD) is as low as possible. Power supply decoupling also
prevents oscillations for long lead lengths between the amplifier and the speaker. The optimum decoupling is
achieved by using two capacitors of different types that target different types of noise on the power supply leads.
For higher frequency transients, spikes, or digital hash on the line, a good low equivalent-series-resistance (ESR)
ceramic capacitor; typically, 0.1 µF, placed as close as possible to the device VDD lead, works best. For filtering
lower frequency noise signals, a larger aluminum electrolytic capacitor of 10 µF or greater placed near the power
amplifier is recommended.

The TPA112 is a single-supply amplifier; so, it must be properly biased to accommodate audio signals. Normally,
the amplifier is biased at VDD/2, but it can actually be biased at any voltage between VDD and ground. However,
biasing the amplifier at a point other than VDD/2 reduces the amplifier's maximum output swing. In some
applications where the circuitry driving the TPA112 has a different midrail voltage, it might make sense to use the
same midrail voltage for the TPA112, and possibly eliminate the use of the dc-blocking capacitors.

The two concerns with the midrail voltage source are the amount of noise present and its output impedance. Any
noise present on the midrail voltage source that is not present on the audio input signal will be input to the
amplifier, and passed to the output (and increased by the gain of the circuit). Common-mode noise is cancelled
out by the differential configuration of the circuit.

The output impedance of the circuit used to generate the midrail voltage needs to be low enough so as not to be
influenced by the audio signal path. A common method of generating the midrail voltage is to form a voltage
divider from the supply to ground, with a bypass capacitor from the common node to ground. This capacitor
improves the PSRR of the circuit. However, this circuit has a limited range of output impedances; so, to achieve
low output impedances, the voltage generated by the voltage divider is fed into a unity-gain amplifier to lower the
output impedance of the circuit.

Figure 47. Midrail Voltage Generator

If a voltage step is applied to a speaker, it causes a noise pop. To reduce popping, the midrail voltage should
rise at a subsonic rate. That is, a rate less than the rise time of a 20-Hz waveform. If the voltage rises faster than
that, there is the possibility of a pop from the speaker.

Pop can also be heard in the speaker if the midrail voltage rises faster than the charge of either the input
coupling capacitor or the output coupling capacitor. If midrail rises first, the charging of the input and output
capacitors is heard in the speaker. To keep this noise as low as possible, the relationship shown in Equation 6
should be maintained.
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1
�CB � RSOURCE

�
� 1
�CIRI

�
� 1

RLCC
(6)

MIDRAIL BYPASS CAPACITOR, CB

1
�CB � RSOURCE

�
� 1
�CIRI

�
(7)

6.25 � 50 (8)

OUTPUT COUPLING CAPACITOR, CC

f(out high) �
1

2�RLCC (9)

TPA112
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APPLICATION INFORMATION (continued)

Where CBYPASS is the value of the bypass capacitor, and RSOURCE is the equivalent source impedance of the
voltage divider (the parallel combination of the two resistors). For example, if the voltage divider is constructed
using two 20-kΩ resistors, then RSOURCE is 10 kΩ.

The midrail bypass capacitor CB serves several important functions. During start-up, CB determines the rate at
which the amplifier starts up. This helps to push the start-up pop noise into the subaudible range (so slow it can
not be heard). The second function is to reduce noise produced by the power supply caused by coupling into the
output drive signal. This noise is from the midrail generation circuit internal to the amplifier. The capacitor is fed
from the resistor divider with equivalent resistance of RSOURCE. To keep the start-up pop as low as possible, the
relationship shown in Equation 7 should be maintained.

As an example, consider a circuit where CB is 1 µF, RSOURCE = 160 kΩ, CI is 1 µF, and RI is 20 kΩ. Inserting
these values into the Equation 8 results in:

which satisfies the rule. Recommended values for bypass capacitor CB are 0.1 µF to 1 µF, ceramic or tantalum
low-ESR, for the best THD and noise performance.

In the typical single-supply, single-ended (SE) configuration, an output coupling capacitor (CC) is required to
block the dc bias at the output of the amplifier, thus preventing dc currents in the load. As with the input coupling
capacitor, the output coupling capacitor and impedance of the load form a high-pass filter governed by
Equation 9.

The main disadvantage, from a performance standpoint, is that the typically small load impedances drive the
low-frequency corner higher. Large values of CC are required to pass low frequencies into the load. Consider the
example where a CC of 68 µF is chosen and loads vary from 32 Ω to 47 kΩ. Table 1 summarizes the frequency
response characteristics of each configuration.

Table 1. Common Load Impedances vs Low Frequency
Output Characteristics in SE Mode

RL CC LOWEST FREQUENCY

32 Ω 68 µF 73 Hz

10,000 Ω 68 µF 0.23 Hz

47,000 Ω 68 µF 0.05 Hz

As Table 1 indicates, headphone response is adequate and drive into line level inputs (a home stereo for
example) is good.

The output coupling capacitor required in single-supply, SE mode also places additional constraints on the
selection of other components in the amplifier circuit. With the rules described earlier still valid, add the following
relationship:
• Output Pulldown Resistor, RC + RO

– Placing a 100-Ω resistor, RC, from the output side of the coupling capacitor to ground ensures the coupling
capacitor, CC, is charged before a plug is inserted into the jack. Without this resistor, the coupling capacitor
would charge rapidly upon insertion of a plug, leading to an audible pop in the headphones.
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5-V VERSUS 3.3-V OPERATION

TPA112
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– Placing a 20-kΩ resistor, RO, from the output of the IC to ground ensures that the coupling capacitor fully
discharges at power down. If the supply is rapidly cycled without this capacitor, a small pop may be audible
in 10-kΩ loads.

• Using Low-ESR Capacitors
– Low-ESR capacitors are recommended throughout this application. A real capacitor can be modeled simply

as a resistor in series with an ideal capacitor. The voltage drop across this resistor minimizes the beneficial
effects of the capacitor in the circuit. The lower the equivalent value of this resistance, the more the real
capacitor behaves like an ideal capacitor.

The TPA112 is designed for operation over a supply range of 2.5 V to 5.5 V. This data sheet provides full
specifications for 5-V and 3.3-V operation because these are considered to be the two most common standard
voltages. There are no special considerations for 3.3-V versus 5-V operation as far as supply bypassing, gain
setting, or stability. The most important consideration is that of output power. Each amplifier in the TPA112 can
produce a maximum voltage swing of VDD – 1 V. This means, for 3.3-V operation, clipping starts to occur when
VO(PP) = 2.3 V, as opposed to VO(PP) = 4 V for 5-V operation. The reduced voltage swing subsequently reduces
maximum output power into the load before distortion begins to become significant.
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1

THERMAL INFORMATION

The DGN PowerPAD™ package incorporates an exposed thermal die pad that is designed to be attached directly
to an external heat sink. When the thermal die pad is soldered directly to the printed circuit board (PCB), the PCB
can be used as a heatsink. In addition, through the use of thermal vias, the thermal die pad can be attached directly
to a ground plane or special heat sink structure designed into the PCB. This design optimizes the heat transfer from
the integrated circuit (IC).

For additional information on the PowerPAD package and how to take advantage of its heat dissipating abilities, refer to
Technical Brief,  PowerPAD Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 and
Application Brief, PowerPAD Made Easy, Texas Instruments Literature No. SLMA004.  Both documents are available
at www.ti.com. See Figure 1 for DGN package exposed thermal die pad dimensions.

Exposed Thermal
Die Pad

Bottom View
PPTD041

NOTE: All linear dimensions are in millimeters.

8

5

1

4

1,78
MAX

1,73
MAX

Figure 1. DGN Package Exposed Thermal Die Pad Dimensions

PowerPAD is a trademark of Texas Instruments.
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