PROCESSOR SUPERVISORY CIRCUITS WITH POWER-FAIL

SLVS184C - NOVEMBER 1998 - REVISED DECEMBER 2005

features

- Power-On Reset Generator with Fixed Delay Time of 200 ms, no External Capacitor Needed
- Precision Supply Voltage Monitor 2.5 V, 3 V, 3.3 V, and 5 V
- Pin-For-Pin Compatible with the MAX705 through MAX708 Series
- Integrated Watchdog Timer (TPS3705 only)
- Voltage Monitor for Power-Fail or Low-Battery Warning
- Maximum Supply Current of 50 μA
- MSOP-8 and SO-8 Packages
- Temperature Range . . . −40°C to 85°C

typical applications

- Designs Using DSPs, Microcontrollers or Microprocessors
- Industrial Equipment
- Programmable Controls
- Automotive Systems
- Portable/Battery Powered Equipment
- Intelligent Instruments
- Wireless Communication Systems
- Notebook/Desktop Computers

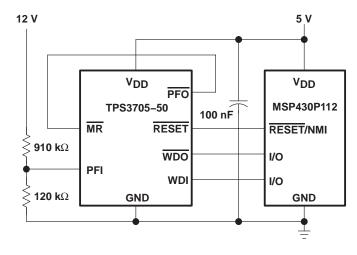
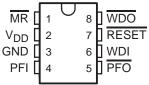
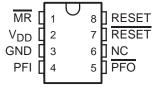
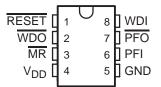
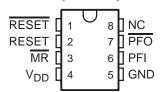




Figure 1. Typical MSP430 Application

TPS3705 . . . D PACKAGE (TOP VIEW)



TPS3707...D PACKAGE (TOP VIEW)



NC - No internal connection

TPS3705 . . . DGN PACKAGE (TOP VIEW)

TPS3707...DGN PACKAGE (TOP VIEW)

NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PROCESSOR SUPERVISORY CIRCUITS WITH POWER-FAIL

SLVS184C - NOVEMBER 1998 - REVISED DECEMBER 2005

description

The TPS3705, TPS3707 family of microprocessor supply-voltage supervisors provide circuit initialization and timing supervision, primarily for DSP and processor-based systems.

During power-on, \overline{RESET} is asserted when the supply voltage V_{DD} becomes higher than 1.1 V. Thereafter, the supply voltage supervisor monitors V_{DD} and keeps \overline{RESET} active as long as V_{DD} remains below the threshold voltage V_{IT+} . An internal timer delays the return of the output to the inactive state (high) to ensure proper system reset. The delay time, t_{dtyp} = 200 ms, starts after V_{DD} has risen above the threshold voltage V_{IT+} . When the supply voltage drops below the threshold voltage V_{IT-} , the output becomes active (low) again. No external components are required. All the devices of this family have a fixed-sense threshold voltage V_{IT-} set by an internal voltage divider.

The TPS3705-xx and TPS3707-xx devices incorporate a manual reset input, \overline{MR} . A low level at \overline{MR} causes \overline{RESET} to become active.

The TPS370x-xx families integrate a power-fail comparator which can be used for low-battery detection, power-fail warning, or for monitoring a power supply other than the main supply.

The TPS3705-xx devices have a watchdog timer that is periodically triggered by a positive or negative transition at WDI. When the supervising system fails to retrigger the watchdog circuit within the time-out interval, $t_{t(out)} = 1.6 \text{ s}$, $\overline{\text{WDO}}$ becomes active. This event also reinitializes the watchdog timer. Leaving WDI unconnected disables the watchdog.

The TPS3707-xx devices do not have the Watchdog function, but include a high-level output RESET.

The product spectrum is designed for supply voltages of 2.5 V, 3 V, 3.3 V, and 5 V. The circuits are available in either 8-pin MSOP or standard SOIC packages. The TPS3705, TPS3707 devices are characterized for operation over a temperature range of -40°C to 85°C.

AVAILABLE OPTIONS

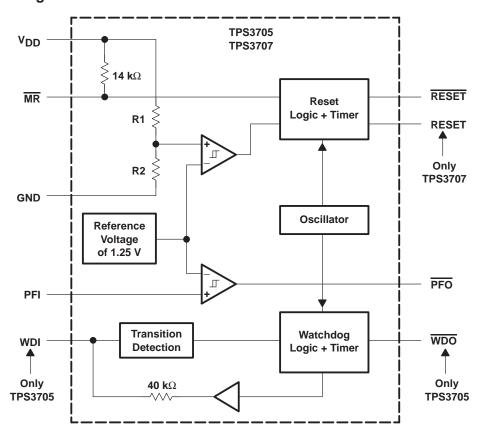
		PACKAGE	D DEVICES		
TA	THRESHOLD VOLTAGE	SMALL OUTLINE (D)	POWER-PAD™ μ-SMALL OUTLINE (DGN)	MARKING DGN PACKAGE	CHIP FORM (Y)
	2.63 V	TPS3705-30D	TPS3705-30DGN	TIAAT	TPS3705-30Y
	2.93 V	TPS3705-33D	TPS3705-33DGN	TIAAU	TPS3705-33Y
	4.55 V	TPS3705-50D	TPS3705-50DGN	TIAAV	TPS3705-50Y
-40°C to 85°C	2.25 V	TPS3707-25D	TPS3707-25DGN	TIAAW	TPS3707-25Y
	2.63 V	TPS3707-30D	TPS3707-30DGN	TIAAX	TPS3707-30Y
	2.93 V	TPS3707-33D	TPS3707-33DGN	TIAAY	TPS3707-33Y
	4.55 V	TPS3707-50D	TPS3707-50DGN	TIAAZ	TPS3707-50Y

PROCESSOR SUPERVISORY CIRCUITS WITH POWER-FAIL SLVS184C - NOVEMBER 1998 - REVISED DECEMBER 2005

Function Tables

TRUTH TABLE, TPS3705

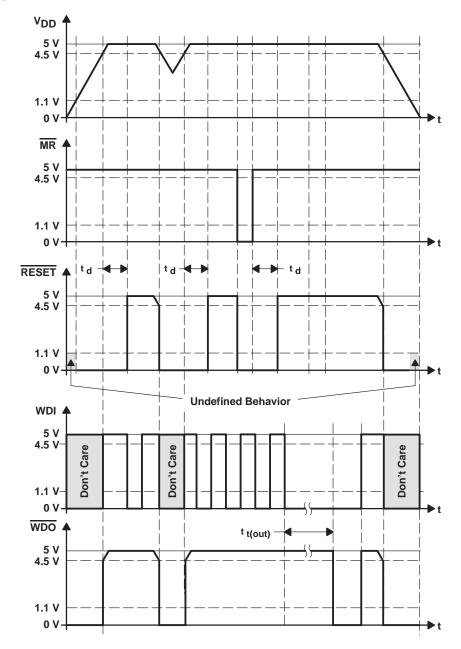
MR	V _{DD} >V _{IT}	RESET	TYPICAL DELAY
H→L	1	H→L	30 ns
L→H	1	L→H	200 ms
Н	1→0	H→L	3 μs
Н	0→1	L→H	200 ms


TRUTH TABLE, TPS3707

MR	V _{DD} >V _{IT}	RESET	RESET RESET	
H→L	1	H→L	L→H	30 ns
L→H	1	L→H	$H{ ightarrow}L$	200 ms
Н	1→0	H→L	$L{\to}H$	3 μs
Н	0→1	L→H	$H{ ightarrow} L$	200 ms

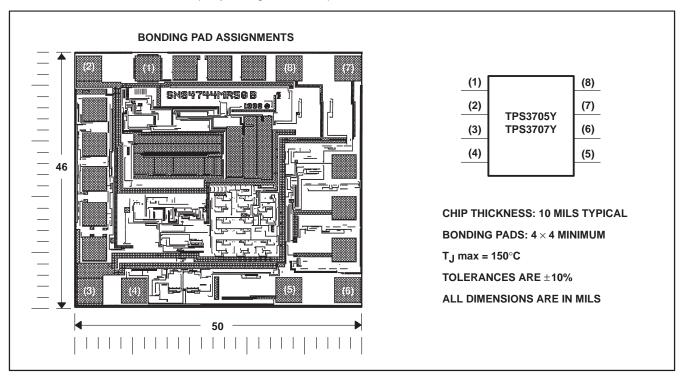
TRUTH TABLE, TPS370x

PFI>V _{IT}	PFO	TYPICAL DELAY
0→1	L→H	0.5 μs
1→0	H→L	0.5 μs


functional block diagram

PROCESSOR SUPERVISORY CIRCUITS WITH POWER-FAIL SLVS184C - NOVEMBER 1998 - REVISED DECEMBER 2005

timing diagrams



PROCESSOR SUPERVISORY CIRCUITS WITH POWER-FAIL

SLVS184C - NOVEMBER 1998 - REVISED DECEMBER 2005

TPS370xY chip information

These chips, when properly assembled, display characteristics similar to those of the TPS370x. Thermal compression or ultrasonic bonding may be caused on the doped-aluminum bonding pads. The chips may be mounted with conductive epoxy or a gold-silicon preform.

Terminal Functions

TERMINAL						
NAME		NO.	I/O	DESCRIPTION		
MR		1	I	Manual reset		
VDD		2		Supply voltage		
GND		3		Ground		
PFI	PFI		I	Power-fail comparator input		
PFO		5	0	Power-fail comparator output		
WDI	TPS3705	_	I	Watchdog timer input		
NC	TPS3707	6		No internal connection		
RESET		7	0	Active-low reset output		
WDO	TPS3705		0	Watchdog timer output		
RESET	TPS3707	8	0	Active-high reset output		

PROCESSOR SUPERVISORY CIRCUITS WITH POWER-FAIL

SLVS184C - NOVEMBER 1998 - REVISED DECEMBER 2005

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage, V _{DD} (see Note1)	7 V
PFI voltage range, V _{PFI}	\dots -0.3 V to V _{DD} + 0.3 V
All other pins (see Note 1)	–0.3 V to 7 V
Maximum low output current, I _{OL}	5 mA
Maximum high output current, IOH	–5 mA
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{DD}$)	±20 mA
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{DD})	±20 mA
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A	–40°C to 85°C
Storage temperature range, T _{stq}	–65°C to 150°C
Soldering temperature	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute—maximum—rated conditions for extended periods may affect device reliability.

DISSIPATION RATING TABLE

PACKAGE	T _A <25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
DGN	2.14 W	17.1 mW/°C	1.37 W	1.11 W
D	725 mW	5.8 mW/°C	464 mW	377 mW

recommended operating conditions at specified temperature range

	MIN	MAX	UNIT
Supply voltage, V _{DD}	2	6	V
Input voltage, V _I	0	V _{DD} +0.3	V
High-level input voltage, V _{IH}	0.7×V _{DD}		V
Low-level input voltage, V _{IL}		0.3×V _{DD}	V
Input transition rise and fall rate at $\overline{\text{MR}}$ or WDI, $\Delta t/\Delta V$		100	ns/V
Operating free-air temperature range, T _A	-40	85	°C

NOTE 1: All voltage values are with respect to GND. For reliable operation the device must not be operated at 7 V for more than t = 1000h continuously.

PROCESSOR SUPERVISORY CIRCUITS WITH POWER-FAIL SLVS184C - NOVEMBER 1998 - REVISED DECEMBER 2005

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER			TEST	CONDITIONS	MIN	TYP	MAX	UNIT	
			TPS370x-xx	$V_{DD} = 1.1 \text{ V}$	$I_{OH} = -4 \mu A$	0.8				
			TPS3707-25	., .,						
			TPS370x-30	$V_{DD} = V_{IT+} + 0.2 \text{ V},$ $I_{OH} = -500 \mu\text{A}$		0.7×V _{DD}				
VOH	High-level output voltage		TPS370x-33	IOH = -300 μ/	ΙΟΗ = -300 μΑ				V	
			TPS370x-50	V _{DD} = V _{IT+} + I _{OH} = -800 μ/		V _{DD} –1.5 V				
			TPS370x-xx	$V_{DD} = 6 V$,	I _{OH} = -800 μA	1				
			TPS3707-25							
			TPS370x-30	$V_{DD} = V_{IT+} + C$	0.2 V, $I_{OL} = 1 \text{ mA}$			0.3	V	
VOL	Low-level output voltage		TPS370x-33]						
VOL	Low-level output voltage		TPS370x-50	$V_{DD} = V_{IT++0}$ $I_{OL} = 2.5 \text{ mA}$).2 V,			0.4	V	
			TPS370x-xx	V _{DD} = 6 V	$I_{OL} = 3 \text{ mA}$			0.4		
	Power-up reset voltage (se	e Note 2	2)	$V_{DD} \ge 1.1 \text{ V},$	I _{OL} = 50 μA			0.3	V	
			TPS3707-25			2.20	2.25	2.30		
			TPS370x-30	T _A = 0°C to 85	50C	2.57	2.63	2.68	V	
			TPS370x-33	1A = 0 C 10 6	, C	2.87	2.93	2.98	V	
	Negative-going input		TPS370x-50]	4.45	4.55	4.63			
V _{IT} — threshold voltage (see Note 3)		TPS3707-25			2.20	2.25	2.32			
		TPS370x-30 $T_A = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}$		9E°C	2.57	2.70	V			
			TPS370x-33	1A = -40 C to	05 0	2.87	2.93	3.0	V	
			TPS370x-50			4.45	4.55	4.65		
		PFI	TPS370x-xx	$V_{DD} \ge 2 V$,	$T_A = -40^{\circ}C$ to $85^{\circ}C$	1.20	1.25	1.30	V	
			TPS3707-25				40			
		\/	TPS370x-30				50			
V _{hys}	Hysteresis	VDD	TPS370x-33				50		mV	
-			TPS370x-50]			70			
		PFI	TPS370x-xx]			10			
I _{IH(AV)}	Average high-level input current	- WDI		WDI = V _{DD} = Time average			100	150	μΑ	
I _{IL(AV)}	Average low-level input current	VVDI		WDI = 0 V, Time average	$V_{DD} = 6 \text{ V},$ (dc = 12%)		-15	-20	μΑ	
lu.	High lovel input ourrest	WDI		WDI = V _{DD} =	: 6 V		120	170	^	
ΉΗ	High-level input current	MR		$\overline{MR} = 0.7 \times V_{DI}$	D, V _{DD} = 6 V		-130	-180	μΑ	
1	Low-level input current	WDI		WDI = 0 V,	V _{DD} = 6 V		-120	-170	^	
ΙΙL	Low-level input current	MR		$\overline{MR} = 0 \text{ V},$	V _{DD} = 6 V		-430	-600	μΑ	
lį	Input current	PFI		$V_{DD} = 6 V$,	$0 \text{ V} \leq \text{ V}_{I} \leq \text{V}_{DD}$	-1	0	1	μΑ	
Inn	Supply current		TPS3707-xx		6 V, $\overline{MR} = V_{DD}$, \overline{MR} , uts unconnected		20	50	μΑ	
I _{DD} Supply current		TPS3705-xx		6 V, MR= V _{DD,} MR, uts unconnected		30	50	μΑ		
Ci	Input capacitance			$V_I = 0 V \text{ to } V_I$	DD		5		pF	

NOTES: 2. The lowest supply voltage at which RESET becomes active. t_{r,VDD} ≥ 15 μs/V
 3. To ensure best stability of the threshold voltage, a bypass capacitor (ceramic, 0.1 μF) should be placed near to the supply terminals.

PROCESSOR SUPERVISORY CIRCUITS WITH POWER-FAIL SLVS184C - NOVEMBER 1998 - REVISED DECEMBER 2005

timing requirements at R $_L$ = 1 M $\Omega,$ C $_L$ = 50 pF, T $_A$ = 25 $^{\circ}C$

	PARAMETER TEST CONDITIONS				MIN	TYP	MAX	UNIT	
		at V _{DD}	$V_{DD} = V_{IT+} + 0.2 V,$	$V_{DD} = V_{IT} - 0.2 V$,	6			μs
t _w	Pulse width	at MR	$V_{DD} \ge V_{IT+} + 0.2 V$	$V_{IL} = 0.3 \times V_{DD}$	$V_{IH} = 0.7 \times V_{DD}$	100			ns
		at WDI	$V_{DD} \ge V_{IT+} + 0.2 V$	$V_{IL} = 0.3 \times V_{DD}$	$V_{IH} = 0.7 \times V_{DD}$	100			ns

switching characteristics at RL = 1 M Ω , CL = 50 pF, TA = 25°C

	PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
t _t (out)	Watchdog time out	$V_{DD} \ge V_{IT+} + 0.2 \text{ V},$ See timing diagram	1.1	1.6	2.3	s	
t _d	Delay time		V _{DD} > V _{IT+} + 0.2 V, See timing diagram	140	200	280	ms
tPHL	Propagation (delay) time, high-to-low-level output	MR to RESET delay	$V_{DD} \ge V_{ T+} + 0.2 \text{ V},$		50	250	•
^t PLH	Propagation (delay) time, low-to-high-level output	MR to RESET delay (TPS3707-xx only)	$V_{IL} = 0.3 \times V_{DD}$ $V_{IH} = 0.7 \times V_{DD}$		50	250	ns
^t PHL	Propagation (delay) time, high-to-low-level output	V _{DD} to RESET delay			3	5	
^t PLH	Propagation (delay) time, low-to-high-level output	V _{DD} to RESET delay (TPS3707-xx only)			3	5	μs
tPHL	Propagation (delay) time, high-to-low-level output	DEL to DEC dolor	V 0.V/- 0.V		0.5	1	
^t PLH	Propagation (delay) time, low-to-high-level output	PFI to PFO delay	V _{DD} = 2 V to 6 V		0.5	1	μs

TYPICAL CHARACTERISTICS

NORMALIZED INPUT THRESHOLD VOLTAGE

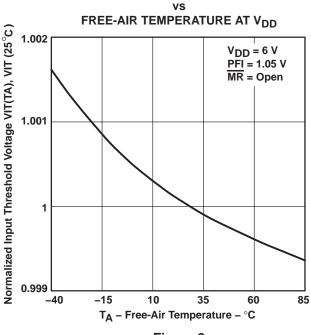
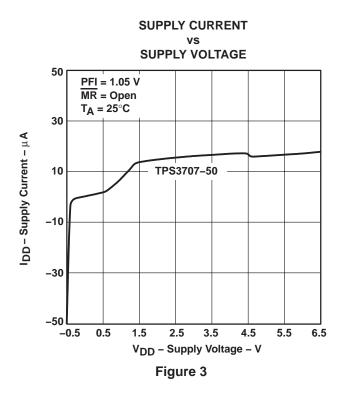
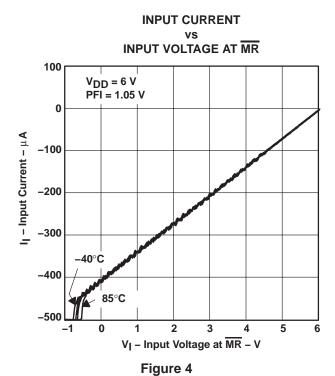
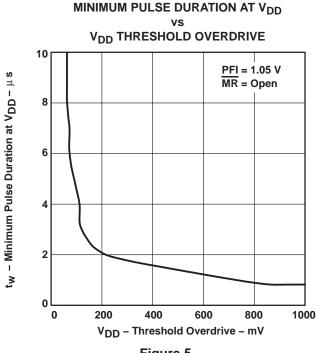
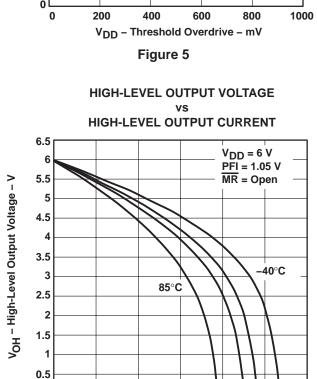




Figure 2



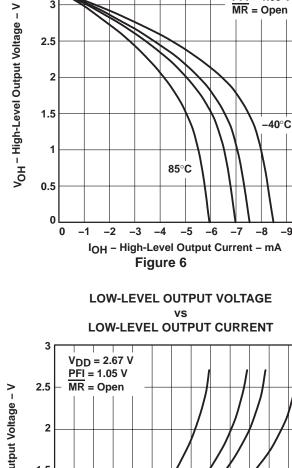


TYPICAL CHARACTERISTICS

3.5

3

-10


-15

IOH - High-Level Output Current - mA

Figure 7

-20

-25

HIGH-LEVEL OUTPUT VOLTAGE

HIGH-LEVEL OUTPUT CURRENT

 $V_{DD} = 3.2 \text{ V}$

PFI = 1.05 V

MR = Open

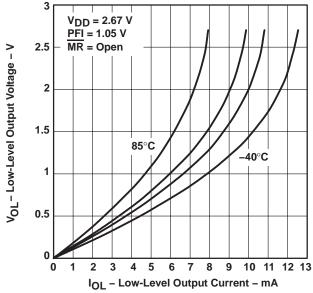


Figure 8

0

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TPS3705-30D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-30DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-30DGN	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-30DGNG4	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-30DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-30DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-33D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-33DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-33DGN	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-33DGNG4	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-33DGNR	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-33DGNRG4	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-33DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-33DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-50D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-50DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-50DGN	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-50DGNG4	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-50DGNR	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-50DGNRG4	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3705-50DR	ACTIVE	SOIC	D	8	2500	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM

7-May-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³
						no Sb/Br)		
TPS3705-50DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-25D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-25DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-25DGN	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-25DGNG4	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-25DGNR	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-25DGNRG4	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-25DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-25DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-30D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-30DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-30DGN	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-30DGNG4	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-30DGNR	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-30DGNRG4	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-30DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-30DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-33D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-33DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-33DGN	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-33DGNG4	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN

.com 7-May-2007

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Packag Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	n MSL Peak Temp ⁽³⁾
TPS3707-33DGNR	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-33DGNRG4	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-33DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-33DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-50D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-50DG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-50DGN	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-50DGNG4	ACTIVE	MSOP- Power PAD	DGN	8	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-50DGNR	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-50DGNRG4	ACTIVE	MSOP- Power PAD	DGN	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-50DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TPS3707-50DRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIN

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

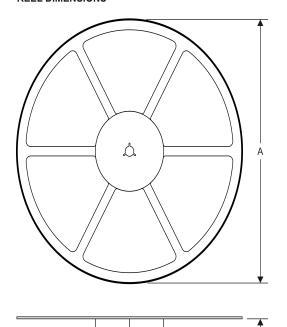
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the

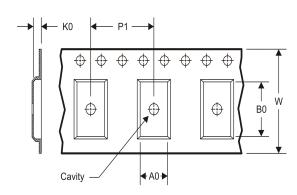
PACKAGE OPTION ADDENDUM

7-May-2007

accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION


www.ti.com 14-Jul-2012

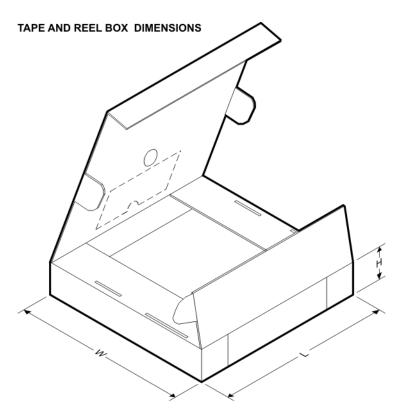
TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS3705-30DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS3705-33DGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS3705-33DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS3705-50DGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS3705-50DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS3707-25DGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS3707-25DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS3707-30DGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS3707-30DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS3707-30DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS3707-33DGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1

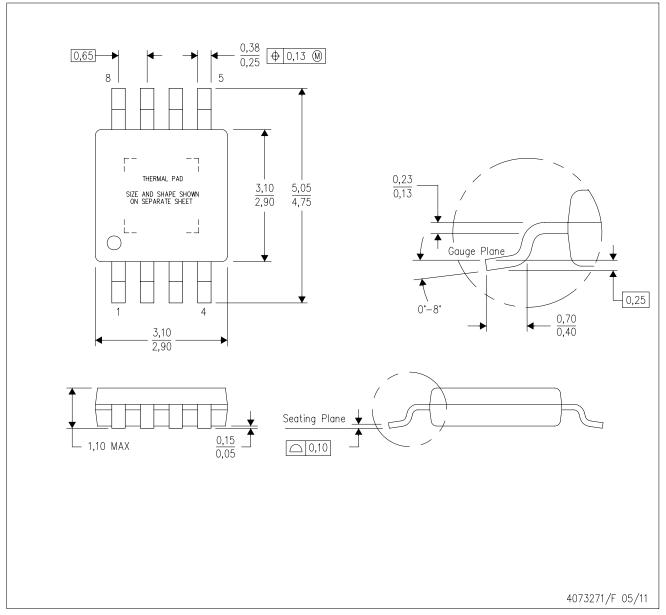
PACKAGE MATERIALS INFORMATION

www.ti.com 14-Jul-2012

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS3707-33DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TPS3707-50DGNR	MSOP- Power PAD	DGN	8	2500	330.0	12.4	5.3	3.4	1.4	8.0	12.0	Q1
TPS3707-50DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS3705-30DR	SOIC	D	8	2500	367.0	367.0	35.0
TPS3705-33DGNR	MSOP-PowerPAD	DGN	8	2500	358.0	335.0	35.0
TPS3705-33DR	SOIC	D	8	2500	367.0	367.0	35.0
TPS3705-50DGNR	MSOP-PowerPAD	DGN	8	2500	358.0	335.0	35.0
TPS3705-50DR	SOIC	D	8	2500	367.0	367.0	35.0
TPS3707-25DGNR	MSOP-PowerPAD	DGN	8	2500	358.0	335.0	35.0
TPS3707-25DR	SOIC	D	8	2500	367.0	367.0	35.0
TPS3707-30DGNR	MSOP-PowerPAD	DGN	8	2500	358.0	335.0	35.0
TPS3707-30DR	SOIC	D	8	2500	367.0	367.0	35.0
TPS3707-30DR	SOIC	D	8	2500	367.0	367.0	35.0
TPS3707-33DGNR	MSOP-PowerPAD	DGN	8	2500	358.0	335.0	35.0
TPS3707-33DR	SOIC	D	8	2500	367.0	367.0	35.0


PACKAGE MATERIALS INFORMATION

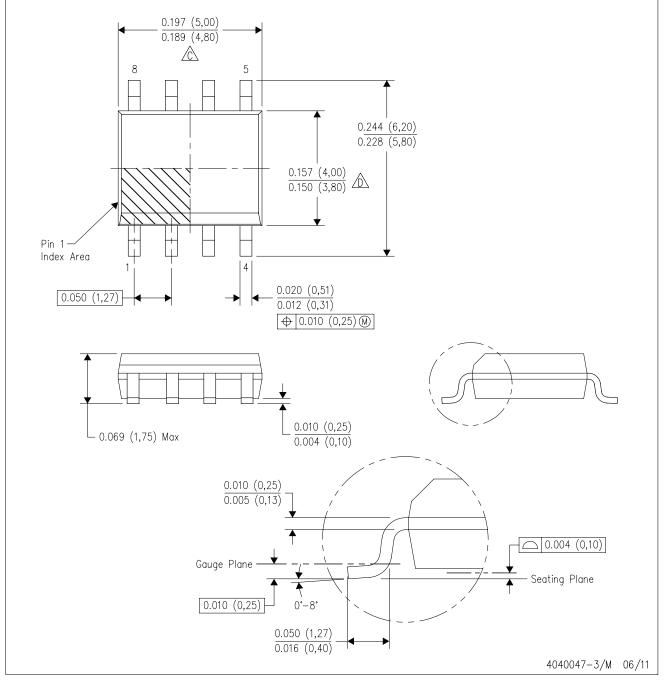
www.ti.com 14-Jul-2012

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS3707-50DGNR	MSOP-PowerPAD	DGN	8	2500	358.0	335.0	35.0
TPS3707-50DR	SOIC	D	8	2500	367.0	367.0	35.0

DGN (S-PDSO-G8)

PowerPAD™ PLASTIC SMALL OUTLINE

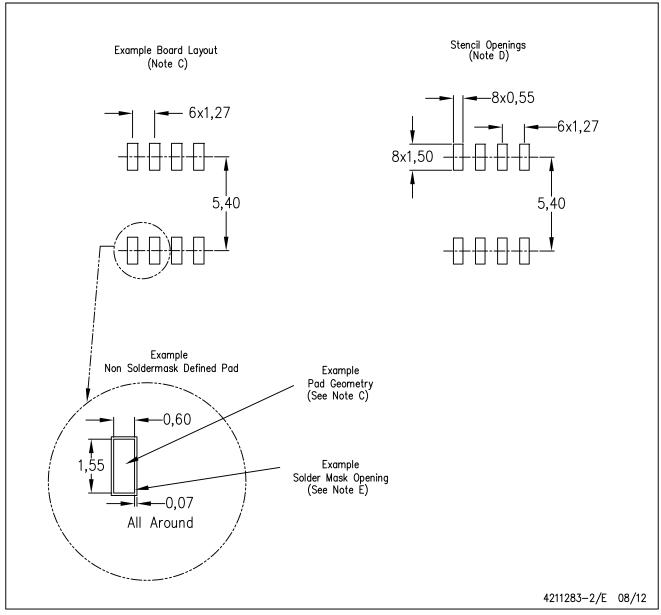
NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Technical Brief, PowerPad Thermally Enhanced Package, Texas Instruments Literature No. SLMA002 for information regarding recommended board layout. This document is available at www.ti.com www.ti.com.
- E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
- F. Falls within JEDEC MO-187 variation AA-T

PowerPAD is a trademark of Texas Instruments.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements.

roducts	Applications	
	ti aaaa/adia	A

Pr

Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio www.ti.com/communications **Amplifiers** amplifier.ti.com Communications and Telecom **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** Consumer Electronics www.ti.com/consumer-apps www.dlp.com DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

www.ti-rfid.com