

SLVS403H-MAY 2002-REVISED JUNE 2010

LOW INPUT VOLTAGE, 1-A LOW-DROPOUT LINEAR REGULATORS WITH SUPERVISOR

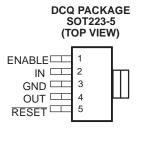
Check for Samples: TPS726126, TPS72615, TPS72616, TPS72618, TPS72625

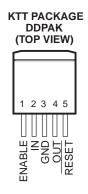
FEATURES

- 1-A Low-Dropout Regulator Supports Input Voltages Down to 1.8-V
- Available in 1.26-V, 1.5-V, 1.6-V, 1.8-V, 2.5-V
- Stable With Any Type/Value Output Capacitor
- ±2% Output Voltage Tolerance Over Line, Load, and Temperature (-40°C to +125°C)
- Integrated Supervisor (SVS) With 200-ms RESET Delay Time
- Low 170-mV Dropout Voltage at 1 A (TPS72625)
- Low 210-μA Ground Current at Full Load
- Less than 1-μA Standby Current
- Integrated UVLO with Thermal and Overcurrent Protection
- 5-Lead SOT223 or DDPAK Surface-Mount Package

APPLICATIONS

- PCI Cards
- Modem Banks and Telecom Boards
- DSP, FPGA, and Microprocessor Power Supplies
- · Portable, Battery-Powered Applications
- 1.26-V Core Voltage for the Following DSPs:
 - TMS320vC5501
 - TMS320vC5502


DESCRIPTION


The TPS726xx family of 1-A low-dropout (LDO) linear regulators has fixed voltage options available that are commonly used to power the latest DSPs, FPGAs, and microcontrollers. The integrated supervisory circuitry provides an active low RESET signal when the output falls out of regulation. The no capacitor/any capacitor feature allows the customer to tailor output transient performance as needed. Therefore, compared to other regulators capable of providing the same output current, this family of regulators can provide a stand alone power supply solution or a post regulator for a switch mode power supply.

These regulators operate over a wide range of input voltages (1.8 V to 6 V) and have very low dropout (170 mV at 1-A). Ground current is typically 210 μ A at full load and drops to less than 80 μ A at no load. Standby current is less than 1 μ A.

Unlike some regulators that have a minimum current requirement, the TPS726xx family is stable with no output load current. The low noise capability of this family, coupled with its high current operation and ease of power dissipation, make it ideal for telecom boards, modem banks, and other noise sensitive applications.

The TPS726xx is available in either a SOT223 or DDPAK package. The TPS726126 is available in a SOT223 package only.

Note: Tab is GND for both packages

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SLVS403H-MAY 2002-REVISED JUNE 2010

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION(1)

PRODUCT	V _{OUT}
TPS726 xx <i>xyyy</i> z	XXX is nominal output voltage (for example, 126 = 1.26V, 15 = 1.5V). YYY is package designator.
	Z is package quantity.

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
website at www.ti.com.

ABSOLUTE MAXIMUM RATINGS

over operating free-air temperature range unless otherwise noted (1)

		UNIT
Input voltage, V _I ⁽²⁾	-0.3 to 7	V
Voltage range at EN	-0.3 to $V_1 + 0.3$	V
Voltage on RESET	V _{IN} + 0.3	V
Voltage on OUT	6	V
ESD rating, HBM	2	kV
Continuous total power dissipation	See Dissipation Ratir	ng Table
Operating junction temperature range, T _J	-50 to 150	°C
Maximum junction temperature range, T _J	150	°C
Storage temperature, T _{stg}	-65 to 150	°C

⁽¹⁾ Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

PACKAGE DISSIPATION RATINGS

PACKAGE	BOARD	$R_{ heta JC}$	$R_{ heta JA}$
DDPAK	High K ⁽¹⁾	2 °C/W	23 °C/W
SOT223	Low K ⁽²⁾	15 °C/W	53 °C/W

⁽¹⁾ The JEDEC high K (2s2p) board design used to derive this data was a 3-inch x 3-inch (7,5-cm x 7,5-cm), multilayer board with 1 ounce internal power and ground planes and 2 ounce copper traces on top and bottom of the board.

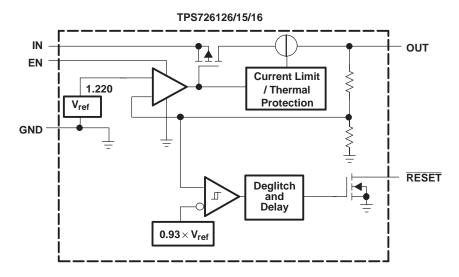
⁽²⁾ All voltage values are with respect to network ground terminal.

⁽²⁾ The JEDEC low K (1s) board design used to derive this data was a 3-inch x 3-inch (7,5-cm x 7,5-cm), two-layer board with 2 ounce copper traces on top of the board.

ELECTRICAL CHARACTERISTICS

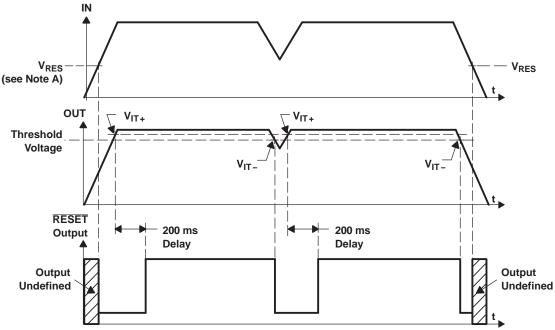
over recommended operating free-air temperature range $V_I = V_{O(typ)} + 1$ V, $I_O = 1$ mA, EN = IN, $C_O = 1$ μ F, $C_I = 1$ μ F (unless otherwise noted). Typical values are at +25°C.

Continuous output current Do		PARAMETER		TEST COND	ITIONS	MIN	TYP	MAX	UNIT
Bandgap voltage reference Part	V _I (1)	Input voltage				1.8		6	V
Vo	Io	Continuous output cu	ırrent			0		1	Α
Vo Output voltage TPS72615 D μA < I₀ < 1 A 1.8 V ≤ V₁ ≤ 5.5 V 1.47 1.5 1.53 1.		Bandgap voltage refe	erence			1.177	1.220	1.263	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			TPS726126	0 μA < I _O < 1 A	1.8 V ≤ V _I ≤ 5.5 V	1.222	1.26	1.298	
$ \begin{array}{ c c c c c c c c } \hline TPS72618 & 0 \ \mu A < l_0 < 1 \ A & 2.8 \ V \le V_1 \le 5.5 \ V & 1.764 & 1.8 & 1.836 \\ \hline TPS72625 & 0 \ \mu A < l_0 < 1 \ A & 3.5 \ V \le V_1 \le 5.5 \ V & 2.45 & 2.5 & 2.55 \\ \hline I & Ground current & & & & & & & & & & & & & & & & & & &$			TPS72615	0 μA < I _O < 1 A	1.8 V ≤ V _I ≤ 5.5 V	1.47	1.5	1.53	
$ TPS72625 O \mu A < I_O < 1 A 3.5 \ V \le V_I \le 5.5 \ V 2.45 2.5 2.55 2.55 120 I_O = 0 \ \mu A I_O = 1 \ A I_O$	V_{O}	Output voltage	TPS72616	0 μA < I _O < 1 A	2.6 V ≤ V _I ≤ 5.5 V	1.568	1.6	1.632	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			TPS72618	0 μA < I _O < 1 A	2.8 V ≤ V _I ≤ 5.5 V	1.764	1.8	1.836	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			TPS72625	0 μA < I _O < 1 A	$3.5 \text{ V} \leq \text{V}_{\text{I}} \leq 5.5 \text{ V}$	2.45	2.5	2.55	
	-	One and a series of		Ι _Ο = 0 μΑ	,		75	120	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ı	Ground current		I _O = 1 A			210	300	μΑ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Standby current		EN < 0.4 V			0.2	1	μΑ
Current limit (²) 1.1 1.6 2.3 A Output voltage line regulation (ΔV _O /V _O)(³) V _O + 1 V < V _I ≤ 5.5 V -0.15 0.02 0.15 %/V Output voltage load regulation 0 μA < I _O < 1 A	V _n	Output noise voltage		BW = 200 Hz to 100 kHz	C _O = 10 μF		150		μV
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PSRR	Ripple rejection	$f = 1 \text{ kHz}, C_0 = 10 \mu\text{F}$				60		dB
Output voltage load regulation O μA < Io < 1 A O = 0.25 0.05 0.25 %/A		Current limit (2)				1.1	1.6	2.3	Α
V _{IH} EN high level input 1.3 V V _{IL} EN low level input -0.2 0.4 I _{II} EN input current EN = 0 V or V _I 0.01 100 nA UVLO threshold V _{CC} rising 1.45 1.57 1.70 V UVLO bysteresis V _{CC} rising 50 mV UVLO deglitch V _{CC} rising 10 μs UVLO delay V _{CC} rising 100 μs V _{DO} Dropout voltage (4) TPS72625 I _O = 1 A 170 280 TPS72618 I _O = 1 A 210 320 mV RESET (V _{RES}) Trip threshold voltage for valid RESET (V _{RES}) 1.3 V Trip threshold voltage 90 93 96 %V _O Hysteresis voltage 10 mV RESET (ReSET) delay time 100 200 300 ms Rising edge deglitch 10 -0.3 0.4 V Leakage current 100 nA		Output voltage line re (ΔV _O /V _O) ⁽³⁾	egulation	V _O + 1 V < V _I ≤ 5.5 V		-0.15	0.02	0.15	%/V
V _{IL} EN low level input —0.2 0.4 I _I EN input current EN = 0 V or V _I 0.01 100 nA UVLO threshold V _{CC} rising 1.45 1.57 1.70 V UVLO deglitch V _{CC} rising 50 mV UVLO delay V _{CC} rising 10 μs UVLO delay V _{CC} rising 100 μs TPS72625 I _O = 1 A 170 280 mV TPS72618 I _O = 1 A 210 320 mV RESET (V _{RES}) 1.3 V Trip threshold voltage 90 93 96 %V _O Hysteresis voltage 10 mV Hysteresis voltage 10 200 300 ms RESET Rising edge deglitch 10 μs Output low voltage (at 700 μA) -0.3 0.4 V Leakage current 100 nA		Output voltage load r	egulation	0 μA < I _O < 1 A	•	-0.25	0.05	0.25	%/A
V _{IL} EN low level input -0.2 0.4 I _I EN input current EN = 0 V or V _I 0.01 100 nA UVLO threshold V _{CC} rising 1.45 1.57 1.70 V UVLO hysteresis V _{CC} rising 50 mV UVLO delay V _{CC} rising 10 μs UVLO delay V _{CC} rising 100 μs TPS72625 I _O = 1 A 170 280 mV Minimum input voltage (4) TPS72618 I _O = 1 A 170 280 mV Minimum input voltage for valid RESET (V _{RES}) 1.3 V Trip threshold voltage 90 93 96 %V _O Hysteresis voltage 10 mV It (RESET) delay time 100 200 300 ms Rising edge deglitch 0utput low voltage (at 700 μA) -0.3 0.4 V Leakage current 100 nA	V _{IH}	EN high level input				1.3			
UVLO threshold V _{CC} rising 1.45 1.57 1.70 V UVLO hysteresis V _{CC} rising 50 mV UVLO deglitch V _{CC} rising 10 μs UVLO delay V _{CC} rising 100 μs V _{DO} Dropout voltage (4) TPS72625 I _O = 1 A 170 280 mV TPS72618 I _O = 1 A 210 320 mV TPS72618 I _O = 1 A 1.3 V V _{CC} rising 1.3 V Trip threshold voltage for valid RESET (V _{RES}) 1.3 V Trip threshold voltage 90 93 96 %V _O Hysteresis voltage 10 mV TRESET (RESET) delay time 100 200 300 ms Rising edge deglitch 10 μs Output low voltage (at 700 μA) -0.3 0.4 V Leakage current 100 nA	V_{IL}	EN low level input				-0.2		0.4	V
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I _I	EN input current		EN = 0 V or V _I		0.01	100	nA	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		UVLO threshold		V _{CC} rising		1.45	1.57	1.70	V
UVLO delay V _{CC} rising 100 μs μs V _{CD} rising 170 280 mV 170		UVLO hysteresis		V _{CC} rising			50		mV
V_{DO} Dropout voltage (4) $\frac{TPS72625}{TPS72618}$ $I_{O} = 1$ A $\frac{170}{TPS72618}$ $\frac{280}{TPS72618}$ $\frac{1}{I_{O}} = 1$ A $\frac{170}{TPS72618}$ $\frac{280}{TPS72618}$ $\frac{1}{I_{O}} = 1$ A $\frac{170}{TPS72618}$ $\frac{1}{I_{O}} = 1$ A \frac		UVLO deglitch		V _{CC} rising		10		μs	
TPS72618 I _O = 1 A 210 320 MV		UVLO delay		V _{CC} rising			100		μs
Minimum input voltage for valid RESET (V _{RES}) 1.3 V	V	Duanas tualta aa (4)	TPS72625				170	280	\/
RESET (V _{RES}) 1.3 V Trip threshold voltage 90 93 96 %V _O Hysteresis voltage 10 mV t _(RESET) delay time 100 200 300 ms Rising edge deglitch 10 μs Output low voltage (at 700 μA) -0.3 0.4 V Leakage current 100 nA	v _{DO}	Dropout voltage (1)	TPS72618	I _O = 1 A			210	320	mv
Hysteresis voltage 10 mV			e for valid			1.3			V
RESET t _(RESET) delay time 100 200 300 ms Rising edge deglitch 10 μs Output low voltage (at 700 μA) -0.3 0.4 V Leakage current 100 nA		Trip threshold voltage	9			90	93	96	%Vo
(RESET) delay time 100 200 300 ms Rising edge deglitch 10 μs Output low voltage (at 700 μA) -0.3 0.4 V Leakage current 100 nA		Hysteresis voltage					10		mV
Output low voltage (at 700 µA) Leakage current -0.3 0.4 V 100 nA	RESET	t _(RESET) delay time				100	200	300	ms
Leakage current 100 nA		` '					10		μs
		Output low voltage (a	nt 700 μA)			-0.3		0.4	V
T. Operating junction temperature		Leakage current						100	nA
	T_J	Operating junction te	mperature			-40		+125	°C


Minimum
$$V_{IN}$$
 is 1.800 V or $V_O + V_{DO}$, whichever is greater. Test condition includes, output voltage $V_O = V_O - 15\%$ and pulse duration = 10 ms. $V_{Imin} = (V_O + 1)$ or 1.8 V whichever is greater. Line regulation (mV) = $(\%/V) \times \frac{V_O \left(5.5 \ V - V_{Imin}\right)}{100} \times 1000$

Dropout voltage is defined as the differential voltage between V_O and V_I when V_O drops 100 mV below the value measured with $V_1 = V_0 + 1 V$.

⁽²⁾ (3)

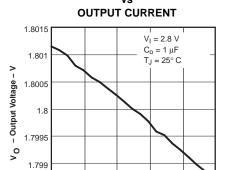

FUNCTIONAL BLOCK DIAGRAM

Terminal Functions

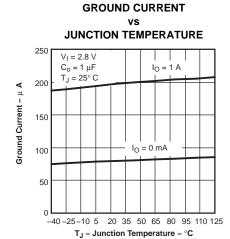
TERMI	NAL	DESCRIPTION
NAME	NO.	DESCRIPTION
GND	3	Ground
ENABLE	1	Enable input
IN	2	Input supply voltage
RESET	5	This terminal is the RESET output. When used with a pull-up resistor, this open-drain output provides the active low RESET signal when the regulator output voltage drops more than 5% below its nominal output voltage. The RESET delay time is typically 200 ms.
OUT	4	Regulated output voltage

RESET TIMING DIAGRAM

NOTES:A. V_{RES} is the minimum input voltage for a valid \overline{RESET} .


TPS72618

1.7985


TYPICAL CHARACTERISTICS

TPS72618 OUTPUT VOLTAGE vs

TPS72618 OUTPUT VOLTAGE

1.805 V₁ = 2.8 V C₀ = 1 µF 1.795 l₀ = 1 A

I_O – Output Current – A **Figure 1.**

0.4

0.2

0.6

0.8

 T_J – Junction Temperature – °C Figure 2.

-40-25-10 5 20 35 50 65 80 95 110 125

Figure 3.

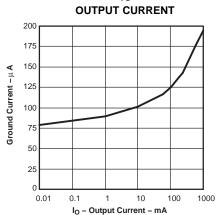
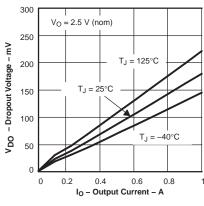
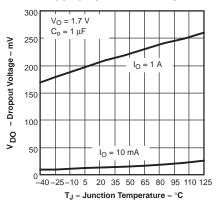
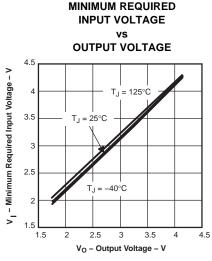



Figure 4.

TPS72625
DC DROPOUT VOLTAGE
VS
OUTPUT CURRENT

TPS72618
DROPOUT VOLTAGE
vs
JUNCTION TEMPERATURE

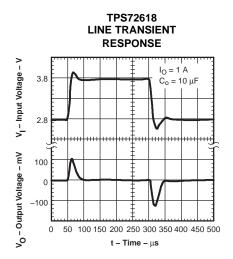
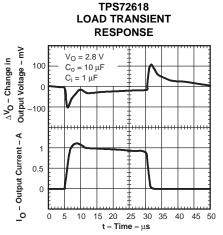
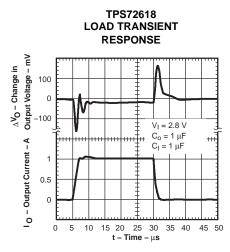

Figure 5.

Figure 6.

TYPICAL CHARACTERISTICS (continued)

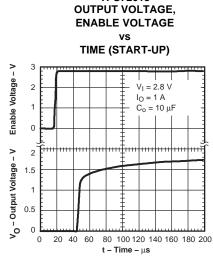
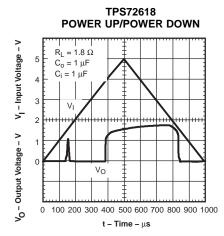
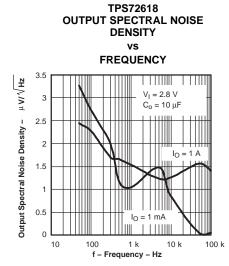

Figure 7.

Figure 8.

TPS72618

Figure 9.




Figure 10.

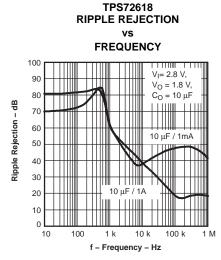

Figure 11.

Figure 12.

TYPICAL CHARACTERISTICS (continued)

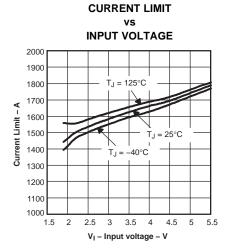
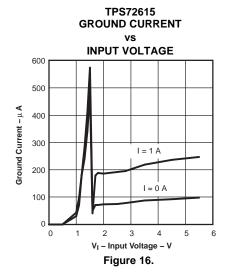
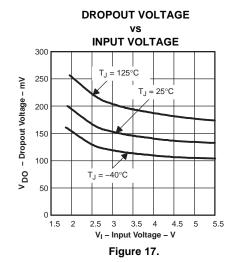




Figure 13.

Figure 14.

Figure 15.

APPLICATION INFORMATION

The TPS726xx family of low-dropout (LDO) regulators have numerous features that make it apply to a wide range of applications. The family operates with very low input voltage (\geq 1.8 V) and low dropout voltage (typically 200 mV at full load), making it an efficient stand-alone power supply or post regulator for battery or switch mode power supplies. Both the active low RESET and 1-A output current, make the TPS726xx family ideal for powering processor and FPGA supplies. The TPS726xx family also has low output noise (typically 150 μ V_{RMS} with 10- μ F output capacitor), making it ideal for use in telecom equipment.

External Capacitor Requirements

A $1-\mu F$ or larger ceramic input bypass capacitor, connected between IN and GND and located close to the TPS726xx, is required for stability. To improve transient response, noise rejection, and ripple rejection, an additional $10-\mu F$ or larger, low ESR capacitor is recommended. A higher-value, low ESR input capacitor may be necessary if large, fast-rise-time load transients are anticipated and the device is located several inches from the power source, especially if the minimum input voltage of 1.8~V is used.

Although an output capacitor is not required for stability, transient response and output noise are improved with a 10-µF output capacitor.

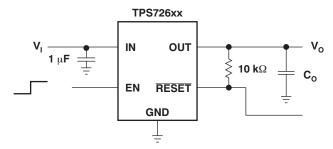


Figure 18. TPS726xx Fixed Output Typical Application Diagram

Regulator Protection

The TPS726xx pass element has a built-in back diode that safely conducts reverse current when the input voltage drops below the output voltage (e.g., during power down). Current is conducted from the output to the input and is not internally limited. If extended reverse voltage is anticipated, external limiting might be appropriate.

The TPS726xx also features internal current limiting and thermal protection. During normal operation, the TPS726xx limits output current to approximately 1.6 A. When current limiting engages, the output voltage scales back linearly until the overcurrent condition ends. While current limiting is designed to prevent gross device failure, care should be taken not to exceed the power dissipation ratings of the package. If the temperature of the device exceeds 165°C, thermal-protection circuitry shuts it down. Once the device has cooled down to below 145°C, regulator operation resumes.

THERMAL INFORMATION

The amount of heat that an LDO linear regulator generates is directly proportional to the amount of power it dissipates during operation. All integrated circuits have a maximum allowable junction temperature (T_Jmax) above which normal operation is not assured. A system designer must design the operating environment so that the operating junction temperature (T_J) does not exceed the maximum junction temperature (T_Jmax). The two main environmental variables that a designer can use to improve thermal performance are air flow and external heatsinks. The purpose of this information is to aid the designer in determining the proper operating environment for a linear regulator that is operating at a specific power level.

In general, the maximum expected power (P_{D(max)}) consumed by a linear regulator is computed as:

$$P_{D}^{max} = \left(V_{I(avg)} - V_{O(avg)}\right) \times I_{O(avg)} + V_{I(avg)}^{x} I_{(Q)}$$
(1)

Where:

- V_{I(avg)} is the average input voltage.
- V_{O(avg)} is the average output voltage.
- O(avg) is the average output current.
- I_(O) is the quiescent current.

For most TI LDO regulators, the quiescent current is insignificant compared to the average output current; therefore, the term $V_{I(avg)}$ x $I_{(Q)}$ can be neglected. The operating junction temperature is computed by adding the ambient temperature (T_A) and the increase in temperature due to the regulator's power dissipation. The temperature rise is computed by multiplying the maximum expected power dissipation by the sum of the thermal resistances between the junction and the case $\mathbb{Q}_{\theta JC}$, the case to heatsink $\mathbb{Q}_{\theta CS}$, and the heatsink to ambient $\mathbb{Q}_{\theta SA}$). Thermal resistances are measures of how effectively an object dissipates heat. Typically, the larger the device, the more surface area available for power dissipation and the lower the object's thermal resistance.

Figure 19 illustrates these thermal resistances for (a) a SOT223 package mounted in a JEDEC low-K board, and (b) a DDPAK package mounted on a JEDEC high-K board.

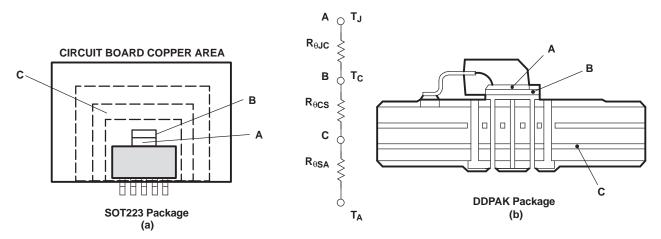


Figure 19. Thermal Resistances

Equation 2 summarizes the computation:

$$T_{J} = T_{A} + P_{D} \max x \left(R_{\theta JC} + R_{\theta CS} + R_{\theta SA} \right)$$
(2)

The $R_{\theta JC}$ is specific to each regulator as determined by its package, lead frame, and die size provided in the regulator's data sheet. The $R_{\theta SA}$ is a function of the type and size of heatsink. For example, *black body radiator* type heatsinks can have $R_{\theta CS}$ values ranging from 5°C/W for very large heatsinks to 50°C/W for very small heatsinks. The $R_{\theta CS}$ is a function of how the package is attached to the heatsink. For example, if a thermal compound is used to attach a heatsink to a SOT223 package, $R_{\theta CS}$ of 1°C/W is reasonable.

Even if no external *black body radiator* type heatsink is attached to the package, the board on which the regulator is mounted provides some heatsinking through the pin solder connections. Some packages, like the DDPAK and SOT223 packages, use a copper plane underneath the package or the circuit board's ground plane for additional heatsinking to improve their thermal performance. Computer-aided thermal modeling can be used to compute very accurate approximations of an integrated circuit's thermal performance in different operating environments (e.g., different types of circuit boards, different types and sizes of heatsinks, and different air flows, etc.). Using these models, the three thermal resistances can be combined into one thermal resistance between junction and ambient $\Re_{\theta JA}$). This $R_{\theta JA}$ is valid only for the specific operating environment used in the computer model.

Equation 2 simplifies into Equation 3:

$$T_{J} = T_{A} + P_{D} \max x R_{\theta J A}$$
 (3)

Rearranging Equation 3 gives Equation 4:

$$R_{\theta JA} = \frac{T_J - T_A}{P_D max} \tag{4}$$

Using Equation 3 and the computer model generated curves shown in Figure 20 and Figure 23, a designer can quickly compute the required heatsink thermal resistance/board area for a given ambient temperature, power dissipation, and operating environment.

DDPAK Power Dissipation

The DDPAK package provides an effective means of managing power dissipation in surface mount applications. The DDPAK package dimensions are provided in the *Mechanical Data* section at the end of the data sheet. The addition of a copper plane directly underneath the DDPAK package enhances the thermal performance of the package.

To illustrate, the TPS72625 in a DDPAK package was chosen. For this example, the average input voltage is 5 V, the output voltage is 2.5 V, the average output current is 1 A, the ambient temperature 55°C, the air flow is 150 LFM, and the operating environment is the same as documented below. Neglecting the quiescent current, the maximum average power is:

$$P_D max = (5 - 2.5) V x 1 A = 2.5 W$$
 (5)

Substituting T_Jmax for T_J into Equation 4 gives Equation 6:

$$R_{\theta JA} max = (125 - 55)^{\circ}C/2.5 W = 28^{\circ}C/W$$
 (6)

From Figure 20, DDPAK Thermal Resistance vs Copper Heatsink Area, the ground plane needs to be 1 cm² for the part to dissipate 2.5 W. The operating environment used in the computer model to construct Figure 20 consisted of a standard JEDEC High-K board (2S2P) with a 1 oz. internal copper plane and ground plane. The package is soldered to a 2 oz. copper pad. The pad is tied through thermal vias to the 1 oz. ground plane. Figure 21 shows the side view of the operating environment used in the computer model.

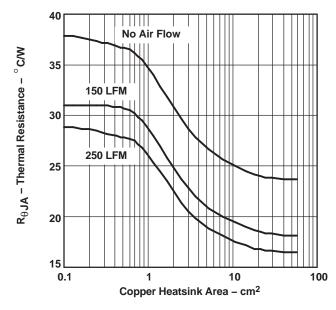


Figure 20. DDPAK Thermal Resistance vs Copper Heatsink Area

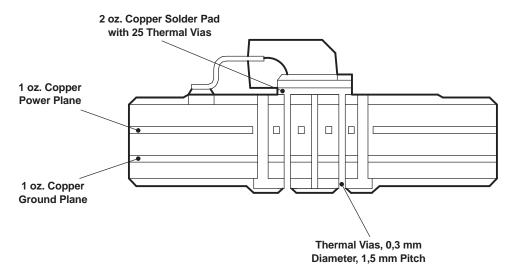


Figure 21. DDPAK Thermal Resistance

From the data in Figure 22 and rearranging Equation 4, the maximum power dissipation for a different ground plane area and a specific ambient temperature can be computed.

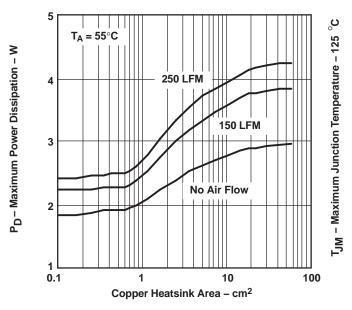


Figure 22. Maximum Power Dissipation vs Copper Heatsink Area

SOT223 Power Dissipation

The SOT223 package provides an effective means of managing power dissipation in surface mount applications. The SOT223 package dimensions are provided in the *Mechanical Data* section at the end of the data sheet. The addition of a copper plane directly underneath the SOT223 package enhances the thermal performance of the package.

To illustrate, the TPS72625 in a SOT223 package was chosen. For this example, the average input voltage is 3.3 V, the output voltage is 2.5 V, the average output current is 1 A, the ambient temperature 55°C, no air flow is present, and the operating environment is the same as documented below. Neglecting the quiescent current, the maximum average power is:

$$P_D max = (3.3 - 2.5) V x 1 A = 800 mW$$
 (7)

Substituting T_Jmax for T_J into Equation 4 gives Equation 8:

$$R_{\theta JA} max = (125 - 55)^{\circ}C/800 \text{ mW} = 87.5^{\circ}C/W$$

(8)

From Figure 23, $R_{\theta JA}$ vs PCB Copper Area, the ground plane needs to be 0.55 in² for the part to dissipate 800 mW. The operating environment used to construct Figure 23 consisted of a board with 1 oz. copper planes. The package is soldered to a 1 oz. copper pad on the top of the board. The pad is tied through thermal vias to the 1 oz. ground plane.

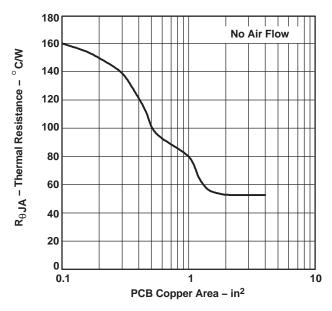


Figure 23. SOT223 Thermal Resistance vs PCB AREA

From the data in Figure 23 and rearranging Equation 4, the maximum power dissipation for a different ground plane area and a specific ambient temperature can be computed (as shown in Figure 24).

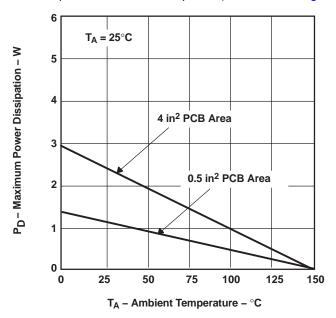
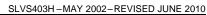



Figure 24. SOT223 Power Dissipation

www.ti.com

REVISION HISTORY

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

C	Changes from Revision G (May 2006) to Revision H							
•	Deleted Figure 14, Output Impedance vs Frequency	7						
•	Added Figure 18	8						

25-Jan-2012

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TPS726126DCQ	ACTIVE	SOT-223	DCQ	6	78	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS726126DCQG4	ACTIVE	SOT-223	DCQ	6	78	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS726126DCQR	ACTIVE	SOT-223	DCQ	6	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS726126DCQRG4	ACTIVE	SOT-223	DCQ	6	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS72615DCQ	ACTIVE	SOT-223	DCQ	6	78	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS72615DCQG4	ACTIVE	SOT-223	DCQ	6	78	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS72615DCQR	ACTIVE	SOT-223	DCQ	6	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS72615DCQRG4	ACTIVE	SOT-223	DCQ	6	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS72615KTT	OBSOLETE	DDPAK/ TO-263	KTT	5		TBD	Call TI	Call TI	
TPS72615KTTR	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	
TPS72615KTTRG3	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	
TPS72615KTTT	ACTIVE	DDPAK/ TO-263	KTT	5	50	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	
TPS72615KTTTG3	ACTIVE	DDPAK/ TO-263	KTT	5	50	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	
TPS72616DCQ	ACTIVE	SOT-223	DCQ	6	78	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS72616DCQG4	ACTIVE	SOT-223	DCQ	6	78	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS72616DCQR	ACTIVE	SOT-223	DCQ	6	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS72616DCQRG4	ACTIVE	SOT-223	DCQ	6	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	

25-Jan-2012

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TPS72616KTT	OBSOLETE	DDPAK/ TO-263	KTT	5		TBD	Call TI	Call TI	
TPS72616KTTR	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	
TPS72616KTTRG3	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	
TPS72616KTTT	ACTIVE	DDPAK/ TO-263	KTT	5	50	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	
TPS72616KTTTG3	ACTIVE	DDPAK/ TO-263	KTT	5	50	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	
TPS72618DCQ	ACTIVE	SOT-223	DCQ	6	78	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS72618DCQG4	ACTIVE	SOT-223	DCQ	6	78	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS72618DCQR	ACTIVE	SOT-223	DCQ	6	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS72618DCQRG4	ACTIVE	SOT-223	DCQ	6	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS72618KTT	OBSOLETE	DDPAK/ TO-263	KTT	5		TBD	Call TI	Call TI	
TPS72618KTTR	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	
TPS72618KTTRG3	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	
TPS72618KTTT	ACTIVE	DDPAK/ TO-263	KTT	5	50	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	
TPS72618KTTTG3	ACTIVE	DDPAK/ TO-263	KTT	5	50	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	
TPS72625DCQ	ACTIVE	SOT-223	DCQ	6	78	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS72625DCQG4	ACTIVE	SOT-223	DCQ	6	78	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS72625DCQR	ACTIVE	SOT-223	DCQ	6	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	
TPS72625DCQRG4	ACTIVE	SOT-223	DCQ	6	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR	

PACKAGE OPTION ADDENDUM

25-Jan-2012

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TPS72625KTT	OBSOLETE	DDPAK/ TO-263	KTT	5		TBD	Call TI	Call TI	
TPS72625KTTR	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	
TPS72625KTTRG3	ACTIVE	DDPAK/ TO-263	KTT	5	500	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	
TPS72625KTTT	ACTIVE	DDPAK/ TO-263	KTT	5	50	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	
TPS72625KTTTG3	ACTIVE	DDPAK/ TO-263	KTT	5	50	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

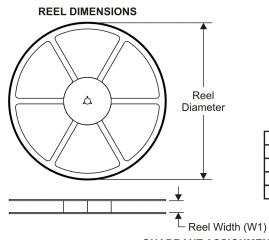
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

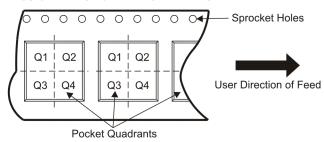
(3) MSL. Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Jun-2010

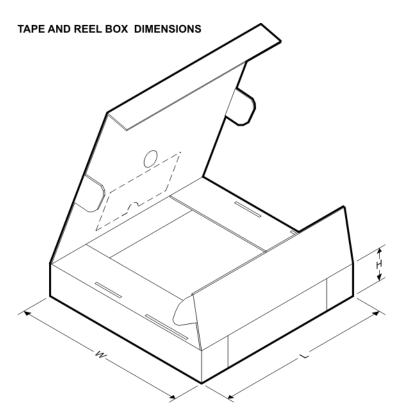

TAPE AND REEL INFORMATION

TAPE DIMENSIONS + K0 - P1 - B0 W Cavity - A0 -

	Dimension designed to accommodate the component width
	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

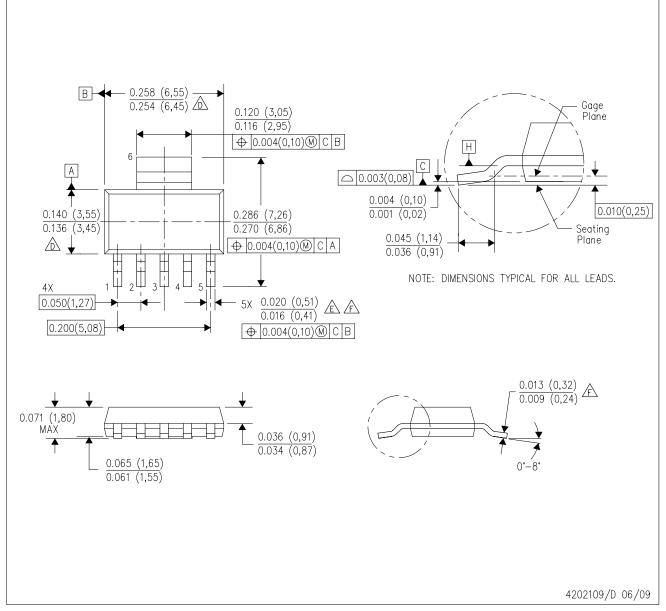
*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS726126DCQR	SOT-223	DCQ	6	2500	330.0	12.4	6.8	7.3	1.88	8.0	12.0	Q3
TPS72615DCQR	SOT-223	DCQ	6	2500	330.0	12.4	6.8	7.3	1.88	8.0	12.0	Q3
TPS72615KTTR	DDPAK/ TO-263	KTT	5	500	330.0	24.4	10.6	15.6	4.9	16.0	24.0	Q2
TPS72615KTTT	DDPAK/ TO-263	KTT	5	50	330.0	24.4	10.6	15.6	4.9	16.0	24.0	Q2
TPS72616DCQR	SOT-223	DCQ	6	2500	330.0	12.4	6.8	7.3	1.88	8.0	12.0	Q3
TPS72616KTTR	DDPAK/ TO-263	KTT	5	500	330.0	24.4	10.6	15.6	4.9	16.0	24.0	Q2
TPS72616KTTT	DDPAK/ TO-263	KTT	5	50	330.0	24.4	10.6	15.6	4.9	16.0	24.0	Q2
TPS72618DCQR	SOT-223	DCQ	6	2500	330.0	12.4	6.8	7.3	1.88	8.0	12.0	Q3
TPS72618KTTR	DDPAK/ TO-263	KTT	5	500	330.0	24.4	10.6	15.6	4.9	16.0	24.0	Q2
TPS72618KTTT	DDPAK/ TO-263	KTT	5	50	330.0	24.4	10.6	15.6	4.9	16.0	24.0	Q2
TPS72625DCQR	SOT-223	DCQ	6	2500	330.0	12.4	6.8	7.3	1.88	8.0	12.0	Q3
TPS72625KTTR	DDPAK/ TO-263	KTT	5	500	330.0	24.4	10.6	15.6	4.9	16.0	24.0	Q2
TPS72625KTTT	DDPAK/	KTT	5	50	330.0	24.4	10.6	15.6	4.9	16.0	24.0	Q2

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Jun-2010

Device	Package Type	Package Drawing	SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
	TO-263										

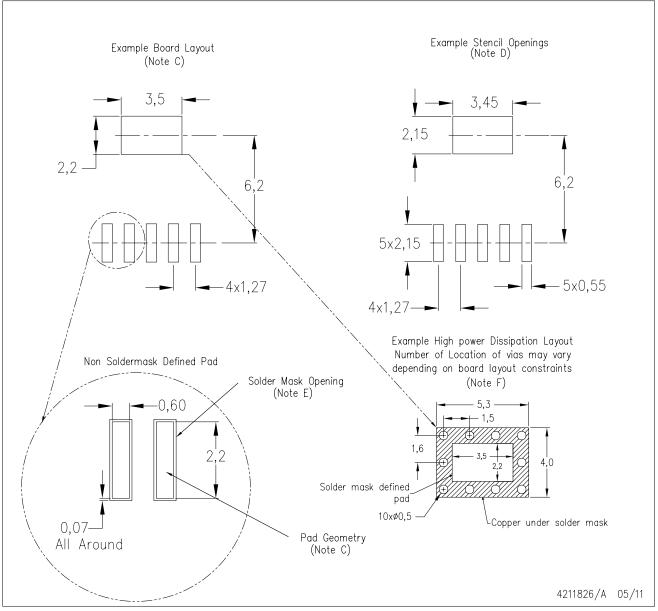


*All dimensions are nominal

ulliensions are nominal							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS726126DCQR	SOT-223	DCQ	6	2500	358.0	335.0	35.0
TPS72615DCQR	SOT-223	DCQ	6	2500	358.0	335.0	35.0
TPS72615KTTR	DDPAK/TO-263	KTT	5	500	346.0	346.0	41.0
TPS72615KTTT	DDPAK/TO-263	KTT	5	50	346.0	346.0	41.0
TPS72616DCQR	SOT-223	DCQ	6	2500	358.0	335.0	35.0
TPS72616KTTR	DDPAK/TO-263	KTT	5	500	346.0	346.0	41.0
TPS72616KTTT	DDPAK/TO-263	KTT	5	50	346.0	346.0	41.0
TPS72618DCQR	SOT-223	DCQ	6	2500	358.0	335.0	35.0
TPS72618KTTR	DDPAK/TO-263	KTT	5	500	346.0	346.0	41.0
TPS72618KTTT	DDPAK/TO-263	KTT	5	50	346.0	346.0	41.0
TPS72625DCQR	SOT-223	DCQ	6	2500	358.0	335.0	35.0
TPS72625KTTR	DDPAK/TO-263	KTT	5	500	346.0	346.0	41.0
TPS72625KTTT	DDPAK/TO-263	KTT	5	50	346.0	346.0	41.0

DCQ (R-PDSO-G6)

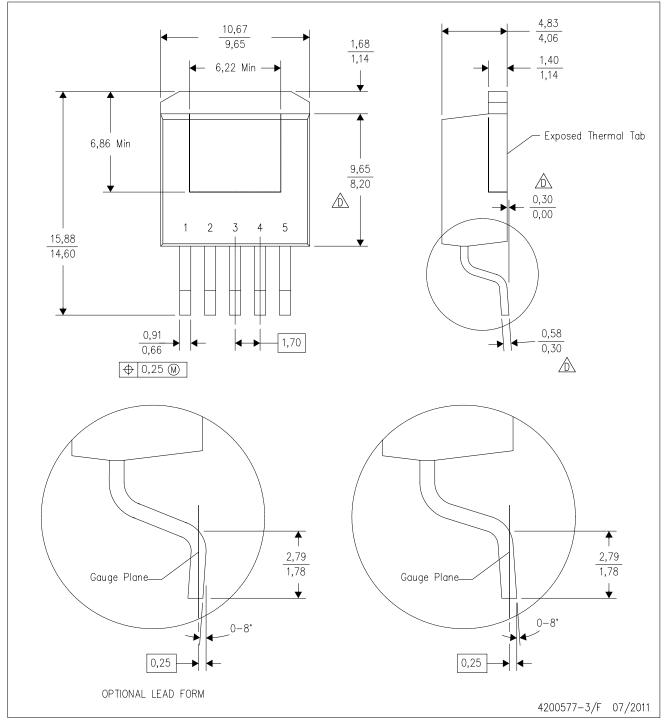
PLASTIC SMALL-OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Controlling dimension in inches.
- Body length and width dimensions are determined at the outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs, and interlead flash, but including any mismatch between the top and the bottom of the plastic body.
- Lead width dimension does not include dambar protrusion.
- Lead width and thickness dimensions apply to solder plated leads.
- G. Interlead flash allow 0.008 inch max.
- H. Gate burr/protrusion max. 0.006 inch.
- I. Datums A and B are to be determined at Datum H.

DCQ (R-PDSO-G6)

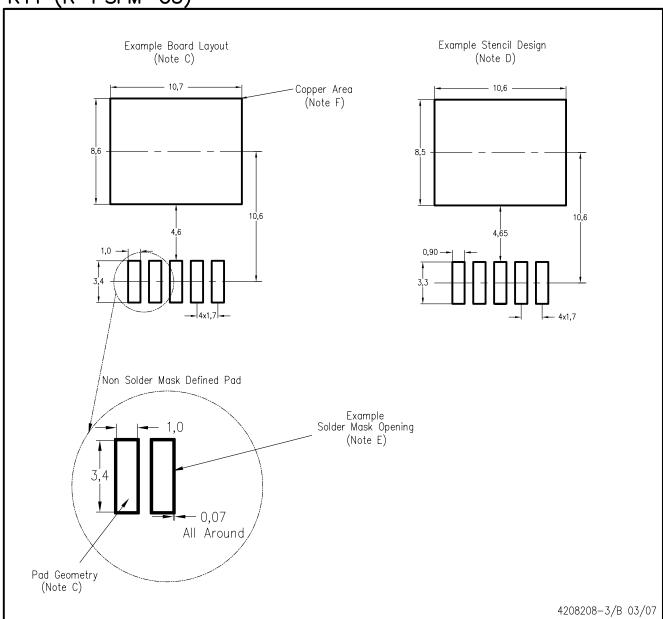
PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-SM-782 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
- F. Please refer to the product data sheet for specific via and thermal dissipation requirements.

KTT (R-PSFM-G5)

PLASTIC FLANGE-MOUNT PACKAGE



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash or protrusion not to exceed 0.005 (0,13) per side.
- Falls within JEDEC TO—263 variation BA, except minimum lead thickness, maximum seating height, and minimum body length.

KTT (R-PSFM-G5)

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-SM-782 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release.

 Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.
- F. This package is designed to be soldered to a thermal pad on the board. Refer to the Product Datasheet for specific thermal information, via requirements, and recommended thermal pad size. For thermal pad sizes larger than shown a solder mask defined pad is recommended in order to maintain the solderable pad geometry while increasing copper area.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Wireless Connectivity

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications dataconverter.ti.com Computers and Peripherals www.ti.com/computers **Data Converters DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt www.ti.com/space-avionics-defense power.ti.com Space, Avionics and Defense Microcontrollers Video and Imaging microcontroller.ti.com www.ti.com/video www.ti-rfid.com **OMAP Mobile Processors**

TI E2E Community Home Page

www.ti.com/omap

www.ti.com/wirelessconnectivity

e2e.ti.com