FEATURES

- ESD Protection for RS-232 I/O Pins
 - ±15 kV Human-Body Model (HBM)
 - ±8 kV IEC 61000-4-2, Contact Discharge
 - ±8 kV IEC 61000-4-2, Air-Gap Discharge
- 300-μA Operating Supply Current
- 1-µA Low-Power Standby (With Receivers Active) Mode
- Designed to Transmit at a Data Rate of 460 kbps
- Auto-Powerdown Plus Option Features Flexible Power-Saving Mode
- Operates From a Single 2.25-V to 3-V V_{CC} Supply

APPLICATIONS

- Battery-Powered Systems
- PDAs
- Cellular Phones
- Notebooks
- Hand-Held Equipment
- Pagers

DESCRIPTION/ORDERING INFORMATION

The TRS3318 is a dual-driver, dual-receiver, RS-232 compatible transceiver. The device features auto-powerdown plus and enhanced electrostatic discharge (ESD) protection integrated into the chip. Driver output and receiver input are protected to ±8 kV using the IEC 61000-4-2 Air-Gap Discharge method, ±8 kV using the IEC 61000-4-2 Contact Discharge method, and ±15 kV using the Human-Body Model (HBM).

The device operates at a data rate of 460 kbps. The transceiver has a proprietary low-dropout driver output stage enabling RS-232-compatible operation from a 2.25-V to 3-V supply with a dual charge pump. The charge pump requires only four 0.1-µF capacitors and features a logic-level output (READY) that asserts when the charge pump is regulating and the device is ready to begin transmitting.

The TRS3318 achieves a 1-µA supply current using the auto-powerdown feature. This device automatically enters a low-power power-down mode when the RS-232 cable is disconnected or the drivers of the connected peripherals are inactive for more than 30 s. The device turns on again when it senses a valid transition at any driver or receiver input. Auto-powerdown saves power without changes to the existing BIOS or operating system.

This device is available in two space-saving packages: 20-pin SSOP and 20-pin TSSOP.

Flexible control options for power management are featured when the serial port and driver inputs are inactive. The auto-powerdown plus feature functions when FORCEON is low and $\overline{FORCEOFF}$ is high. During this mode of operation, if the device does not sense valid signal transitions on all receiver and driver inputs for approximately 30 s, the built-in charge pump and drivers are powered down, reducing the supply current to 1 μ A. By disconnecting the serial port or placing the peripheral drivers off, auto-powerdown plus can be disabled when FORCEON and $\overline{FORCEOFF}$ are high. With auto-powerdown plus enabled, the device activates automatically when a valid signal is applied to any receiver or driver input. $\overline{INVALID}$ is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V, or has been between -0.3 V and 0.3 V for less than 30 μ s (typical number). $\overline{INVALID}$ is low (invalid data) if all receiver input voltage are between -0.3 V and 0.3 V for more than 30 μ s (typical number).

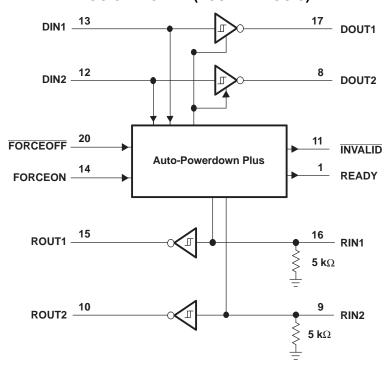
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

ORDERING INFORMATION

T _A	PAC	KAGE ⁽¹⁾⁽²⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
000 1- 7000	SSOP – DB	Tube of 70	TRS3318CDB	RV18C
	330P – DB	Reel of 2000	TRS3318CDBR	RVIOC
0°C to 70°C	TCCOD DW	Tube of 70	TRS3318CPW	D)/40C
	TSSOP – PW	Reel of 2000	TRS3318CPWR	RV18C
	CCOD DD	Tube of 70	TRS3318IDB	D\/40I
400C to 050C	SSOP – DB	Reel of 2000	TRS3318IDBR	RV18I
–40°C to 85°C	TCCOD DW	Tube of 70	TRS3318IPW	D\/40I
	TSSOP – PW Reel of 2000		TRS3318IPWR	RV18I

(1) Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

(2) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.


FUNCTION TABLE(1)

	INPUT CO	ONDITIONS			OUTPUT	STATES		
FORCEON	FORCEOFF	RECEIVER OR DRIVER EDGE WITHIN 30 s	VALID RS-232 LEVEL PRESENT AT RECEIVER	DRIVER	RECEIVER	INVALID	READY	OPERATING MODE
			Auto-Powerd	own Plus Co	nditions			
Н	Н	No	No	Active	Active	L	Н	Normal operation, auto-powerdown plus disabled
Н	Н	No	Yes	Active	Active	Н	Н	Normal operation, auto-powerdown plus disabled
L	Н	Yes	No	Active	Active	L	Н	Normal operation, auto-powerdown plus enabled
L	Н	Yes	Yes	Active	Active	Н	Н	Normal operation, auto-powerdown plus enabled
L	Н	No	No	Z	Active	L	L	Power down, auto-powerdown plus enabled
L	Н	No	Yes	Z	Active	Н	L	Power down, auto-powerdown plus enabled
Х	L	Х	No	Z	Active	L	L	Manual power down
Х	L	Х	Yes	Z	Active	Н	L	Manual power down
			Auto-Powe	rdown Cond	litions			
INVALID	ĪNVALID	X	No	Z	Active	L	L	Power down, auto-powerdown enabled
INVALID	ĪNVALID	х	Yes	Active	Active	Н	Н	Normal operation, auto-powerdown enabled

(1) H = high level, L = low level, X = irrelevant, Z = high impedance

LOGIC DIAGRAM (POSITIVE LOGIC)

TERMINAL FUNCTIONS

TERMI	NAL	
NAME	NO.	DESCRIPTION
C1+	2	Positive voltage-doubler charge-pump capacitor
C1-	4	Negative voltage-doubler charge-pump capacitor
C2+	5	Positive inverting charge-pump capacitor
C2-	6	Negative inverting charge-pump capacitor
DIN	12, 13	CMOS driver inputs
DOUT	8, 17	RS-232 driver outputs
FORCEOFF	20	Force-off input, active low. Drive low to power down transmitters, receivers, and charge pump. This overrides auto-powerdown and FORCEON (see Function Table).
FORCEON	14	Force-on input, active high. Drive high to override auto-powerdown, keeping transmitters and receivers on (FORCEOFF must be high) (see Function Table).
GND	18	Ground
INVALID	11	Valid signal detector output, active low. A logic high indicates that a valid RS-232 level is present on a receiver input.
READY	1	Ready to transmit output, active high. READY is enabled high when V- goes below -3.5 V and the device is ready to transmit.
RIN	9, 16	RS-232 receiver inputs
ROUT	10, 15	CMOS receiver outputs
V+	3	2 × V _{CC} generated by the charge pump
V-	7	$-2 \times V_{CC}$ generated by the charge pump
V _{CC}	19	2.25-V to 3-V single-supply voltage

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.3	6	V
V+	Positive supply voltage range ⁽²⁾		-0.3	7	V
V-	Negative supply voltage range (2)		-7	0.3	V
V+ + IV-I	Supply voltage differential (2)			13	V
V	lanut valtage	DIN, FORCEON, FORCEOFF to GND	-0.3	6	V
VI	Input voltage	RIN to GND		±25	V
V	Output voltage	DOUT to GND		±13.2	V
Vo		ROUT, INVALID, READY to GND	-0.3	$V_{CC} + 0.3$	V
	Short-circuit duration	DOUT to GND		Continuous	
		16-pin SSOP (derate 7.14 mW/°C above 70°C)		571	
	Continuous power dissipation (T _A = 70°C)	20-pin SSOP (derate 8 mW/°C above 70°C		640	mW
	(14 = 70 0)	20-pin TSSOP (derate 7 mW/°C above 70°C)		559	
T _{stg}	Storage temperature range		-65	150	°C
	Lead temperature (soldering, 10 s)			300	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

See Figure 4

				MIN	NOM	MAX	UNIT
	Supply voltage			2.25	2.5	3	V
V _{IH}	Driver and control high-level input voltage	DIN, FORCEOFF, FORCEON	V _{CC} = 2.5 V to 3 V	$0.7 \times V_{CC}$		5.5	V
V _{IL}	Driver and control low-level input voltage	DIN, FORCEOFF, FORCEON	V _{CC} = 2.5 V to 3 V	0		$0.3 \times V_{CC}$	V
V_{I}	Receiver input voltage			-25		25	V
т	On another for a six to see a section	TRS3318C		0		70	°C
T _A	Operating free-air temperature	TRS3318I		-40		85	

Electrical Characteristics

 V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μ F, T_A = T_{MIN} to T_{MAX} (unless otherwise noted)

PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
DC Characteristics ($V_{CC} = 2.5 \text{ V}, T_A$					
Auto-powerdown plus supply current	FORCEON = GND, FORCEOFF = V _{CC} , All RIN and DIN idle		1	10	μΑ
Auto-powerdown supply current	FORCEOFF = GND		1	10	μΑ
Supply current	FORCEON = FORCEOFF = V _{CC} , No load		0.3	2	mA

⁽¹⁾ Typical values are at V_{CC} = 2.5 V, T_A = 25°C.

ESD Protection

PARAMETER	TEST CONDITIONS		UNIT
	Human-Body Model (HBM)	±15	
RIN, DOUT	IEC 61000-4-2 Air-Gap Discharge method	±8	kV
	IEC 61000-4-2 Contact Discharge method	±8	

Submit Documentation Feedback

⁽²⁾ V+ and V- can have maximum magnitudes of 7 V, but their absolute difference cannot exceed 13 V.

DRIVER SECTION

Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature,

 V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μ F, T_A = T_{MIN} to T_{MAX} (unless otherwise noted) (see Figure 4)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
V_{hys}	Driver input hysteresis			0.3		V
I _{on}	Input leakage current	FORCEON, DIN, FORCEOFF		±0.01	±1	μA
V_{om}	Output voltage swing	All driver outputs loaded with 3 kΩ to ground	±3.7	±4		V
r _O	Output resistance	V _{CC} = 0, Driver output = ±2 V	300	10M		Ω
Ios	Output short-circuit current (2)			±25	±60	mA
I _{off}	Output leakage current	V_{CC} = 0 or 2.25 V to 3 V, V_{OUT} = ±12 V, Drivers disabled			±25	μΑ

Typical values are at V_{CC} = 2.5 V, T_A = 25°C.

Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature,

 V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μ F, T_A = T_{MIN} to T_{MAX} (unless otherwise noted) (see Figure 1)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
	Maximum data rate	$R_L = 3 \text{ k}\Omega$, $C_L = 1000 \text{ pF}$, One transmitter switching	460			kbps
$ t_{PHL} - t_{PLH} $	Driver skew ⁽²⁾			100		ns
SR(tr)	Transition-region slew rate	$V_{CC} = 2.5 \text{ V}, T_A = 25^{\circ}\text{C}, R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$ Measured from 3 V to -3 V or -3 V to 3 V, $C_L = 150 \text{ pF}$ to 2500 pF	4		30	V/µs

Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time.

⁽¹⁾ Typical values are at V_{CC} = 2.5 V, T_A = 25°C. (2) Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

RECEIVER SECTION

Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature,

 V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μ F, T_A = T_{MIN} to T_{MAX} (unless otherwise noted) (see Figure 4)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
VI	Input voltage range		-25		25	V
V_{IT+}	Input voltage threshold low	T _A = 25°C			$0.3 \times V_{\text{CC}}$	٧
V_{IT-}	Input voltage threshold high	T _A = 25°C	$0.7 \times V_{CC}$			٧
V _{hys}	Input hysteresis			0.3		V
rį	Input resistance	T _A = 25°C	3	5	7	kΩ
I _{off}	Output leakage current			±0.05	±10	μΑ
V _{OL}	Output voltage low	I _{OUT} = 0.5 mA			$0.1 \times V_{CC}$	V
V _{OH}	Output voltage high	$I_{OUT} = -0.5 \text{ mA}$	$0.9 \times V_{CC}$			V

⁽¹⁾ Typical values are at V_{CC} = 2.5 V, T_A = 25°C.

Switching Characteristics

over recommended ranges of supply voltage and operating free-air temperature,

 $V_{CC} = 2.25 \text{ V}$ to 3 V, C1–C4 = 0.1 μ F, $T_A = T_{MIN}$ to T_{MAX} (unless otherwise noted) (see Figure 4)

	PARAMETER	TEST CONDITIONS	TYP ⁽¹⁾	UNIT
t _{PHL}	Receiver propagation delay	RIN to ROUT, $C_1 = 150 \text{ pF}$	0.175	
t _{PLH}	Receiver propagation delay	RIN to ROO1, C _L = 150 pF	0.175	μs
t _{PHL} - t _{PLH}	Receiver skew ⁽²⁾		50	ns

Submit Documentation Feedback

Typical values are at V_{CC} = 2.5 V, T_A = 25°C. Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

AUTO-POWERDOWN PLUS SECTION

Electrical Characteristics

over recommended ranges of supply voltage and operating free-air temperature,

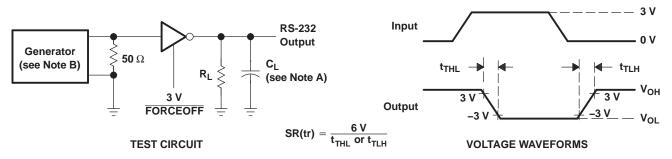
 V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μ F, T_A = T_{MIN} to T_{MAX} (unless otherwise noted) (see Figure 4)

PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
Receiver input threshold to INVALID high	Positive threshold		2.7	V
	Negative threshold	-2.7		V
Receiver input threshold INVALID low		-0.3	0.3	V
ĪNVALID, READY voltage low	I _{OUT} = 0.5 mA		$0.1 \times V_{CC}$	V
INVALID, READY voltage high	I _{OUT} = -0.5 mA	$0.8 \times V_{CC}$		V

Switching Characteristics

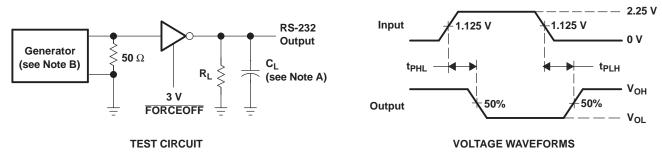
over recommended ranges of supply voltage and operating free-air temperature,

 V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μ F, T_A = T_{MIN} to T_{MAX} (unless otherwise noted) (see Figure 4)


	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽¹⁾	MAX	UNIT
t _{INVH}	Receiver positive or negative threshold to INVALID high	V _{CC} = 2.5 V		1		μs
t_{INVL}	Receiver positive or negative threshold to INVALID low	V _{CC} = 2.5 V		30		μs
t_{WU}	Receiver or driver edge to driver enabled	V _{CC} = 2.5 V		100		μs
t _{AUTOPRDN}	Receiver or driver edge to driver shutdown	V _{CC} = 2.5 V	15	30	60	s

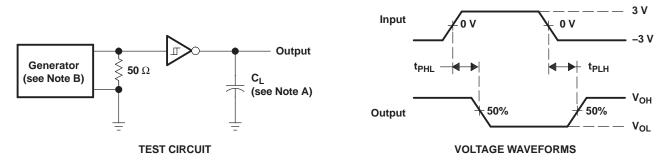
⁽¹⁾ Typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

Product Folder Link(s): TRS3318


PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

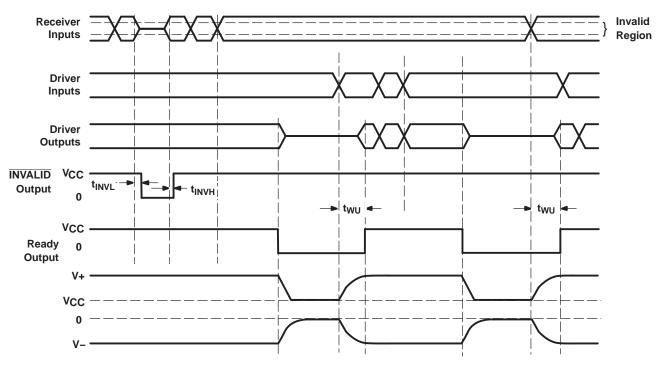
B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_O = 50 Ω , 50% duty cycle, $t_r \le 10$ ns.


Figure 1. Driver Slew Rate

NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns. $t_f \le 10$ ns.

Figure 2. Driver Pulse Skew


NOTES: A. C_L includes probe and jig capacitance.

B. The pulse generator has the following characteristics: Z_O = 50 Ω , 50% duty cycle, $t_f \le 10$ ns. $t_f \le 10$ ns.

Figure 3. Receiver Propagation Delay Times

PARAMETER MEASUREMENT INFORMATION

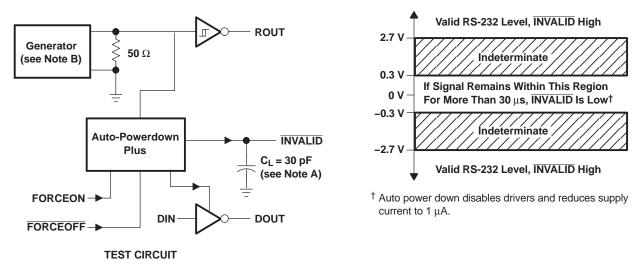


Figure 4. INVALID Propagation Delay Times and Supply Enabling Time

APPLICATION INFORMATION

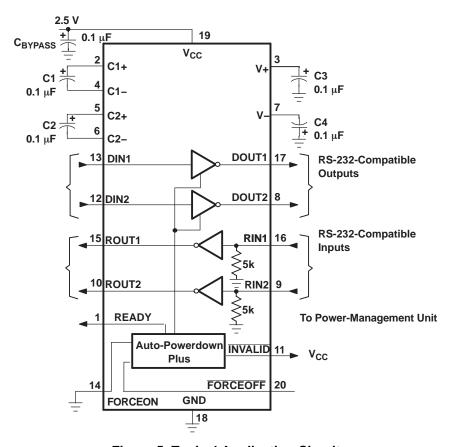


Figure 5. Typical Application Circuit

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TRS3318CDB	ACTIVE	SSOP	DB	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TRS3318CDBG4	ACTIVE	SSOP	DB	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TRS3318CDBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TRS3318CDBRG4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TRS3318CPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TRS3318CPWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TRS3318CPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TRS3318CPWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TRS3318IDB	ACTIVE	SSOP	DB	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TRS3318IDBG4	ACTIVE	SSOP	DB	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TRS3318IDBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TRS3318IDBRG4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TRS3318IPW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TRS3318IPWG4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TRS3318IPWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
TRS3318IPWRG4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

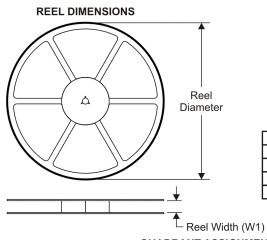
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

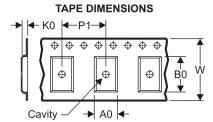
⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

PACKAGE OPTION ADDENDUM

26-Sep-2007

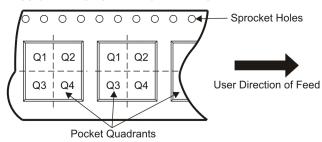
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

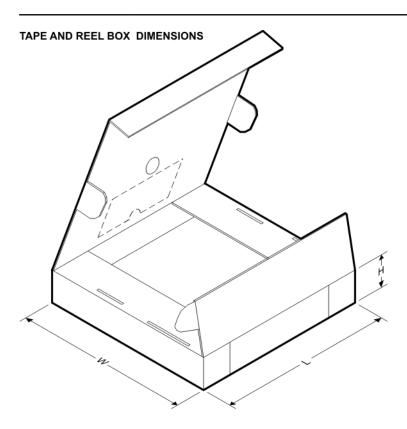

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 5-May-2011


TAPE AND REEL INFORMATION

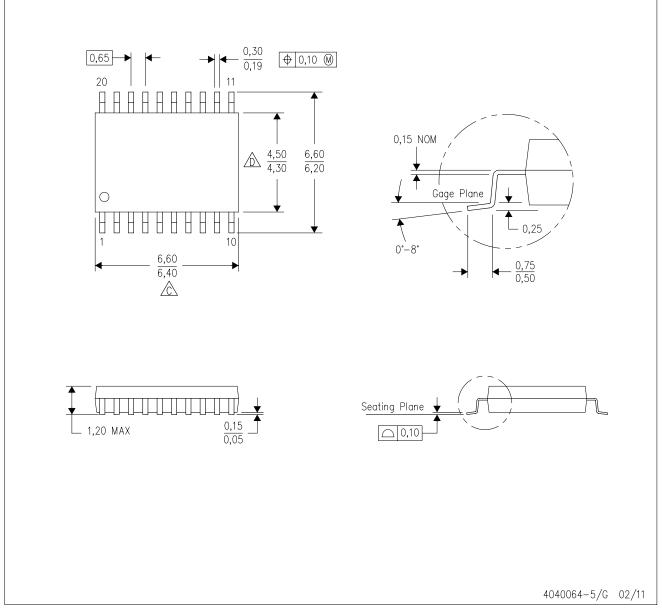
_		
	A0	Dimension designed to accommodate the component width
Γ	B0	Dimension designed to accommodate the component length
		Dimension designed to accommodate the component thickness
	W	Overall width of the carrier tape
Γ	P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

All differsions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TRS3318CDBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
TRS3318CPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1
TRS3318IDBR	SSOP	DB	20	2000	330.0	16.4	8.2	7.5	2.5	12.0	16.0	Q1
TRS3318IPWR	TSSOP	PW	20	2000	330.0	16.4	6.95	7.1	1.6	8.0	16.0	Q1

www.ti.com 5-May-2011

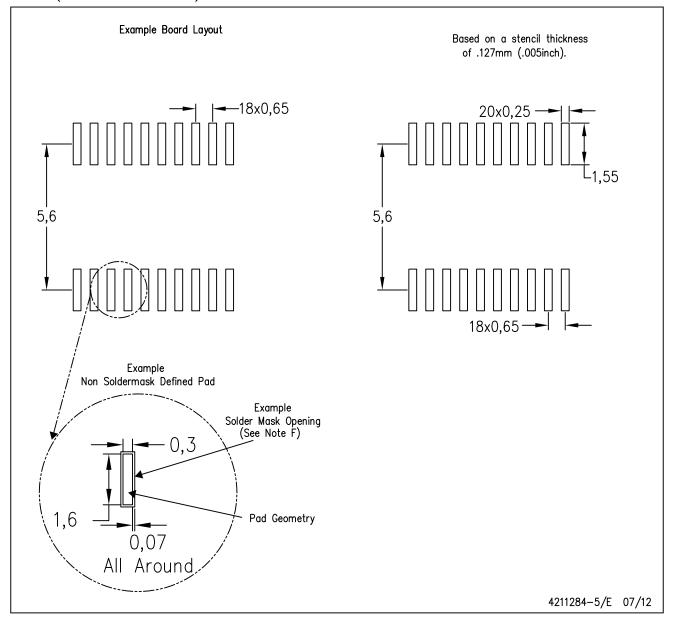


*All dimensions are nominal

7 till difficilitation dire memilian							
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TRS3318CDBR	SSOP	DB	20	2000	346.0	346.0	33.0
TRS3318CPWR	TSSOP	PW	20	2000	346.0	346.0	33.0
TRS3318IDBR	SSOP	DB	20	2000	346.0	346.0	33.0
TRS3318IPWR	TSSOP	PW	20	2000	346.0	346.0	33.0

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

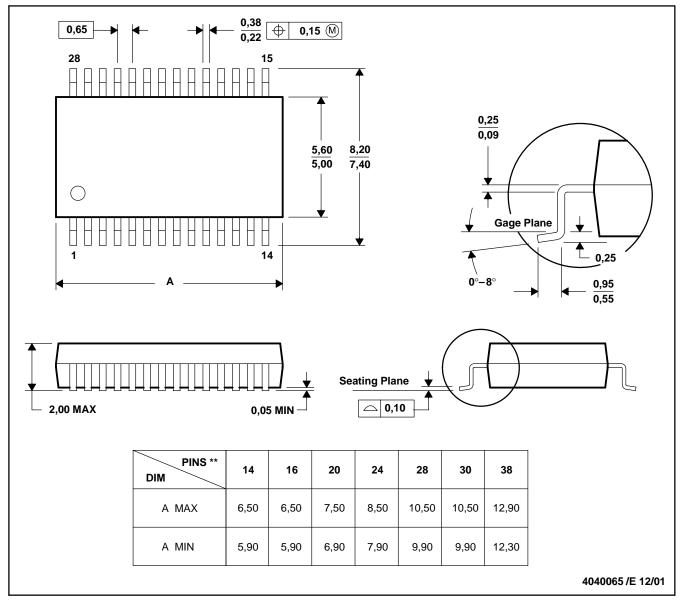

NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

PW (R-PDSO-G20)

PLASTIC SMALL OUTLINE

NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Wireless Connectivity

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications dataconverter.ti.com Computers and Peripherals www.ti.com/computers **Data Converters DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt www.ti.com/space-avionics-defense power.ti.com Space, Avionics and Defense Microcontrollers Video and Imaging microcontroller.ti.com www.ti.com/video www.ti-rfid.com **OMAP Mobile Processors** www.ti.com/omap

TI E2E Community Home Page

www.ti.com/wirelessconnectivity

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated

e2e.ti.com