TVP5150AM1 Ultralow-Power NTSC/PAL/SECAM Video Decoder

Data Manual

Literature Number: SLES209 November 2007

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SLES209-NOVEMBER 2007

Contents

1	TVP5	50AM1 Features
	1.1	-eatures
2	Intro	iction
	2.1	Description
	2.2	Applications
	2.3	Frademarks
	2.4	Document Conventions
	2.5	Ordering Information
	2.6	Functional Block Diagram
	2.7	Terminal Assignments <u>1</u>
3	Func	onal Description
	3.1	Analog Front End
	3.2	Composite Processing Block Diagram 14
	3.3	Adaptive Comb Filtering
	3.4	Color Low-Pass Filter 1!
	3.5	uminance Processing
	3.6	Chrominance Processing
	3.7	Fiming Processor
	3.8	/BI Data Processor (VDP)
	3.9	/BI FIFO and Ancillary Data in Video Stream
	3.10	Raw Video Data Output
	3.11	Output Formatter
	3.12	Synchronization Signals
	3.13	Active Video (AVID) Cropping
	3.14	Embedded Syncs
	3.15	² C Host Interface
		3.15.1 I ² C Write Operation
		3.15.2 I ² C Read Operation
	3.16	Clock Circuits
	3.17	Genlock Control (GLCO) and RTC
		3.17.1 GLCO Interface
		3.17.2 RTC Mode
	3.18	Reset and Power Down
	3.19	nternal Control Registers
	3.20	Register Definitions
		3.20.1 Video Input Source Selection #1 Register
		3.20.2 Analog Channel Controls Register
		3.20.3 Operation Mode Controls Register
		3.20.4 Miscellaneous Controls Register
		3.20.5 Autoswitch Mask Register
		3.20.6 Color Killer Threshold Control Register
		3.20.7 Luminance Processing Control #1 Register
		3.20.8 Luminance Processing Control #2 Register
		3.20.9 Brightness Control Register
		3.20.10 Color Saturation Control Register
		3.20.11 Hue Control Register
		3.20.12 Contrast Control Register
		3.20.13 Outputs and Data Rates Select Register
		3.20.14 Luminance Processing Control #3 Register
		3.20.15 Configuration Shared Pins Register 4
		5.20.10 Comiguration Shared Fins Negistel

SLES209-NOVEMBER 2007

3.20.16	Active Video Cropping Start Pixel MSB Register	<u>41</u>
3.20.17	Active Video Cropping Start Pixel LSB Register	
3.20.18	Active Video Cropping Stop Pixel MSB Register	
3.20.19	Active Video Cropping Stop Pixel LSB Register	<u>42</u>
3.20.20	Genlock and RTC Register	
3.20.21	Horizontal Sync Start Register	<u>43</u>
3.20.22	Vertical Blanking Start Register	<u>44</u>
3.20.23	Vertical Blanking Stop Register	<u>45</u>
3.20.24	Chrominance Control #1 Register	<u>45</u>
3.20.25	Chrominance Control #2 Register	<u>46</u>
3.20.26	Interrupt Reset Register B	<u>47</u>
3.20.27	Interrupt Enable Register B	<u>48</u>
3.20.28	Interrupt Configuration Register B	
3.20.29	Video Standard Register	<u>49</u>
3.20.30	Cb Gain Factor Register	<u>50</u>
3.20.31	Cr Gain Factor Register	
3.20.32	Macrovision On Counter Register	
3.20.33	Macrovision Off Counter Register	
3.20.34	656 Revision Select Register	
3.20.35	MSB of Device ID Register	
3.20.36	LSB of Device ID Register	
3.20.37	ROM Major Version Register	
3.20.38	ROM Minor Version Register	
3.20.39	Vertical Line Count MSB Register	
3.20.40	Vertical Line Count LSB Register	
3.20.41	Interrupt Status Register B	
3.20.42	Interrupt Active Register B	
3.20.43	Status Register #1	
3.20.44	Status Register #2	
3.20.45	Status Register #3	
3.20.46	Status Register #4	
3.20.47	Status Register #5	
3.20.47	Closed Caption Data Registers	
3.20.49	WSS Data Registers	
3.20.49	VPS Data Registers	
3.20.50	VITC Data Registers	
	VBI FIFO Read Data Register	
3.20.53	Teletext Filter and Mask Registers	
3.20.54	Teletext Filter Control Register	
3.20.55	Interrupt Status Register A	
3.20.56	Interrupt Enable Register A	
3.20.57	Interrupt Configuration Register A	
3.20.58	VDP Configuration RAM Register	
3.20.59	VDP Status Register	
3.20.60	FIFO Word Count Register	<u>65</u>
3.20.61	FIFO Interrupt Threshold Register	<u>65</u>
3.20.62	FIFO Reset Register	
3.20.63	Line Number Interrupt Register	
3.20.64	Pixel Alignment Registers	<u>66</u>
3.20.65	FIFO Output Control Register	<u>66</u>
3.20.66	Full Field Enable Register	
3.20.67	Line Mode Registers	
3.20.68	Full Field Mode Register	68

TVP5150AM1

Ultralow-Power NTSC/PAL/SECAM Video Decoder

SLES209-NOVEMBER 2007

4 Electrical Specifications 4.1 Absolute Maximum Ratings 4.2 Recommended Operating Conditions 4.3 Electrical Characteristics 4.3.1 DC Electrical Characteristics 4.3.2 Analog Electrical Characteristics 4.3.3 Clocks, Video Data, Sync Timing 4.3.4 I²C Host Port Timing 5 Example Register Settings 5.1 Example 1 5.1.1 Assumptions 5.1.2 Recommended Settings 5.2 Example 2 5.2.1 Assumptions	
4.2 Recommended Operating Conditions 4.3 Electrical Characteristics 4.3.1 DC Electrical Characteristics 4.3.2 Analog Electrical Characteristics 4.3.3 Clocks, Video Data, Sync Timing 4.3.4 I²C Host Port Timing 5.1 Example Register Settings 5.1 Example 1 5.1.1 Assumptions 5.1.2 Recommended Settings	69
4.2 Recommended Operating Conditions 4.3 Electrical Characteristics 4.3.1 DC Electrical Characteristics 4.3.2 Analog Electrical Characteristics 4.3.3 Clocks, Video Data, Sync Timing 4.3.4 I²C Host Port Timing 5.1 Example Register Settings 5.1 Example 1 5.1.1 Assumptions 5.1.2 Recommended Settings	69
4.3 Electrical Characteristics 4.3.1 DC Electrical Characteristics 4.3.2 Analog Electrical Characteristics 4.3.3 Clocks, Video Data, Sync Timing 4.3.4 I²C Host Port Timing 5 Example Register Settings 5.1 Example 1 5.1.1 Assumptions 5.1.2 Recommended Settings 5.2 Example 2	<u>69</u>
4.3.2 Analog Electrical Characteristics 4.3.3 Clocks, Video Data, Sync Timing 4.3.4 I ² C Host Port Timing 5 Example Register Settings 5.1 Example 1 5.1.1 Assumptions. 5.1.2 Recommended Settings 5.2 Example 2	<u>70</u>
4.3.3 Clocks, Video Data, Sync Timing 4.3.4 I ² C Host Port Timing 5 Example Register Settings 5.1 Example 1 5.1.1 Assumptions 5.1.2 Recommended Settings 5.2 Example 2	70
4.3.3 Clocks, Video Data, Sync Timing 4.3.4 I ² C Host Port Timing 5 Example Register Settings 5.1 Example 1 5.1.1 Assumptions 5.1.2 Recommended Settings 5.2 Example 2	70
4.3.4 I ² C Host Port Timing 5 Example Register Settings 5.1 Example 1 5.1.1 Assumptions. 5.1.2 Recommended Settings 5.2 Example 2	
5.1 Example 1	
5.1 Example 1	73
5.1.1 Assumptions	
5.1.2 Recommended Settings	
5.2 Example 2	
·	
5.2.2 Recommended Settings	
6 Application Information	
6.1 Application Example	

SLES209-NOVEMBER 2007

List of Figures

2-1	Functional Block Diagram	<u>10</u>
2-2	Terminal Diagrams	11
3-1	Composite Processing Block Diagram (Comb/Trap Filter Bypassed for SECAM)	<u>15</u>
3-2	8-Bit 4:2:2, Timing With 2× Pixel Clock (SCLK) Reference	<u>19</u>
3-3	Horizontal Synchronization Signals	<u>20</u>
3-4	AVID Application	<u>21</u>
3-5	Reference Clock Configurations	<u>25</u>
3-6	GLCO Timing	<u>26</u>
3-7	RTC Timing	<u>26</u>
3-8	Configuration Shared Pins	
3-9	Horizontal Sync	<u>44</u>
4-1	Clocks, Video Data, and Sync Timing	<u>71</u>
4-2	I ² C Host Port Timing	<u>72</u>
6-1	Application Example	75

TVP5150AM1

Ultralow-Power NTSC/PAL/SECAM Video Decoder

SLES209-NOVEMBER 2007

List of Tables

2-1	Terminal Functions	<u>12</u>
3-1	Data Types Supported by VDP	<u>16</u>
3-2	Ancillary Data Format and Sequence	<u>17</u>
3-3	Summary of Line Frequencies, Data Rates, and Pixel Counts	<u>18</u>
3-4	EAV and SAV Sequence	<u>21</u>
3-5	Write Address Selection	22
3-6	I ² C Terminal Description	<u>22</u>
3-7	Read Address Selection	<u>23</u>
3-8	Reset and Power-Down Modes	<u>27</u>
3-9	Register Summary	<u>27</u>
3-10	Analog Channel and Video Mode Selection	<u>30</u>
3-11	Digital Output Control	<u>33</u>
3-12	Clock Delays (SCLKs)	<u>44</u>
3-13	VBI Configuration RAM for Signals With Pedestal	<u>63</u>

SLES209-NOVEMBER 2007

1 TVP5150AM1 Features

1.1 Features

- Accepts NTSC (M, 4.43), PAL (B, D, G, H, I, M, N), and SECAM (B, D, G, K, K1, L) Video Data
- Supports ITU-R BT.601 Standard Sampling
- High-Speed 9-Bit Analog-to-Digital Converter (ADC)
- Two Composite Inputs or One S-Video Input
- Fully Differential CMOS Analog Preprocessing Channels With Clamping and Automatic Gain Control (AGC) for Best Signal-to-Noise (S/N) Performance
- Ultralow Power Consumption
- 48-Terminal PBGA Package or 32-Terminal TQFP Package
- Power-Down Mode: <1 mW
- Brightness, Contrast, Saturation, Hue, and Sharpness Control Through I²C
- Complementary 4-Line (3-H Delay) Adaptive Comb Filters for Both Cross-Luminance and Cross-Chrominance Noise Reduction
- Patented Architecture for Locking to Weak, Noisy, or Unstable Signals
- Single 14.31818-MHz Crystal for All Standards
- Internal Phase-Locked Loop (PLL) for Line-Locked Clock and Sampling
- Subcarrier Genlock Output for Synchronizing

Color Subcarrier Of External Encoder

- Standard Programmable Video Output Formats
 - ITU-R BT.656, 8-Bit 4:2:2 With Embedded Syncs
 - 8-Bit 4:2:2 With Discrete Syncs
- Macrovision[™] Copy Protection Detection
- Advanced Programmable Video Output Formats
 - 2x Oversampled Raw Vertical Blanking Interval (VBI) Data During Active Video
 - Sliced VBI Data During Horizontal Blanking or Active Video
- VBI Modes Supported
 - Teletext (NABTS, WST)
 - Closed-Caption Decode With FIFO and Extended Data Services (EDS)
 - Wide Screen Signaling, Video Program System, CGMS, Vertical Interval Time Code
 - Gemstar 1x/2x Electronic Program Guide Compatible Mode
 - Custom Configuration Mode That Allows User to Program Slice Engine for Unique VBI Data Signals
- Power-On Reset
- Industrial Temperature Range (TVP5150AM1I): -40°C to 85°C

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this document.

SLES209-NOVEMBER 2007

2 Introduction

2.1 Description

The TVP5150AM1 device is an ultralow-power NTSC/PAL/SECAM video decoder. Available in a space-saving 48-terminal ZQC package or a 32-terminal TQFP package, the TVP5150AM1 decoder converts NTSC, PAL, and SECAM video signals to 8-bit ITU-R BT.656 format. Discrete syncs are also available. The optimized architecture of the TVP5150AM1 decoder allows for ultralow power consumption. The decoder consumes 115 mW of power in typical operation and consumes less than 1 mW in power-down mode, considerably increasing battery life in portable applications. The decoder uses just one crystal for all supported standards. The TVP5150AM1 decoder can be programmed using an I²C serial interface. The decoder uses a 1.8-V supply for its analog and digital supplies and a 3.3-V supply for its I/O.

The TVP5150AM1 decoder converts baseband analog video into digital YCbCr 4:2:2 component video. Composite and S-video inputs are supported. The TVP5150AM1 decoder includes one 9-bit analog-to-digital converter (ADC) with 2× sampling. Sampling is ITU-R BT.601 (27.0 MHz, generated from the 14.31818-MHz crystal or oscillator input) and is line locked. The output formats can be 8-bit 4:2:2 or 8-bit ITU-R BT.656 with embedded synchronization.

The TVP5150AM1 decoder utilizes Texas Instruments patented technology for locking to weak, noisy, or unstable signals. A Genlock/real-time control (RTC) output is generated for synchronizing downstream video encoders.

Complementary four-line adaptive comb filtering is available for both the luma and chroma data paths to reduce both cross-luma and cross-chroma artifacts; a chroma trap filter is also available.

Video characteristics including hue, contrast, brightness, saturation, and sharpness may be programmed using the industry standard I²C serial interface. The TVP5150AM1 decoder generates synchronization, blanking, lock, and clock signals in addition to digital video outputs. The TVP5150AM1 decoder includes methods for advanced vertical blanking interval (VBI) data retrieval. The VBI data processor slices, parses, and performs error checking on teletext, closed caption, and other data in several formats.

The TVP5150AM1 decoder detects copy-protected input signals according to the Macrovision[™] standard and detects Type 1, 2, 3, and colorstripe pulses.

The main blocks of the TVP5150AM1 decoder include:

- Robust sync detector
- ADC with analog processor
- Y/C separation using four-line adaptive comb filter
- Chrominance processor
- Luminance processor
- Video clock/timing processor and power-down control
- Output formatter
- I²C interface
- VBI data processor
- Macrovision detection for composite and S-video

SLES209-NOVEMBER 2007

2.2 Applications

The following is a partial list of suggested applications:

- Digital televisions
- PDAs
- Notebook PCs
- Cell phones
- · Video recorder/players
- Internet appliances/web pads
- Handheld games
- Surveillance
- Portable navigation

2.3 Trademarks

TI and MicroStar Junior are trademarks of Texas Instruments.

Macrovision is a trademark of Macrovision Corporation.

CompactPCI is a trademark of PICMG – PCI Industrial Computer Manufacturers Group, Inc.

Intel is a trademark of Intel Corporation.

Other trademarks are the property of their respective owners.

2.4 Document Conventions

Throughout this data manual, several conventions are used to convey information. These conventions are:

- To identify a binary number or field, a lower case b follows the numbers. For example, 000b is a 3-bit binary field.
- To identify a hexadecimal number or field, a lower case h follows the numbers. For example, 8AFh is a 12-bit hexadecimal field.
- All other numbers that appear in this document that do not have either a b or h following the number are assumed to be decimal format.
- If the signal or terminal name has a bar above the name (for example, RESETB), this indicates the logical NOT function. When asserted, this signal is a logic low, 0, or 0b.
- RSVD indicates that the referenced item is reserved.

2.5 Ordering Information

T _A	PACKAGED DEVICES ⁽¹⁾⁽²⁾	PACKAGE OPTION
	TVP5150AM1PBS	Tray
0°C to 70°C	TVP5150AM1PBSR	Tape and reel
0.0 10 70.0	TVP5150AM1ZQC	Tray
	TVP5150AM1ZQCR	Tape and reel
	TVP5150AM1IPBS	Tray
-40°C to 85°C	TVP5150AM1IPBSR	Tape and reel
-40 C to 65 C	TVP5150AM1IZQC	Tray
	TVP5150AM1IZQCR	Tape and reel

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

⁽²⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

Functional Block Diagram 2.6

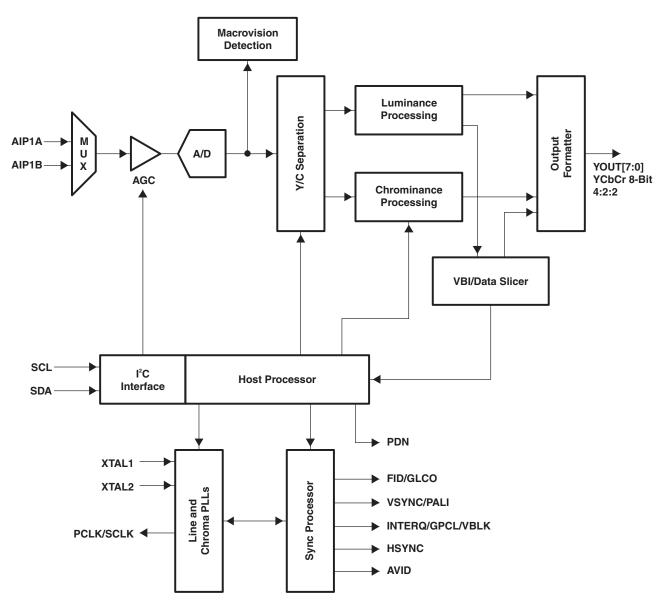


Figure 2-1. Functional Block Diagram

SLES209-NOVEMBER 2007

2.7 Terminal Assignments

www.ti.com

The TVP5150AM1 video decoder bridge is packaged in a 48-terminal ZQC package or a 32-terminal TQFP package. Figure 2-2 shows the terminal diagrams for both packages. Table 2-1 gives a description of the terminals.

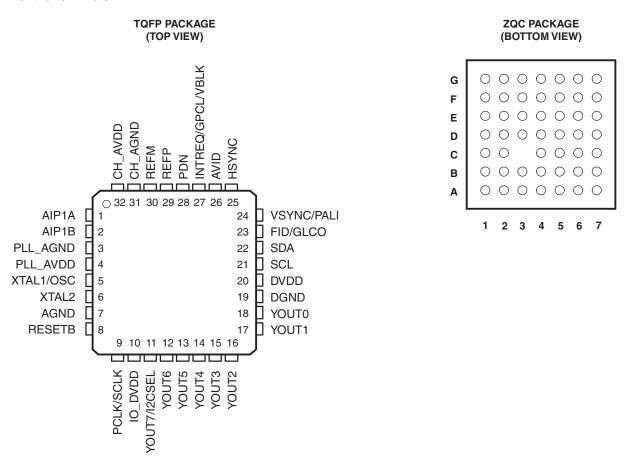


Figure 2-2. Terminal Diagrams

SLES209-NOVEMBER 2007

Table 2-1. Terminal Functions

TERMINAL						
	NO.		1/0	DESCRIPTION		
NAME	ZQC PBS					
Analog Section						
AGND	E1	7	I	Substrate. Connect to analog ground.		
AIP1A	A1	1	I	nalog input. Connect to the video analog input via 0.1 - μ F capacitor. The maximum in ange is 0-0.75 V_{PP} , and may require an attenuator to reduce the input amplitude to the esired level. If not used, connect to AGND via a 0.1 - μ F capacitor (see Figure 6-1).		
AIP1B	B1	2	I	Analog input. Connect to the video analog input via 0.1-µF capacitor. The maximum input range is 0-0.75 V _{PP} , and may require an attenuator to reduce the input amplitude to the desired level. If not used, connect to AGND via a 0.1-µF capacitor (see Figure 6-1).		
CH_AGND	А3	31	I	Analog ground		
CH_AVDD	A2	32	- 1	Analog supply. Connect to 1.8-V analog supply.		
NC	B2, B3, B6, C4, C5, D3–D6, E2–E5, F2, F5, F6	-	_	No connect		
PLL_AGND	C2	3	ı	PLL ground. Connect to analog ground.		
PLL_AVDD	C1	4	I	PLL supply. Connect to 1.8-V analog supply.		
REFM	A4	30	I	A/D reference ground. Connect to analog ground through a 1-μF capacitor. Also, it is recommended to connect directly to REFP through a 1-μF capacitor (see Figure 6-1).		
REFP	B4	29	I	A/D reference supply. Connect to analog ground through a 1-μF capacitor (see Figure 6-1).		
Digital Section			ļ			
AVID	A6	26	0	Active video indicator. This signal is high during the horizontal active time of the video output. AVID toggling during vertical blanking intervals is controlled by bit 2 of the active video cropping start pixel LSB register at address 12h (see Section 3.20.17).		
DGND	E6	19	I	Digital ground		
DVDD	E7	20	I	Digital supply. Connect to 1.8-V digital supply.		
FID/GLCO	C6	23	0	FID: Odd/even field indicator or vertical lock indicator. For the odd/even indicator, a 1 indicates the odd field. GLCO: This serial output carries color PLL information. A slave device can decode the information to allow chroma frequency control from the TVP5150AM1 decoder. Data is transmitted at the SCLK rate in Genlock mode. In RTC mode, SCLK/4 is used.		
HSYNC	A7	25	0	Horizontal synchronization		
INTREQ/GPCL/ VBLK	B5	27	I/O	 INTREQ: Interrupt request output GPCL/VBLK: General-purpose control logic. This terminal has two functions: GPCL: General-purpose output. In this mode the state of GPCL is directly programmed via I²C. VBLK: Vertical blank output. In this mode the GPCL terminal indicates the vertical blanking interval of the output video. The beginning and end times of this signal are programmable via I²C. 		
IO_DVDD	G2	10	I	Digital supply. Connect to 3.3 V.		
PCLK/SCLK	G1	9	0	System clock at either 1× or 2× the frequency of the pixel clock.		
PDN	A5	28	I	Power-down terminal (active low). Puts the decoder in standby mode. Preserves the value of the registers.		
RESETB	F1	8	I	Active-low reset. RESETB can be used only when PDN = 1. When RESETB is pulled low, it resets all the registers and restarts the internal microprocessor.		
SCL	D7	21	I/O	I ² C serial clock (open drain)		
SDA	C7	22	I/O	I ² C serial data (open drain)		

SLES209-NOVEMBER 2007

Table 2-1. Terminal Functions (continued)

TERMINAL							
NAME	NO.		I/O	DESCRIPTION			
NAME	ZQC	PBS					
VSYNC/PALI	В7	24	0	VSYNC: Vertical synchronization signal PALI: PAL line indicator or horizontal lock indicator. For the PAL line indicator: 1 = Noninverted line 0 = Inverted line			
XTAL1/OSC XTAL2	D2 D1	5 6	I/O	External clock reference. The user may connect XTAL1 to an oscillator or to one terminal of a crystal oscillator. The user may connect XTAL2 to the other terminal of the crystal oscillator or not connect XTAL2 at all. One single 14.31818-MHz crystal or oscillator is needed for ITU-R BT.601 sampling for all supported standards.			
YOUT[6:0]	G3 F4 G4 G5 G6 G7 F7	12 13 14 15 16 17	I/O	Output decoded ITU-R BT.656 output/YCbCr 4:2:2 output with discrete sync			
YOUT7/I ² CSEL	F3	11	I/O	I 2 CSEL: Determines address for I 2 C (sampled during reset). A pullup or pulldown register is needed (>1 kΩ) to program the terminal to the desired address. 1 = Address is 0xBA 0 = Address is 0xB8 YOUT7: Most-significant bit (MSB) of output decoded ITU-R BT.656 output/YCbCr 4:2:2 output			

SLES209-NOVEMBER 2007

3 Functional Description

3.1 Analog Front End

The TVP5150AM1 decoder has an analog input channel that accepts two video inputs that are ac-coupled. The decoder supports a maximum input voltage range of 0.75 V; therefore, an attenuation of one-half is needed for most input signals with a peak-to-peak variation of 1.5 V. The maximum parallel termination before the input to the device is 75 Ω . See the application diagram in Figure 6-1 for the recommended configuration. The two analog input ports can be connected as follows:

- Two selectable composite video inputs or
- One S-video input

An internal clamping circuit restores the ac-coupled video signal to a fixed dc level.

The programmable gain amplifier (PGA) and the automatic gain control (AGC) circuit work together to make sure that the input signal is amplified sufficiently to ensure the proper input range for the ADC.

The ADC has nine bits of resolution and runs at a maximum speed of 27 MHz. The clock input for the ADC comes from the PLL.

3.2 Composite Processing Block Diagram

The composite processing block processes NTSC/PAL/SECAM signals into the YCbCr color space. Figure 3-1 shows the basic architecture of this processing block.

Figure 3-1 shows the luminance/chrominance (Y/C) separation process in the TVP5150AM1 decoder. The composite video is multiplied by subcarrier signals in the quadrature modulator to generate the color difference signals Cb and Cr. Cb and Cr are then low pass (LP) filtered to achieve the desired bandwidth and to reduce crosstalk.

An adaptive four-line comb filter separates CbCr from Y. Chroma is remodulated through another quadrature modulator and subtracted from the line-delayed composite video to generate luma. Contrast, brightness, hue, saturation, and sharpness (using the peaking filter) are programmable via I²C.

The Y/C separation is bypassed for S-video input. For S-video, the remodulation path is disabled.

SLES209-NOVEMBER 2007

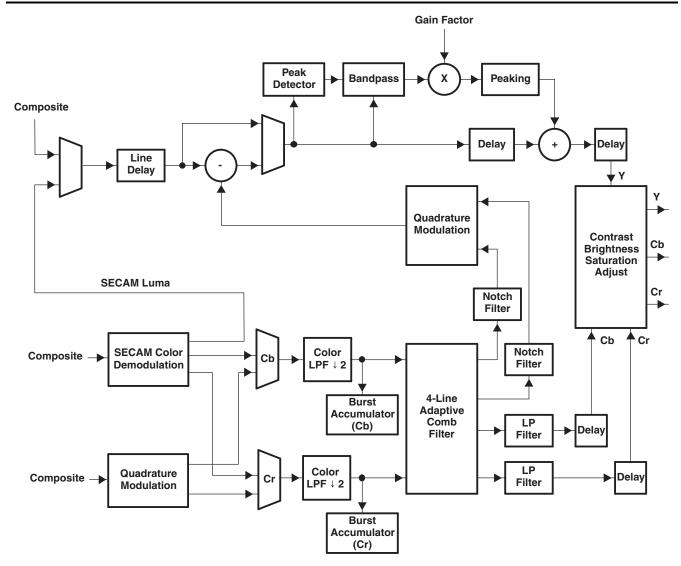


Figure 3-1. Composite Processing Block Diagram (Comb/Trap Filter Bypassed for SECAM)

3.3 Adaptive Comb Filtering

The four-line comb filter can be selectively bypassed in the luma or chroma path. If the comb filter is bypassed in the luma path, chroma notch filters are used. Tl's patented adaptive four-line comb filter algorithm reduces artifacts such as hanging dots at color boundaries and detects and properly handles false colors in high-frequency luminance images such as a multiburst pattern or circle pattern.

3.4 Color Low-Pass Filter

In some applications, it is desirable to limit the Cb/Cr bandwidth to avoid crosstalk. This is especially true in case of video signals that have asymmetrical Cb/Cr sidebands. The color LP filters provided limit the bandwidth of the Cb/Cr signals.

Color LP filters are needed when the comb filtering turns off, due to extreme color transitions in the input image. See Section 3.20.25, Chrominance Control #2 Register, for the response of these filters. The filters have three options that allow three different frequency responses based on the color frequency characteristics of the input video.

3.5 Luminance Processing

The luma component is derived from the composite signal by subtracting the remodulated chroma information. A line delay exists in this path to compensate for the line delay in the adaptive comb filter in the color processing chain. The luma information is then fed into the peaking circuit, which enhances the high frequency components of the signal, thus improving sharpness.

3.6 Chrominance Processing

For NTSC/PAL formats, the color processing begins with a quadrature demodulator. The Cb/Cr signals then pass through the gain control stage for chroma saturation adjustment. An adaptive comb filter is applied to the demodulated signals to separate chrominance and eliminate cross-chrominance artifacts. An automatic color killer circuit is also included in this block. The color killer suppresses the chroma processing when the color burst of the video signal is weak or not present. The SECAM standard is similar to PAL except for the modulation of color which is FM instead of QAM.

3.7 Timing Processor

The timing processor is a combination of hardware and software running in the internal microprocessor that serves to control horizontal lock to the input sync pulse edge, AGC and offset adjustment in the analog front end, vertical sync detection, and Macrovision detection.

3.8 VBI Data Processor (VDP)

The TVP5150AM1 VDP slices various data services such as teletext (WST, NABTS), closed caption (CC), wide screen signaling (WSS), etc. These services are acquired by programming the VDP to enable standards in the VBI. The results are stored in a FIFO and/or registers. The teletext results are stored only in a FIFO. Table 3-1 lists a summary of the types of VBI data supported according to the video standard. It supports ITU-R BT. 601 sampling for each.

LINE MODE REGISTER DESCRIPTION (D0h-FCh) BITS [3:0] 0000b WST SECAM Teletext, SECAM WST PAL B Teletext, PAL, System B 0001b WST PAL C Teletext, PAL, System C 0010b 0011b WST, NTSC B Teletext, NTSC, System B 0100b NABTS, NTSC C Teletext, NTSC, System C NABTS, NTSC D 0101b Teletext, NTSC, System D (Japan) CC, PAL 0110b Closed caption PAL 0111b CC, NTSC Closed caption NTSC 1000b WSS, PAL Wide-screen signal, PAL WSS, NTSC Wide-screen signal, NTSC 1001b 1010b VITC, PAL Vertical interval timecode, PAL 1011b VITC, NTSC Vertical interval timecode, NTSC VPS, PAL 6 1100b Video program system, PAL 1101b Reserved Reserved Reserved 1110b Reserved 1111b Active Video Active video/full field

Table 3-1. Data Types Supported by VDP

SLES209-NOVEMBER 2007

At power-up the host interface is required to program the VDP-configuration RAM (VDP-CRAM) contents with the lookup table (see Section 3.20.58). This is done through port address C3h. Each read from or write to this address auto increments an internal counter to the next RAM location. To access the VDP-CRAM, the line mode registers (D0h to FCh) must be programmed with FFh to avoid a conflict with the internal microprocessor and the VDP in both writing and reading. Full field mode must also be disabled.

Available VBI lines are from line 6 to line 27 of both field 1 and field 2. Each line can be any VBI mode.

Output data is available either through the VBI-FIFO (B0h) or through dedicated registers at 90h to AFh, both of which are available through the I²C port.

3.9 VBI FIFO and Ancillary Data in Video Stream

Sliced VBI data can be output as ancillary data in the video stream in the ITU-R BT.656 mode. VBI data is output during the horizontal blanking period following the line from which the data was retrieved. Table 3-2 shows the header format and sequence of the ancillary data inserted into the video stream. This format is also used to store any VBI data into the FIFO. The size of FIFO is 512 bytes. Therefore, the FIFO can store up to 11 lines of teletext data with the NTSC NABTS standard.

Table 3-2. Ancillary Data Format and Sequence

BYTE NO.	D7 (MSB)	D6	D5	D4	D3	D2	D1	D0 (LSB)	DESCRIPTION			
0	0	0	0	0	0	0	0	0				
1	1	1	1	1	1	1	1	1	Ancillary data preamble			
2	1	1	1	1	1	1	1	1				
3	NEP	EP	0	1	0	DID2	DID1	DID0	Data ID (DID)			
4	NEP	EP	F5	F4	F3	F2	F1	F0	Secondary data ID (SDID)		
5	NEP	EP	N5	N4	N3	N2	N1	N0	Number of 32-bit da	ta (NN)		
6				Video I	ine [7:0]				Internal data ID0 (IDID0)			
7	0	0	0	Data error	Match 1	Match 2	Video I	ine [9:8]	Internal data ID1 (IDID1)			
8	1. Data Data byte											
9	2. Data Data byte							First word				
10	3. Data Data byte							First word				
11	4. Data Data byte											
:	: :											
	m–1. Data						Data byte					
	m. Data Data by						Data byte	N th word				
	RSVD CS[5:0] Check sum					Check sum	IN WOLD					
4(N+2)-1	1	0	0	0	0	0	0	0	Fill byte			

EP: Even parity for D0–D5
NEP: Negated even parity

DID: 91h: Sliced data of VBI lines of first field

53h: Sliced data of line 24 to end of first field 55h: Sliced data of VBI lines of second field 97h: Sliced data of line 24 to end of second field

SDID: This field holds the data format taken from the line mode register of the corresponding line.

NN: Number of Dwords beginning with byte 8 through 4(N+2). This value is the number of Dwords

where each Dword is 4 bytes.

SLES209-NOVEMBER 2007

IDID0: Transaction video line number [7:0]

IDID1: Bit 0/1 = Transaction video line number [9:8]

Bit 2 = Match 2 flagBit 3 = Match 1 flag

Bit 4 = 1 if an error was detected in the EDC block; 0 if not

CS: Sum of D0–D7 of DID through last data byte.

Fill byte: Fill bytes make a multiple of 4 bytes from byte 0 to last fill byte. For teletext modes, byte 8 is the

sync pattern byte. Byte 9 is 1. Data (the first data byte).

3.10 Raw Video Data Output

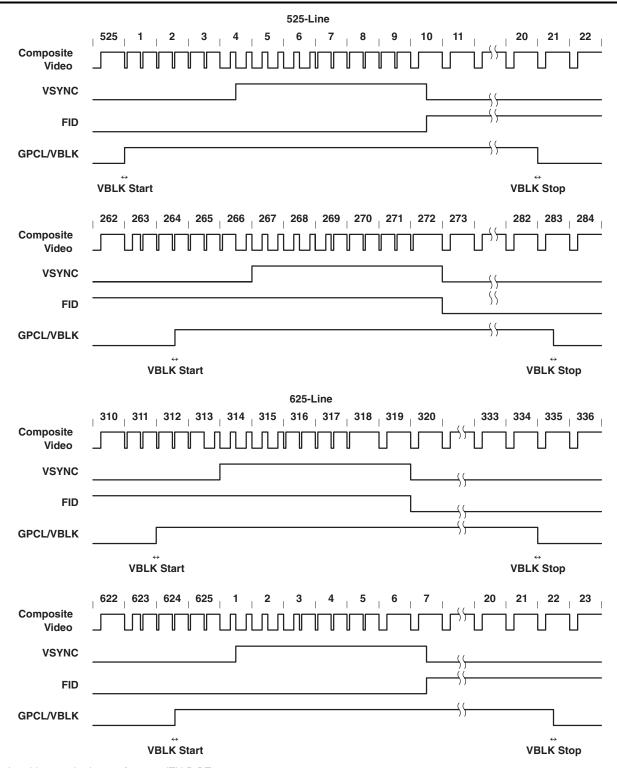
The TVP5150AM1 decoder can output raw A/D video data at 2x sampling rate for external VBI slicing. This is transmitted as an ancillary data block during the active horizontal portion of the line and during vertical blanking.

3.11 Output Formatter

The YCbCr digital output can be programmed as 8-bit 4:2:2 or 8-bit ITU-R BT.656 parallel interface standard.

Table 3-3. Summary of Line Frequencies, Data Rates, and Pixel Counts

STANDARDS	HORIZONTAL LINE RATE (kHz)	PIXELS PER LINE	ACTIVE PIXELS PER LINE	SCLK FREQUENCY (MHz)
NTSC (M, 4.43), ITU-R BT.601	15.73426	858	720	27.00
PAL (B, D, G, H, I), ITU-R BT.601	15.625	864	720	27.00
PAL (M), ITU-R BT.601	15.73426	858	720	27.00
PAL (N), ITU-R BT.601	15.625	864	720	27.00
SECAM, ITU-R BT.601	15.625	864	720	27.00


3.12 Synchronization Signals

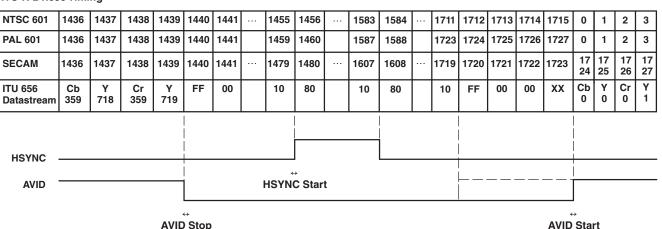
External (discrete) syncs are provided via the following signals (see Figure 3-2 and Figure 3-3):

- VSYNC (vertical sync)
- FID/VLK (field indicator or vertical lock indicator)
- GPCL/VBLK (general-purpose I/O or vertical blanking indicator)
- PALI/HLK (PAL switch indicator or horizontal lock indicator)
- HSYNC (horizontal sync)
- AVID (active video indicator)

VSYNC, FID, PALI, and VBLK are software set and programmable to the SCLK pixel count. This allows any possible alignment to the internal pixel count and line count. The default settings for a 525-/625-line video output are given as an example.

SLES209-NOVEMBER 2007

A. Line numbering conforms to ITU-R BT.470.


Figure 3-2. 8-Bit 4:2:2, Timing With 2× Pixel Clock (SCLK) Reference

TRUMENTS www.ti.com

SLES209-NOVEMBER 2007

ITU-R BT.656 Timing

AVID rising edge occurs four SCLK cycles early when in the ITU-R BT.656 output mode.

Figure 3-3. Horizontal Synchronization Signals

3.13 Active Video (AVID) Cropping

AVID cropping provides a means to decrease bandwidth of the video output. This is accomplished by horizontally blanking a number of AVID pulses and by vertically blanking a number of lines per frame. The horizontal AVID cropping is controlled using registers 11h and 12h for start pixels MSB and LSB, respectively.

Registers 13h and 14h provide access to stop pixels MSB and LSB, respectively. The vertical AVID cropping is controlled using the vertical blanking (VBLK) start and stop registers at addresses 18h and 19h. Figure 3-4 shows an AVID application.

SLES209-NOVEMBER 2007

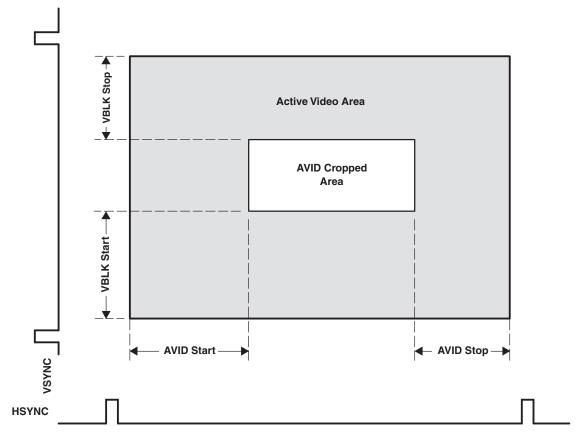


Figure 3-4. AVID Application

3.14 Embedded Syncs

Standards with embedded syncs insert SAV and EAV codes into the datastream at the beginning and end of horizontal blanking. These codes contain the V and F bits that also define vertical timing. F and V change on EAV. Table 3-4 gives the format of the SAV and EAV codes.

H equals 1 always indicates EAV. H equals 0 always indicates SAV. The alignment of V and F to the line and field counter varies depending on the standard. See ITU-R BT.656 for more information on embedded syncs.

The P bits are protection bits:

P3 = V xor H

P2 = F xor H

P1 = F xor V

P0 = F xor V xor H

Table 3-4. EAV and SAV Sequence

		8-BIT DATA							
	D7 (MSB)	D6	D5	D4	D3	D2	D1	D0	
Preamble	1	1	1	1	1	1	1	1	
Preamble	0	0	0	0	0	0	0	0	
Preamble	0	0	0	0	0	0	0	0	
Status word	1	F	V	Н	P3	P2	P1	P0	

22

3.15 I²C Host Interface

The I²C standard consists of two signals, serial input/output data line (SDA) and input/output clock line (SCL), which carry information between the devices connected to the bus. A third signal (I2CSEL) is used for slave address selection. Although the I²C system can be multimastered, the TVP5150AM1 decoder functions only as a slave device.

Both SDA and SCL must be connected to a positive supply voltage via a pullup resistor. When the bus is free, both lines are high. The slave address select terminal (I2CSEL) enables the use of two TVP5150AM1 decoders tied to the same I²C bus. At power up, the status of the I2CSEL is polled. Depending on the write and read addresses to be used for the TVP5150AM1 decoder, it can either be pulled low or high through a resistor. This terminal is multiplexed with YOUT7 and hence must not be tied directly to ground or IO_DVDD. Table 3-6 summarizes the terminal functions of the I²C-mode host interface.

Table 3-5. Write Address Selection

I2CSEL	WRITE ADDRESS
0	B8h
1	BAh

Table 3-6. I²C Terminal Description

SIGNAL	TYPE	DESCRIPTION
I2CSEL (YOUT7)	I	Slave address selection
SCL	I/O (open drain)	Input/output clock line
SDA	I/O (open drain)	Input/output data line

Data transfer rate on the bus is up to 400 kbit/s. The number of interfaces connected to the bus is dependent on the bus capacitance limit of 400 pF. The data on the SDA line must be stable during the high period of the SCL except for start and stop conditions. The high or low state of the data line can only change with the clock signal on the SCL line being low. A high-to-low transition on the SDA line while the SCL is high indicates an I²C start condition. A low-to-high transition on the SDA line while the SCL is high indicates an I²C stop condition.

Every byte placed on the SDA must be eight bits long. The number of bytes which can be transferred is unrestricted. Each byte must be followed by an acknowledge bit. The acknowledge-related clock pulse is generated by the I²C master.

Functional Description Submit Documentation Feedback

SLES209-NOVEMBER 2007

3.15.1 fC Write Operation

Data transfers occur utilizing the following illustrated formats.

An I²C master initiates a write operation to the TVP5150AM1 decoder by generating a start condition (S) followed by the TVP5150AM1 I²C address (see the following illustration), in MSB first bit order, followed by a 0 to indicate a write cycle. After receiving an acknowledge from the TVP5150AM1 decoder, the master presents the subaddress of the register, or the first of a block of registers it wants to write, followed by one or more bytes of data, MSB first. The TVP5150AM1 decoder acknowledges each byte after completion of each transfer. The I²C master terminates the write operation by generating a stop condition (P).

Step 1	0							
I ² C Start (master)	S							
Step 2	7	6	5	4	3	2	1	0
I ² C General address (master)	1	0	1	1	1	0	Х	0
Step 3	9							
I ² C Acknowledge (slave)	А							
Step 4	7	6	5	4	3	2	1	0
I ² C Write register address (master)	Addr							
Step 5	9							
I ² C Acknowledge (slave)	А							
Step 6	7	6	5	4	3	2	1	0
I ² C Write data (master)	Data							
Step 7 ⁽¹⁾	9							
I ² C Acknowledge (slave)	А							
Step 8	0							
I ² C Stop (master)		1						

⁽¹⁾ Repeat steps 6 and 7 until all data have been written.

3.15.2 PC Read Operation

The read operation consists of two phases. The first phase is the address phase. In this phase, an I²C master initiates a write operation to the TVP5150AM1 decoder by generating a start condition (S) followed by the TVP5150AM1 I²C address, in MSB first bit order, followed by a 0 to indicate a write cycle. After receiving acknowledges from the TVP5150AM1 decoder, the master presents the subaddress of the register or the first of a block of registers it wants to read. After the cycle is acknowledged, the master terminates the cycle immediately by generating a stop condition (P).

Table 3-7. Read Address Selection

I2CSEL	READ ADDRESS
0	B9h
1	BBh

The second phase is the data phase. In this phase, an I²C master initiates a read operation to the TVP5150AM1 decoder by generating a start condition followed by the TVP5150AM1 I²C address (see the following illustration of a read operation), in MSB first bit order, followed by a 1 to indicate a read cycle. After an acknowledge from the TVP5150AM1 decoder, the I²C master receives one or more bytes of data from the TVP5150AM1 decoder. The I²C master acknowledges the transfer at the end of each byte. After the last data byte desired has been transferred from the TVP5150AM1 decoder to the master, the master generates a not acknowledge followed by a stop.

SLES209-NOVEMBER 2007

3.15.2.1 Read Phase 1

Step 1	0							
I ² C Start (master)	S							
Step 2	7	6	5	4	3	2	1	0
I ² C General address (master)	1	0	1	1	1	0	Х	0
Step 3	9							
I ² C Acknowledge (slave)	А							
Step 4	7	6	5	4	3	2	1	0
I ² C Write register address (master)	Addr							
Step 5	9							
I ² C Acknowledge (slave)	А							
Step 6	0	1						
I ² C Stop (master)	Р							

3.15.2.2 Read Phase 2

Step 7	0							
I ² C Start (master)	S							
Step 8	7	6	5	4	3	2	1	0
I ² C General address (master)	1	0	1	1	1	0	Х	1
Step 9	9							
I ² C Acknowledge (slave)	А							
Step 10	7	6	5	4	3	2	1	0
I ² C Read data (slave)	Data							
Step 11 ⁽¹⁾	9							
I ² C Not Acknowledge (master)	Ā							
Step 12	0							
I ² C Stop (master)	Р	1						

(1) Repeat steps 10 and 11 for all bytes read. Master does not acknowledge the last read data received.

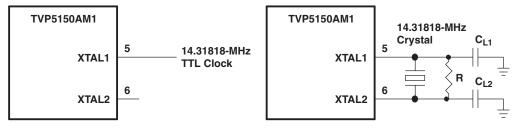
SLES209-NOVEMBER 2007

3.15.2.3 I²C Timing Requirements

The TVP5150AM1 decoder requires delays in the I²C accesses to accommodate its internal processor's timing. In accordance with I²C specifications, the TVP5150AM1 decoder holds the I²C clock line (SCL) low to indicate the wait period to the I²C master. If the I²C master is not designed to check for the I²C clock line held-low condition, then the maximum delays must always be inserted where required. These delays are of variable length; maximum delays are indicated in the following diagram:

Normal register writing addresses 00h to 8Fh (addresses 90h to FFh do not require delays).

Start Slave Start addres (B8h	Ack	Subaddress	Ack	Data (XXh)	Ack	Wait 64 μs	Stop	
-------------------------------------	-----	------------	-----	------------	-----	------------	------	--


The 64-µs delay is for all registers that do not require a reinitialization. Delays may be more for some registers.

3.16 Clock Circuits

An internal line-locked PLL generates the system and pixel clocks. A 14.31818-MHz clock is required to drive the PLL. This may be input to the TVP5150AM1 decoder on terminal 5 (XTAL1), or a crystal of 14.31818-MHz fundamental resonant frequency may be connected across terminals 5 and 6 (XTAL2). Figure 3-5 shows the reference clock configurations. For the example crystal circuit shown (a parallel-resonant crystal with 14.31818-MHz fundamental frequency), the external capacitors must have the following relationship:

$$C_{L1} = C_{L2} = 2C_L - C_{STRAY}$$

where C_{STRAY} is the terminal capacitance with respect to ground. Figure 3-5 shows the reference clock configurations.

A. R depends on crystal specification and may not be required.

Figure 3-5. Reference Clock Configurations

3.17 Genlock Control (GLCO) and RTC

A Genlock control function is provided to support a standard video encoder to synchronize its internal color oscillator for properly reproduced color with unstable timebase sources such as VCRs.

The frequency control word of the internal color subcarrier digital control oscillator (DTO) and the subcarrier phase reset bit are transmitted via terminal 23 (GLCO). The frequency control word is a 23-bit binary number. The frequency of the DTO can be calculated from the following equation:

$$F_{dto} = (F_{ctrl}/2^{23}) \times F_{sclk}$$

where F_{dto} is the frequency of the DTO, F_{ctrl} is the 23-bit DTO frequency control, and F_{sclk} is the frequency of the SCLK.

3.17.1 GLCO Interface

A write of 1 to bit 4 of the chrominance control register at I²C subaddress 1Ah causes the subcarrier DTO phase reset bit to be sent on the next scan line on GLCO. The active-low reset bit occurs seven SCLKs after the transmission of the last bit of DCO frequency control. Upon the transmission of the reset bit, the phase of the TVP5150AM1 internal subcarrier DCO is reset to zero.

A Genlock slave device can be connected to the GLCO terminal and uses the information on GLCO to synchronize its internal color phase DCO to achieve clean line and color lock.

Figure 3-6 shows the timing diagram of the GLCO mode.

Figure 3-6. GLCO Timing

3.17.2 RTC Mode

Figure 3-7 shows the timing diagram of the RTC mode. Clock rate for the RTC mode is four times slower than the GLCO clock rate. For PLL frequency control, the upper 22 bits are used. Each frequency control bit is two clock cycles long. The active-low reset bit occurs six CLKs after the transmission of the last bit of PLL frequency control.

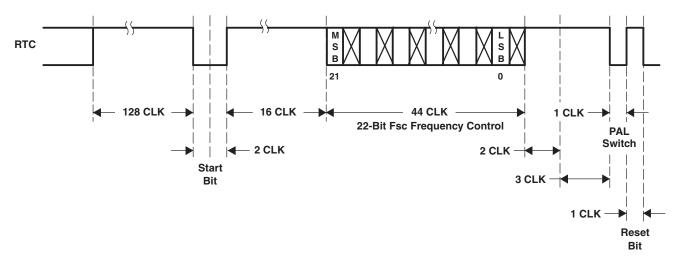


Figure 3-7. RTC Timing

26 Functional Description Submit Documentation Feedback

SLES209-NOVEMBER 2007

3.18 Reset and Power Down

Terminals 8 (RESETB) and 28 (PDN) work together to put the TVP5150AM1 decoder into one of the two modes. Table 3-8 shows the configuration.

After power-up, the device is in an unknown state with its outputs undefined, until it receives a RESETB active low for at least 500 ns. The power supplies must be active and stable for 20 ms before RESETB becomes inactive.

Table 3-8. Reset and Power-Down Modes

PDN	RESETB CONFIGURATION	
0	0 Reserved (unknown state)	
0	1	Powers down the decoder
1	0	Resets the decoder
1	1	Normal operation

3.19 Internal Control Registers

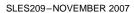
The TVP5150AM1 decoder is initialized and controlled by a set of internal registers that set all device operating parameters. Communication between the external controller and the TVP5150AM1 decoder is through I²C. Table 3-9 shows the summary of these registers. The reserved registers must not be written. Reserved bits in the defined registers must be written with zeros, unless otherwise noted. The detailed programming information of each register is described in the following sections.

Table 3-9. Register Summary

REGISTER	ADDRESS	DEFAULT	R/W ⁽¹⁾
Video input source selection #1	00h	00h	R/W
Analog channel controls	01h	15h	R/W
Operation mode controls	02h	00h	R/W
Miscellaneous controls	03h	01h	R/W
Autoswitch mask	04h	DCh	R/W
Reserved	05h	00h	R/W
Color killer threshold control	06h	10h	R/W
Luminance processing control #1	07h	60h	R/W
Luminance processing control #2	08h	00h	R/W
Brightness control	09h	80h	R/W
Color saturation control	0Ah	80h	R/W
Hue control	0Bh	00h	R/W
Contrast control	0Ch	80h	R/W
Outputs and data rates select	0Dh	47h	R/W
Luminance processing control #3	0Eh	00h	R/W
Configuration shared pins	0Fh	08h	R/W
Reserved	10h		
Active video cropping start pixel MSB	11h	00h	R/W
Active video cropping start pixel LSB	12h	00h	R/W
Active video cropping stop pixel MSB	13h	00h	R/W
Active video cropping stop pixel LSB	14h	00h	R/W
Genlock and RTC	15h	01h	R/W
Horizontal sync start	16h	80h	R/W
Reserved	17h		

SLES209-NOVEMBER 2007

Table 3-9. Register Summary (continued)


REGISTER	ADDRESS	DEFAULT	R/W ⁽¹⁾
Vertical blanking start	18h	00h	R/W
Vertical blanking stop	19h	00h	R/W
Chrominance control #1	1Ah	0Ch	R/W
Chrominance control #2	1Bh	14h	R/W
Interrupt reset register B	1Ch	00h	R/W
Interrupt enable register B	1Dh	00h	R/W
Interrupt configuration register B	1Eh	00h	R/W
Reserved	1Fh-27h		
Video standard	28h	00h	R/W
Reserved	29h–2Bh		
Cb gain factor	2Ch		R
Cr gain factor	2Dh		R
Macrovision on counter	2Eh	0Fh	R/W
Macrovision off counter	2Fh	01h	R/W
656 revision select	30h	00h	R/W
Reserved	31h–7Fh		
MSB of device ID	80h	51h	R
LSB of device ID	81h	50h	R
ROM major version	82h	04h	R
ROM minor version	83h	00h	R
Vertical line count MSB	84h		R
Vertical line count LSB	85h		R
Interrupt status register B	86h		R
Interrupt active register B	87h		R
Status register #1	88h		R
Status register #2	89h		R
Status register #3	8Ah		R
Status register #4	8Bh		R
Status register #5	8Ch		R
Reserved	8Dh–8Fh		
Closed caption data	90h–93h		R
WSS data	94h–99h		R
VPS data	9Ah–A6h		R
VITC data	A7h–AFh		R
VBI FIFO read data	B0h		R
Teletext filter and mask 1	B1h–B5h	00h	R/W
Teletext filter and mask 2	B6h–BAh	00h	R/W
Teletext filter control	BBh	00h	R/W
Reserved	BCh-BFh		
Interrupt status register A	C0h	00h	R/W
Interrupt enable register A	C1h	00h	R/W
Interrupt configuration register A	C2h	04h	R/W
VDP configuration RAM data	C3h	DCh	R/W
VDP configuration RAM address low byte	C4h	0Fh	R/W
VDP configuration RAM address high byte	C5h	00h	R/W
VDP status	C6h		R
	C7h		R

SLES209-NOVEMBER 2007

Table 3-9. Register Summary (continued)

REGISTER	ADDRESS	DEFAULT	R/W ⁽¹⁾
FIFO interrupt threshold	C8h	80h	R/W
FIFO reset	C9h	00h	W
Line number interrupt	CAh	00h	R/W
Pixel alignment low byte	CBh	4Eh	R/W
Pixel alignment high byte	CCh	00h	R/W
FIFO output control	CDh	01h	R/W
Reserved	CEh		
Full field enable	CFh	00h	R/W
Line mode	D0h D1h–FBh	00h FFh	R/W
Full field mode	FCh	7Fh	R/W
Reserved	FDh-FFh		

3.20 Register Definitions

3.20.1 Video Input Source Selection #1 Register

Address 00h Default 00h

7	6	5	4	3	2	1	0	
	Rese	erved		Black output	Reserved	Channel 1 source selection	S-video selection	

Channel 1 source selection

0 = AIP1A selected (default)

1 = AIP1B selected

Table 3-10. Analog Channel and Video Mode Selection

	INPUT(S) SELECTED	ADDRESS 00			
	INPUT(3) SELECTED	BIT 1	BIT 0		
Commonito	AIP1A (default)	0	0		
Composite	AIP1B	1	0		
S-Video	AIP1A (luma), AIP1B (chroma)	х	1		

Black output

0 = Normal operation (default)

1 = Force black screen output (outputs synchronized)

a. Forced to 10h in normal mode

b. Forced to 01h in extended mode

3.20.2 Analog Channel Controls Register

Address 01h Default 15h

7	6	5	4	3	2	1	0
Reserved			1	Automatic o	offset control	Automatic	gain control

Automatic offset control

00 = Disabled

01 = Automatic offset enabled (default)

10 = Reserved

11 = Offset level frozen to the previously set value

Automatic gain control (AGC)

00 = Disabled (fixed gain value)

01 = AGC enabled (default)

10 = Reserved

11 = AGC frozen to the previously set value

SLES209-NOVEMBER 2007

3.20.3 Operation Mode Controls Register

Address 02h Default 00h

7	6	5	4	3	2	1	0
Reserved	Color burst reference enable	TV/VCI	R mode	White peak disable	Color subcarrier PLL frozen	Luma peak disable	Power-down mode

Color burst reference enable

- 0 = Color burst reference for AGC disabled (default)
- 1 = Color burst reference for AGC enabled

TV/VCR mode

- 00 = Automatic mode determined by the internal detection circuit (default)
- 01 = Reserved
- 10 = VCR (nonstandard video) mode
- 11 = TV (standard video) mode

With automatic detection enabled, unstable or nonstandard syncs on the input video forces the detector into the VCR mode. This turns off the comb filters and turns on the chroma trap filter.

White peak disable

- 0 = White peak protection enabled (default)
- 1 = White peak protection disabled

Color subcarrier PLL frozen

- 0 = Color subcarrier PLL increments by the internally generated phase increment (default). GLCO pin outputs the frequency increment.
- 1 = Color subcarrier PLL stops operating. GLCO pin outputs the frozen frequency increment.

Luma peak disable

- 0 = Luma peak processing enabled (default)
- 1 = Luma peak processing disabled

Power-down mode

- 0 = Normal operation (default)
- 1 = Power-down mode. A/Ds are turned off and internal clocks are reduced to minimum.

SLES209-NOVEMBER 2007

3.20.4 Miscellaneous Controls Register

Address 03h Default 01h

7	6	5	4	3	2	1	0
VBKO	GPCL pin	GPCL output enable	Lock status (HVLK)	YCbCr output enable (TVPOE)	HSYNC, VSYNC/PALI, AVID, FID/GLCO output enable	Vertical blanking on/off	Clock output enable

VBKO (pin 27) function select

0 = GPCL (default)

1 = VBLK

NOTE

If this pin is not configured as an output, it must not be left floating. A 10-k Ω pulldown resistor is recommended, if not driven externally.

GPCL (data is output based on state of bit 5)

0 = GPCL outputs 0 (default)

1 = GPCL outputs 1

GPCL output enable

0 = GPCL is inactive (default)

1 = GPCL is output

NOTE

GPCL must not be programmed to be 0 when register 0Fh bit 1 is 1 (GPCL/VBLK). If this pin is not configured as an output, it must not be left floating. A 10-k Ω pulldown resistor is recommended, if not driven externally.

Lock status (HVLK) (configured along with register 0Fh, see Figure 3-8 for the relationship between the configuration shared pins)

- 0 = Terminal VSYNC/PALI outputs the PAL indicator (PALI) signal and terminal FID/GLCO outputs the field ID (FID) signal (default) (if terminals are configured to output PALI and FID in register 0Fh).
- 1 = Terminal VSYNC/PALI outputs the horizontal lock indicator (HLK) and terminal FID outputs the vertical lock indicator (VLK) (if terminals are configured to output PALI and FID in register 0Fh).

These are additional functions that are provided for ease of use.

YCbCr output enable

0 = YOUT[7:0] high impedance (default)

1 = YOUT[7:0] active

NOTE

The YOUT[6:0] pins must be driven externally or pulled down with a 10-k Ω resistor. YOUT7 must be already pulled high or low for the I²C address select.

SLES209-NOVEMBER 2007

HSYNC, VSYNC/PALI, active video indicator (AVID), and FID/GLCO output enables

0 = HSYNC, VSYNC/PALI, AVID, and FID/GLCO are high-impedance (default).

1 = HSYNC, VSYNC/PALI, AVID, and FID/GLCO are active.

NOTE

If these pins are not configured as outputs, then they must not be left floating. 10-k Ω pulldown resistors are recommended, if not driven externally. If the FID/GLCO pin is configured as a GLCO output (default), it is always an output, regardless of the status of this register, and it must not be pulled down or driven externally.

Vertical blanking on/off

- 0 = Vertical blanking (VBLK) off (default)
- 1 = Vertical blanking (VBLK) on

Clock output enable

- 0 = SCLK output is high impedance.
- 1 = SCLK output is enabled (default).

NOTE

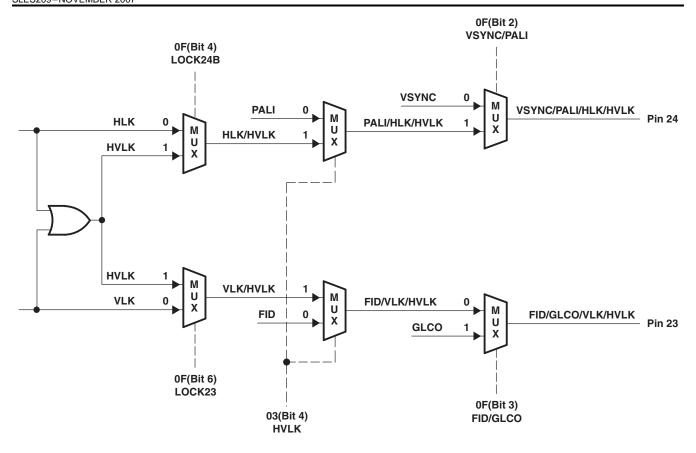

When enabling the outputs, ensure the clock output is not accidently disabled.

Table 3-11. Digital Output Control⁽¹⁾

REGISTER 03h, BIT 3 (TVPOE)	REGISTER C2h, BIT 2 (VDPOE)	YCbCr OUTPUT	NOTES
0	X	High impedance	After both YCbCr output enable bits are programmed
X	0	High impedance	After both YCbCr output enable bits are programmed
1	1	Active	After both YCbCr output enable bits are programmed

(1) VDPOE default is 1, and TVPOE default is 0.

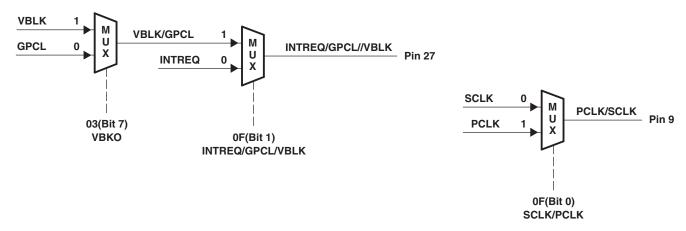


Figure 3-8. Configuration Shared Pins

NOTE

Also see the configuration shared pins register at subaddress 0Fh.

SLES209-NOVEMBER 2007

3.20.5 Autoswitch Mask Register

Address 04h Default DCh

7	6	5	4	3	2	1	0
Reserved		SEC_OFF	N443_OFF	PALN_OFF	PALM_OFF	Rese	erved

N443 OFF

- 0 = NTSC443 is unmasked from the autoswitch process. Autoswitch does switch to NTSC443.
- 1 = NTSC443 is masked from the autoswitch process. Autoswitch does not switch to NTSC443 (default).

PALN_OFF

- 0 = PAL-N is unmasked from the autoswitch process. Autoswitch does switch to PAL-N.
- 1 = PAL-N is masked from the autoswitch process. Autoswitch does not switch to PAL-N (default).

PALM OFF

- 0 = PAL-M is unmasked from the autoswitch process. Autoswitch does switch to PAL-M.
- 1 = PAL-M is masked from the autoswitch process. Autoswitch does not switch to PAL-M (default).

SEC OFF

- 0 = SECAM is unmasked from the autoswitch process. Autoswitch does switch to SECAM (default).
- 1 = SECAM is masked from the autoswitch process. Autoswitch does not switch to SECAM.

3.20.6 Color Killer Threshold Control Register

Address 06h Default 10h

7	6	5	4	3	2	1	0
Reserved	Automatic	color killer	Color killer threshold				

Automatic color killer

- 00 = Automatic mode (default)
- 01 = Reserved
- 10 = Color killer enabled, CbCr terminals forced to a zero color state
- 11 = Color killer disabled

Color killer threshold

11111 = -30 dB (minimum)

10000 = -24 dB (default)

00000 = -18 dB (maximum)

SLES209-NOVEMBER 2007

3.20.7 Luminance Processing Control #1 Register

Address 07h Default 60h

7	6	5	4	3	2	1	0
2× luma output enable	Pedestal not present	Disable raw header	Luma bypass enabled during vertical blanking	Luminance	signal delay with	respect to chromir	nance signal

2× luma output enable

- 0 = Output depends on bit 4, luminance bypass enabled during vertical blanking (default).
- 1 = Outputs 2x luma samples during the entire frame. This bit takes precedence over bit 4.

Pedestal not present

- 0 = 7.5 IRE pedestal is present on the analog video input signal.
- 1 = Pedestal is not present on the analog video input signal (default).

Disable raw header

- 0 = Insert 656 ancillary headers for raw data
- 1 = Disable 656 ancillary headers and instead force dummy ones (0x40) (default)

Luminance bypass enabled during vertical blanking

- 0 = Disabled. If bit 7, $2 \times \text{luma}$ output enable, is 0, normal luminance processing occurs and YCbCr samples are output during the entire frame (default).
- 1 = Enabled. If bit 7, 2× luma output enable, is 0, normal luminance processing occurs and YCbCr samples are output during VACTIVE and 2× luma samples are output during VBLK. Luminance bypass occurs for the duration of the vertical blanking as defined by registers 18h and 19h.

Luminance bypass occurs for the duration of the vertical blanking as defined by registers 18h and 19h.

Luma signal delay with respect to chroma signal in pixel clock increments (range -8 to +7 pixel clocks)

1111 = -8 pixel clocks delay

1011 = -4 pixel clocks delay

1000 = -1 pixel clocks delay

0000 = 0 pixel clocks delay (default)

0011 = +3 pixel clocks delay

0111 = +7 pixel clocks delay

SLES209-NOVEMBER 2007

3.20.8 Luminance Processing Control #2 Register

Address 08h Default 00h

7	6	5	4	3	2	1	0
Reserved	Luminance filter select	Rese	erved	Peakir	ng gain	Mac AG	C control

Luminance filter select

0 = Luminance comb filter enabled (default)

1 = Luminance chroma trap filter enabled

Peaking gain (sharpness)

00 = 0 (default)

01 = 0.5

10 = 1

11 = 2

Information on peaking frequency:

ITU-R BT.601 sampling rate: all standards

Peaking center frequency is 2.6 MHz.

Mac AGC control

00 = Auto mode

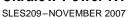
01 = Auto mode

10 = Force Macrovision AGC pulse detection off

11 = Force Macrovision AGC pulse detection on

3.20.9 Brightness Control Register

Address 09h Default 80h


7	6	5	4	3	2	1	0		
	Brightness control								

Brightness control

1111 1111 = 255 (bright)

 $1000\ 0000 = 128\ (default)$

 $0000\ 0000 = 0\ (dark)$

3.20.10 Color Saturation Control Register

Address 0Ah Default 80h

7	6	5	4	3	2	1	0
			Saturation	n control			

Saturation control

1111 1111 = 255 (maximum) 1000 0000 = 128 (default) 0000 0000 = 0 (no color)

3.20.11 Hue Control Register

Address 0Bh Default 00h

7	6	5	4	3	2	1	0		
	Hue control								

Hue control (does not apply to SECAM)

0111 1111 = +180 degrees 0000 0000 = 0 degrees (default) 1000 0000 = -180 degrees

3.20.12 Contrast Control Register

Address 0Ch
Default 80h

7	6	5	4	3	2	1	0	
	Contrast control							

Contrast control

1111 1111 = 255 (maximum contrast)

 $1000\ 0000 = 128\ (default)$

 $0000\ 0000 = 0$ (minimum contrast)

SLES209-NOVEMBER 2007

3.20.13 Outputs and Data Rates Select Register

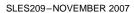
Address 0Dh Default 47h

7	6	5	4	3	2	1	0
Reserved	YCbCr output code range	CbCr code format	YCbCr data	path bypass	Y	CbCr output form	at

YCbCr output code range

- 0 = ITU-R BT.601 coding range (Y ranges from 16 to 235. U and V range from 16 to 240)
- 1 = Extended coding range (Y, U, and V range from 1 to 254) (default)

CbCr code format


- 0 = Offset binary code (2s complement + 128) (default)
- 1 = Straight binary code (2s complement)

YCbCr data path bypass

- 00 = Normal operation (default)
- 01 = Decimation filter output connects directly to the YCbCr output pins. This data is similar to the digitized composite data, but the HBLANK area is replaced with ITU-R BT.656 digital blanking.
- 10 = Digitized composite (or digitized S-video luma). A/D output connects directly to YCbCr output pins.
- 11 = Reserved

YCbCr output format

- 000 = 8-bit 4:2:2 YCbCr with discrete sync output
- 001 = Reserved
- 010 = Reserved
- 011 = Reserved
- 100 = Reserved
- 101 = Reserved
- 110 = Reserved
- 111 = 8-bit ITU-R BT.656 interface with embedded sync output (default)

3.20.14 Luminance Processing Control #3 Register

Address 0Eh Default 00h

7	6	5	4	3	2	1	0
	Reserved						ap filter select

Luminance filter stop band bandwidth (MHz)

00 = No notch (default)

01 = Notch 1

10 = Notch 2

11 = Notch 3

Luminance filter select [1:0] selects one of the four chroma trap (notch) filters to produce luminance signal by removing the chrominance signal from the composite video signal. The stopband of the chroma trap filter is centered at the chroma subcarrier frequency with stopband bandwidth controlled by the two control bits. See the following table for the stopband bandwidths. The WCF bit is controlled in the chrominance control #2 register, see Section 3.20.25.

WCF	FILTER SELECT	NTSC/PAL/SECAM ITU-R BT.601		
	00	1.2244		
0	01	0.8782		
U	10	0.7297		
	11	0.4986		
	00	1.4170		
4	01	1.0303		
1	10	0.8438		
Ī	11	0.5537		

SLES209-NOVEMBER 2007

3.20.15 Configuration Shared Pins Register

Address 0Fh Default 08h

7	6	5	4	3	2	1	0
Reserved	LOCK23	Reserved	LOCK24B	FID/GLCO	VSYNC/PALI	INTREQ/GPCL/ VBLK	SCLK/PCLK

LOCK23 (pin 23) function select

0 = FID (default, if bit 3 is selected to output FID)

1 = Lock indicator (indicates whether the device is locked vertically)

LOCK24B (pin 24) function select

0 = PALI (default, if bit 2 is selected to output PALI)

1 = Lock indicator (indicates whether the device is locked horizontally)

FID/GLCO (pin 23) function select (also see register 03h for enhanced functionality)

0 = FID

1 = GLCO (default)

VSYNC/PALI (pin 24) function select (also see register 03h for enhanced functionality)

0 = VSYNC (default)

1 = PALI

INTREQ/GPCL/VBLK (pin 27) function select

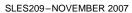
0 = INTREQ (default)

1 = GPCL or VBLK depending on bit 7 of register 03h

SCLK/PCLK (pin 9) function select

0 = SCLK (default)

1 = PCLK (1x pixel clock frequency)


See Figure 3-8 for the relationship between the configuration shared pins.

3.20.16 Active Video Cropping Start Pixel MSB Register

Address 11h Default 00h

7	6	5	4	3	2	1	0		
	AVID start pixel MSB [9:2]								

Active video cropping start pixel MSB [9:2], set this register first before setting register 12h. The TVP5150AM1 decoder updates the AVID start values only when register 12h is written to. This start pixel value is relative to the default values of the AVID start pixel.

3.20.17 Active Video Cropping Start Pixel LSB Register

Address 12h Default 00h

7	6	5	4	3	2	1	0
		Reserved			AVID active	AVID start pi	ixel LSB [1:0]

AVID active

0 = AVID out active in VBLK (default)

1 = AVID out inactive in VBLK

Active video cropping start pixel LSB [1:0]: The TVP5150AM1 decoder updates the AVID start values only when this register is written to.

AVID start [9:0] (combined registers 11h and 12h)

01 1111 1111 = 511

 $00\ 0000\ 0001 = 1$

 $00\ 0000\ 0000 = 0$ (default)

11 1111 1111 = -1

 $10\ 0000\ 0000 = -512$

3.20.18 Active Video Cropping Stop Pixel MSB Register

Address 13h Default 00h

7	6	5	4	3	2	1	0
	А	VID stop pixel MS					

Active video cropping stop pixel MSB [9:2], set this register first before setting the register 14h. The TVP5150AM1 decoder updates the AVID stop values only when register 14h is written to. This stop pixel value is relative to the default values of the AVID stop pixel.

3.20.19 Active Video Cropping Stop Pixel LSB Register

Address 14h Default 00h

7	6	5	4	3	2	1	0
		1/030	erved			AVID stop	pixel LSB

Active video cropping stop pixel LSB [1:0]: The number of pixels of active video must be an even number. The TVP5150AM1 decoder updates the AVID stop values only when this register is written to.

AVID stop [9:0] (combined registers 13h and 14h)

01 1111 1111 = 511

 $00\ 0000\ 0001 = 13$

00 0000 0000 = 0 (default) (see Figure 3-3 and Figure 3-4)

 $11\ 1111\ 1111 = -1$

 $10\ 0000\ 0000 = -512$

SLES209-NOVEMBER 2007

3.20.20 Genlock and RTC Register

Address 15h Default 01h

7	6	5	4	3	2	1	0
Rese	erved	F/V bit	control	Reserved		GLCO/RTC	

F/V bit control

BIT 5	BIT 4	NUMBER OF LINES	F BIT	V BIT	
		Standard	ITU-R BT.656	ITU-R BT.656	
0		Nonstandard even	Force to 1	Switch at field boundary	
		Nonstandard odd	Toggles	Switch at field boundary	
0 4	1	Standard	ITU-R BT.656	ITU-R BT.656	
0	I	Nonstandard	ITU-R BT.656 lard even Force to 1 lard odd Toggles ITU-R BT.656 lard Toggles ITU-R BT.656	Switch at field boundary	
4	0	Standard	ITU-R BT.656	ITU-R BT.656	
	0	Nonstandard	Pulse mode	Switch at field boundary	
1	1	Illegal			

GLCO/RTC. The following table shows the different modes.

BIT 2	BIT 1	BIT 0	GENLOCK/RTC MODE
0	X	0	GLCO
0	x	1	RTC output mode 0 (default)
1	X	0	GLCO
1	Х	1	RTC output mode 1

All other values are reserved.

Figure 3-6 shows the timing of GLCO, and Figure 3-7 shows the timing of RTC.

3.20.21 Horizontal Sync Start Register

Address 16h Default 80h

7	6	5	4	3	2	1	0
			HSYN	C start			

Horizontal sync (HSYNC) start

1111 1111 = -127×4 pixel clocks

1111 1110 = -126×4 pixel clocks

 $1000\ 0001 = -1 \times 4$ pixel clocks

1000 0000 = 0 pixel clocks (default)

0111 1111 = 1×4 pixel clocks

0111 1110 = 2×4 pixel clocks

 $0000\ 0000 = 128 \times 4$ pixel clocks

SLES209-NOVEMBER 2007

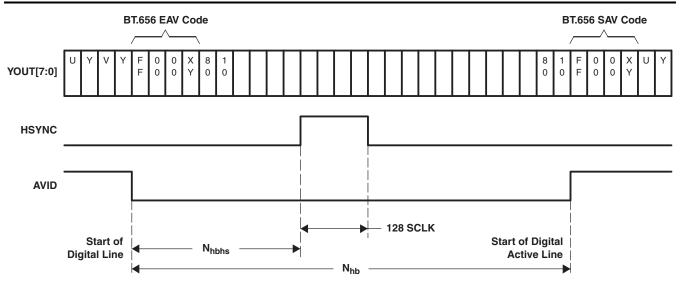


Figure 3-9. Horizontal Sync

Table 3-12. Clock Delays (SCLKs)

STANDARD	N _{hbhs}	N _{hb}
NTSC	16	272
PAL	20	284
SECAM	40	280

Detailed timing information is also available in Section 3.12.

3.20.22 Vertical Blanking Start Register

Address 18h Default 00h

7	6	5	4	3	2	1	0
			Vertical bla	anking start			

Vertical blanking (VBLK) start

0111 1111 = 127 lines after start of vertical blanking interval

0000 0001 = 1 line after start of vertical blanking interval

0000 0000 = Same time as start of vertical blanking interval (default) (see Figure 3-2)

1111 1111 = 1 line before start of vertical blanking interval

1000 0000 = 128 lines before start of vertical blanking interval

Vertical blanking is adjustable with respect to the standard vertical blanking intervals. The setting in this register determines the timing of the GPCL/VBLK signal when it is configured to output vertical blank (see register 03h). The setting in this register also determines the duration of the luma bypass function (see register 07h).

SLES209-NOVEMBER 2007

3.20.23 Vertical Blanking Stop Register

Address 19h Default 00h

7	6	5	4	3	2	1	0
			Vertical bla	anking stop			

Vertical blanking (VBLK) stop

0111 1111 = 127 lines after stop of vertical blanking interval

0000 0001 = 1 line after stop of vertical blanking interval

0000 0000 = Same time as stop of vertical blanking interval (default) (see Figure 3-2)

1111 1111 = 1 line before stop of vertical blanking interval

1000 0000 = 128 lines before stop of vertical blanking interval

Vertical blanking is adjustable with respect to the standard vertical blanking intervals. The setting in this register determines the timing of the GPCL/VBLK signal when it is configured to output vertical blank (see register 03h). The setting in this register also determines the duration of the luma bypass function (see register 07h).

3.20.24 Chrominance Control #1 Register

Address 1Ah
Default 0Ch

7	6	5	4	3	2	1	0
	Reserved		Color PLL reset	Chrominance adaptive comb filter enable (ACE)	Chrominance comb filter enable (CE)	Automatic col	or gain control

Color PLL reset

0 = Color PLL not reset (default)

1 = Color PLL reset

When a 1 is written to this bit, the color PLL phase is reset to zero and the subcarrier PLL phase reset bit is transmitted on terminal 23 (GLCO) on the next line (NTSC or PAL).

Chrominance adaptive comb filter enable (ACE)

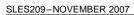
0 = Disable

1 = Enable (default)

Chrominance comb filter enable (CE)

0 = Disable

1 = Enable (default)


Automatic color gain control (ACGC)

00 = ACGC enabled (default)

01 = Reserved

10 = ACGC disabled

11 = ACGC frozen to the previously set value

3.20.25 Chrominance Control #2 Register

Address 1Bh Default 14h

7	6	5	4	3	2	1	0
		erved		Reserved	WCF	Chrominanc	e filter select

Wideband chroma filter (WCF)

0 = Disable

1 = Enable (default)

Chrominance low pass filter select

00 = No notch (default)

01 = Notch 1

10 = Notch 2

11 = Notch 3

Chrominance output bandwidth (MHz)

WCF	FILTER SELECT	NTSC/PAL/SECAM ITU-R BT.601		
	00 01 10 11 00 01 10 11	1.2214		
0	01	0.8782		
U	10	0.7297		
	11	0.4986		
	00	1.4170		
4	01	1.0303		
1	10	0.8438		
	11	0.5537		

SLES209-NOVEMBER 2007

3.20.26 Interrupt Reset Register B

Address 1Ch Default 00h

7	6	5	4	3	2	1	0
Software initialization reset	Macrovision detect changed reset	Reserved	Field rate changed reset	Line alternation changed reset	Color lock changed reset	H/V lock changed reset	TV/VCR changed reset

Interrupt reset register B is used by the external processor to reset the interrupt status bits in interrupt status register B. Bits loaded with a 1 allow the corresponding interrupt status bit to reset to 0. Bits loaded with a 0 have no effect on the interrupt status bits.

Software initialization reset

- 0 = No effect (default)
- 1 = Reset software initialization bit

Macrovision detect changed reset

- 0 = No effect (default)
- 1 = Reset Macrovision detect changed bit

Field rate changed reset

- 0 = No effect (default)
- 1 = Reset field rate changed bit

Line alternation changed reset

- 0 = No effect (default)
- 1 = Reset line alternation changed bit

Color lock changed reset

- 0 = No effect (default)
- 1 = Reset color lock changed bit

H/V lock changed reset

- 0 = No effect (default)
- 1 = Reset H/V lock changed bit

TV/VCR changed reset [TV/VCR mode is determined by counting the total number of lines/frame. The mode switches to VCR for nonstandard number of lines]

- 0 = No effect (default)
- 1 = Reset TV/VCR changed bit

3.20.27 Interrupt Enable Register B

Address 1Dh Default 00h

7	6	5	4	3	2	1	0
Software initialization occurred enable	Macrovision detect changed	Reserved	Field rate changed	Line alternation changed	Color lock changed	H/V lock changed	TV/VCR changed

Interrupt enable register B is used by the external processor to mask unnecessary interrupt sources for interrupt B. Bits loaded with a 1 allow the corresponding interrupt condition to generate an interrupt on the external pin. Conversely, bits loaded with zeros mask the corresponding interrupt condition from generating an interrupt on the external pin. This register only affects the external pin, it does not affect the bits in the interrupt status register. A given condition can set the appropriate bit in the status register and not cause an interrupt on the external pin. To determine if this device is driving the interrupt pin either AND interrupt status register B with interrupt enable register B or check the state of interrupt B in the interrupt B active register.

Software initialization occurred enable

0 = Disabled (default)

1 = Enabled

Macrovision detect changed

0 = Disabled (default)

1 = Enabled

Field rate changed

0 = Disabled (default)

1 = Enabled

Line alternation changed

0 = Disabled (default)

1 = Enabled

Color lock changed

0 = Disabled (default)

1 = Enabled

H/V lock changed

0 = Disabled (default)

1 = Enabled

TV/VCR changed

0 = Disabled (default)

1 = Enabled

SLES209-NOVEMBER 2007

3.20.28 Interrupt Configuration Register B

Address 1Eh Default 00h

7	6	5	4	3	2	1	0
			Reserved				Interrupt polarity B

Interrupt polarity B

0 = Interrupt B is active low (default).

1 = Interrupt B is active high.

Interrupt polarity B must be same as interrupt polarity A bit at bit 0 of the Interrupt Configuration Register A at address C2h.

Interrupt Configuration Register B is used to configure the polarity of interrupt B on the external interrupt pin. When the interrupt B is configured for active low, the pin is driven low when active and high impedance when inactive (open-drain). Conversely, when the interrupt B is configured for active high, it is driven high for active and driven low for inactive.

3.20.29 Video Standard Register

Address 28h Default 00h

7	6	5	4	3	2	1	0
		erved			Video s	tandard	

Video standard

0000 = Autoswitch mode (default)

0001 = Reserved

0010 = (M) NTSC ITU-R BT.601

0011 = Reserved

0100 = (B, G, H, I, N) PAL ITU-R BT.601

0101 = Reserved

0110 = (M) PAL ITU-R BT.601

0111 = Reserved

1000 = (Combination-N) PAL ITU-R BT.601

1001 = Reserved

1010 = NTSC 4.43 ITU-R BT.601

1011 = Reserved

1100 = SECAM ITU-R BT.601

With the autoswitch code running, the application can force the device to operate in a particular video standard mode and sample rate by writing the appropriate value into this register.

3.20.30 Cb Gain Factor Register

Address	2Ch						
7	6	5	4	3	2	1	0
			Cb gair	n factor			

This is a read-only register that provides the gain applied to the Cb in the YCbCr data stream.

3.20.31 Cr Gain Factor Register

Address	2Dh						
7	6	5	4	3	2	1	0
			Cr gair	n factor			

This is a read-only register that provides the gain applied to the Cr in the YCbCr data stream.

3.20.32 Macrovision On Counter Register

			Macrovision	off counter			
7	6	5	4	3	2	1	0
Default	0Fh						
Address	2Eh						

This register allows the user to determine how many consecutive frames in which the Macrovision AGC pulses are not detected before the decoder decides that the Macrovision AGC pulses are not present.

3.20.33 Macrovision Off Counter Register

Macrovision off counter									
7	6	5	4	3	2	1	0		
Default	01h								
Address	2Fh								

This register allows the user to determine how many consecutive frames in which the Macrovision AGC pulses are not detected before the decoder decides that the Macrovision AGC pulses are not present.

3.20.34 656 Revision Select Register

			Reserved				656 revision select
7	6	5	4	3	2	1	0
Default	00h						
Address	30h						

656 revision select

0 = Adheres to ITU-R BT.656.4 timing (default)

1 = Adheres to ITU-R BT.656.3 timing

SLES209-NOVEMBER 2007

3.20.35 MSB of Device ID Register

Address 80h
Default 51h

7 6 5 4 3 2 1 0

MSB of device ID

This register identifies the MSB of the device ID. Value = 0x51.

3.20.36 LSB of Device ID Register

Address 81h Default 50h

7	6	5	4	3	2	1	0
			LSB of c	device ID			

This register identifies the LSB of the device ID. Value = 0x50.

3.20.37 ROM Major Version Register

Address 82h Default 04h

7	6	5	4	3	2	1	0
			ROM maj	jor version			

This register can contain a number from 0x01 to 0xFF.

3.20.38 ROM Minor Version Register

Address 83h Default 00h

7	6	5	4	3	2	1	0
			ROM min	or version			

This register can contain a number from 0x01 to 0xFF.

3.20.39 Vertical Line Count MSB Register

Address 84h

7	6	5	4	3	2	1	0
		Rese	erved			Vertical line	count MSB

Vertical line count bits [9:8]

3.20.40 Vertical Line Count LSB Register

				Vertical line	count LSB			
	7	6	5	4	3	2	1	0
Addres	SS	85h						

Vertical line count bits [7:0]

Registers 84h and 85h can be read and combined to extract the detected number of lines per frame. This can be used with nonstandard video signals such as a VCR in fast-forward or rewind modes to synchronize the downstream video circuitry.

3.20.41 Interrupt Status Register B

Address 86h

7	6	5	4	3	2	1	0
Software initialization	Macrovision detect changed	Reserved	Field rate changed	Line alternation changed	Color lock changed	H/V lock changed	TV/VCR changed

Software initialization

- 0 = Software initialization is not ready (default).
- 1 = Software initialization is ready.

Macrovision detect changed

- 0 = Macrovision detect status has not changed (default).
- 1 = Macrovision detect status has changed.

Field rate changed

- 0 = Field rate has not changed (default).
- 1 = Field rate has changed.

Line alternation changed

- 0 = Line alteration has not changed (default).
- 1 = Line alternation has changed.

Color lock changed

- 0 = Color lock status has not changed (default).
- 1 = Color lock status has changed.

H/V lock changed

- 0 = H/V lock status has not changed (default).
- 1 = H/V lock status has changed.

TV/VCR changed

- 0 = TV/VCR status has not changed (default).
- 1 = TV/VCR status has changed.

Interrupt status register B is polled by the external processor to determine the interrupt source for interrupt B. After an interrupt condition is set, it can be reset by writing to the interrupt reset register B at subaddress 1Ch with a 1 in the appropriate bit.

SLES209-NOVEMBER 2007

3.20.42 Interrupt Active Register B

Address 87h

7	6	5	4	3	2	1	0		
	Reserved								

Interrupt B

- 0 = Interrupt B is not active on the external terminal (default).
- 1 = Interrupt B is active on the external terminal.

The interrupt active register B is polled by the external processor to determine if interrupt B is active.

3.20.43 Status Register #1

Address 88h

7	6	5	4	3	2	1	0
Peak white detect status	Line-alternating status	Field rate status	Lost lock detect	Color subcarrier lock status	Vertical sync lock status	Horizontal sync lock status	TV/VCR status

Peak white detect status

- 0 = Peak white is not detected.
- 1 = Peak white is detected.

Line-alternating status

- 0 = Nonline alternating
- 1 = Line alternating

Field rate status

- 0 = 60 Hz
- 1 = 50 Hz

Lost lock detect

- 0 = No lost lock since status register #1 was last read.
- 1 = Lost lock since status register #1 was last read.

Color subcarrier lock status

- 0 = Color subcarrier is not locked.
- 1 = Color subcarrier is locked.

Vertical sync lock status

- 0 = Vertical sync is not locked.
- 1 = Vertical sync is locked.

Horizontal sync lock status

- 0 = Horizontal sync is not locked.
- 1 = Horizontal sync is locked.

TV/VCR status. TV mode is determined by detecting standard line-to-line variations and specific chroma SCH phases based on the standard input video format. VCR mode is determined by detecting variations in the chroma SCH phases compared to the chroma SCH phases of the standard input video format.

- 0 = TV
- 1 = VCR

3.20.44 Status Register #2

Address

89h

-	7 6		5	4	3	2	1	0
Rese	erved	Weak signal detection	PAL switch polarity	Field sequence status	AGC and offset frozen status	M	acrovision detection	on

Weak signal detection

0 = No weak signal

1 = Weak signal mode

PAL switch polarity of first line of odd field

0 = PAL switch is 0.

1 = PAL switch is 1.

Field sequence status

0 = Even field

1 = Odd field

AGC and offset frozen status

0 = AGC and offset are not frozen.

1 = AGC and offset are frozen.

Macrovision detection

000 = No copy protection

001 = AGC process present (Macrovision Type 1 present)

010 = Colorstripe process Type 2 present

011 = AGC process and colorstripe process Type 2 present

100 = Reserved

101 = Reserved

110 = Colorstripe process Type 3 present

111 = AGC process and color stripe process Type 3 present

3.20.45 Status Register #3

Address 8Ah

7	6	5	4	3	2	1	0
		Front-e	end AGC gain val	ue (analog and dig	gital) ⁽¹⁾		

(1) Represents 8 bits (MSB) of a 10-bit value

This register provides the front-end AGC gain value of both analog and digital gains.

SLES209-NOVEMBER 2007

3.20.46 Status Register #4

Address 8Bh

7	6	E	4	2	2	4	•
,	0	o o	4	3	2	1	U
		5	Subcarrier to horiz	ontal (SCH) phase	е		

SCH (color PLL subcarrier phase at 50% of the falling edge of horizontal sync of line one of odd field; step size 360°/256)

 $0000\ 0000 = 0.00^{\circ}$

0000 0001 = 1.41°

0000 0010 = 2.81°

1111 1110 = 357.2°

1111 1111 = 358.6°

3.20.47 Status Register #5

Address 8Ch

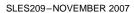
7	6	5	4	3	2	1	0
Autoswitch mode		Reserved			Video standard		Sampling rate

This register contains information about the detected video standard and the sampling rate at which the device is currently operating. When autoswitch code is running, this register must be tested to determine which video standard has been detected.

Autoswitch mode

0 = Stand-alone (forced video standard) mode

1 = Autoswitch mode


Video standard

VIDE	O STANDARD	[3:1]	SR	VIDEO STANDARD				
BIT 3	BIT 2	BIT 1	BIT 0	VIDEO STANDARD				
0	0	0	0	Reserved				
0	0	0	1	(M) NTSC ITU-R BT.601				
0	0	1	0	Reserved				
0	0	1	1	(B, G, H, I, N) PAL ITU-R BT.601				
0	1	0	0	Reserved				
0	1	0	1	(M) PAL ITU-R BT.601				
0	1	1	0	Reserved				
0	1	1	1	PAL-N ITU-R BT.601				
1	0	0	0	Reserved				
1	0	0	1	NTSC 4.43 ITU-R BT.601				
1	0	1	0	Reserved				
1	0	1	1	SECAM ITU-R BT.601				

Sampling rate (SR)

0 = Reserved

1 = ITU-R BT.601

3.20.48 Closed Caption Data Registers

Address 90h-93h

Address	7	6	5	4	3	2	1	0			
90h		Closed caption field 1 byte 1									
91h		Closed caption field 1 byte 2									
92h		Closed caption field 2 byte 1									
93h		Closed caption field 2 byte 2									

These registers contain the closed caption data arranged in bytes per field.

3.20.49 WSS Data Registers

Address 94h-99h

NTSC

Address	7	6	5	4	3	2	1	0	BYTE
94h			b5	b4	b3	b2	b1	b0	WSS field 1 byte 1
95h	b13	b12	b11	b10	b9	b8	b7	b6	WSS field 1 byte 2
96h			b19	b18	b17	b16	b15	b14	WSS field 1 byte 3
97h			b5	b4	b3	b2	b1	b0	WSS field 2 byte 1
98h	b13	b12	b11	b10	b9	b8	b7	b6	WSS field 2 byte 2
99h			b19	b18	b17	b16	b15	b14	WSS field 2 byte 3

These registers contain the wide screen signaling (WSS) data for NTSC.

For NTSC, the bits are:

Bits 0-1 represent word 0, aspect ratio.

Bits 2-5 represent word 1, header code for word 2.

Bits 6-13 represent word 2, copy control.

Bits 14-19 represent word 3, CRC.

PAL/SECAM

Address	7	6	5	4	3	2	1	0	BYTE	
94h	b7 b6 b5 b4 b3 b2 b1 b0							b0	WSS field 1 byte 1	
95h		b8	WSS field 1 byte 2							
96h		Reserved								
97h	b7	b6	b5	b4	b3	b2	b1	b0	WSS field 2 byte 1	
98h		b8	WSS field 2 byte 2							
99h		Reserved								

For PAL/SECAM, the bits are:

Bits 0-3 represent group 1, aspect ratio.

Bits 4–7 represent group 2, enhanced services.

Bits 8-10 represent group 3, subtitles.

Bits 11-13 represent group 4, others.

SLES209-NOVEMBER 2007

3.20.50 VPS Data Registers

Address 9Ah-A6h

Address	7 6 5 4 3 2 1												
9Ah		VPS byte 1											
9Bh				VPS	byte 2								
9Ch				VPS	byte 3								
9Dh				VPS	byte 4								
9Eh				VPS	byte 5								
9Fh				VPS	byte 6								
A0h				VPS	byte 7								
A1h				VPS	byte 8								
A2h				VPS	byte 9								
A3h				VPS	byte 10								
A4h				VPS	byte 11								
A5h		VPS byte 12											
A6h		VPS byte 13											

These registers contain the entire VPS data line except the clock run-in code or the start code.

3.20.51 VITC Data Registers

Address A7h-AFh

Address	7	6	5	4	3	2	1	0					
A7h		VITC byte 1, frame byte 1											
A8h		VITC byte 2, frame byte 2											
A9h				VITC byte 3,	seconds byte 1								
AAh				VITC byte 4,	seconds byte 2								
ABh				VITC byte 5,	minutes byte 1								
ACh				VITC byte 6,	minutes byte 2								
ADh				VITC byte 7	, hour byte 1								
AEh				VITC byte 8	3, hour byte 2								
AFh		VITC byte 9, CRC											

These registers contain the VITC data.

3.20.52 VBI FIFO Read Data Register

Address B0h

7	6	5	4	3	2	1	0			
FIFO read data										

This address is provided to access VBI data in the FIFO through the host port. All forms of teletext data come directly from the FIFO, while all other forms of VBI data can be programmed to come from the registers or from the FIFO. Current status of the FIFO can be found at address C6h and the number of bytes in the FIFO is located at address C7h. If the host port is to be used to read data from the FIFO, then the output formatter must be disabled at address CDh bit 0. The format used for the VBI FIFO is shown in Section 3.9.

SLES209-NOVEMBER 2007

3.20.53 Teletext Filter and Mask Registers

Address B1h-BAh
Default 00h

Address	7	6	5	4	3	2	1	0			
B1h		Filter 1	mask 1	·		Filter 1 pattern 1					
B2h		Filter 1	mask 2			Filter 1	pattern 2				
B3h		Filter 1	mask 3			Filter 1	pattern 3				
B4h		Filter 1	mask 4		Filter 1 pattern 4						
B5h		Filter 1	mask 5		Filter 1 pattern 5						
B6h		Filter 2	mask 1		Filter 2 pattern 1						
B7h		Filter 2	mask 2			Filter 2	pattern 2				
B8h		Filter 2	mask 3			Filter 2	pattern 3				
B9h		Filter 2	mask 4		Filter 2 pattern 4						
BAh		Filter 2	mask 5		Filter 2 pattern 5						

For an NABTS system, the packet prefix consists of five bytes. Each byte contains four data bits (D[3:0]) interlaced with four Hamming protection bits (H[3:0]):

7	6	5	4	3	2	1	0
D[3]	H[3]	D[2]	H[2]	D[1]	H[1]	D[0]	H[0]

Only the data portion D[3:0] from each byte is applied to a teletext filter function with the corresponding pattern bits P[3:0] and mask bits M[3:0]. Hamming protection bits are ignored by the filter.

For a WST system (PAL or NTSC), the packet prefix consists of two bytes so that two patterns are used. Patterns 3, 4, and 5 are ignored.

The mask bits enable filtering using the corresponding bit in the pattern register. For example, a 1 in the LSB of mask 1 means that the filter module must compare the LSB of nibble 1 in the pattern register to the first data bit on the transaction. If these match, a true result is returned. A 0 in a bit of mask 1 means that the filter module must ignore that data bit of the transaction. If all zeros are programmed in the mask bits, the filter matches all patterns returning a true result (default 00h).

Pattern and mask for each byte and filter are referred as <1,2><P,M><1,2,3,4,5>, where:

<1,2> identifies the filter 1 or 2

<P,M> identifies the pattern or mask

<1,2,3,4,5> identifies the byte number

SLES209-NOVEMBER 2007

3.20.54 Teletext Filter Control Register

Address BBh Default 00h

7	6	5	4	3	2	1	0
	Reserved		Filter	logic	Mode	TTX filter 2 enable	TTX filter 1 enable

Filter logic allows different logic to be applied when combining the decision of filter 1 and filter 2 as follows:

00 = NOR (Default)

01 = NAND

10 = OR

11 = AND

Mode

0 = Teletext WST PAL mode B (2 header bytes) (default)

1 = Teletext NABTS NTSC mode C (5 header bytes)

TTX filter 2 enable

0 = Disabled (default)

1 = Enabled

TTX filter 1 enable

0 = Disabled (default)

1 = Enabled

If the filter matches or if the filter mask is all zeros, a true result is returned.

SLES209-NOVEMBER 2007

3.20.55 Interrupt Status Register A

Address C0h Default 00h

7	6	5	4	3	2	1	0
Lock state interrupt	Lock interrupt		Reserved		FIFO threshold interrupt	Line interrupt	Data interrupt

The interrupt status register A can be polled by the host processor to determine the source of an interrupt. After an interrupt condition is set it can be reset by writing to this register with a 1 in the appropriate bit(s).

Lock state interrupt

- 0 = TVP5150AM1 is not locked to the video signal (default).
- 1 = TVP5150AM1 is locked to the video signal.

Lock interrupt

- 0 = A transition has not occurred on the lock signal (default).
- 1 = A transition has occurred on the lock signal.

FIFO threshold interrupt

- 0 = The amount of data in the FIFO has not yet crossed the threshold programmed at address C8h (default).
- 1 = The amount of data in the FIFO has crossed the threshold programmed at address C8h.

Line interrupt

- 0 = The video line number has not yet been reached (default).
- 1 = The video line number programmed in address CAh has occurred.

Data interrupt

- 0 = No data is available (default).
- 1 = VBI data is available either in the FIFO or in the VBI data registers.

SLES209-NOVEMBER 2007

3.20.56 Interrupt Enable Register A

Address C1h Default 00h

7	6	5	4	3	2	1	0
Reserved	Lock interrupt enable	Cycle complete interrupt enable		Reserved	FIFO threshold interrupt enable	Line interrupt enable	Data interrupt enable

The interrupt enable register A is used by the host processor to mask unnecessary interrupt sources. Bits loaded with a 1 allow the corresponding interrupt condition to generate an interrupt on the external pin. Conversely, bits loaded with a 0 mask the corresponding interrupt condition from generating an interrupt on the external pin. This register only affects the interrupt on the external terminal, it does not affect the bits in interrupt status register A. A given condition can set the appropriate bit in the status register and not cause an interrupt on the external terminal. To determine if this device is driving the interrupt terminal, either perform a logical AND of interrupt status register A with interrupt enable register A, or check the state of the interrupt A bit in the interrupt configuration register at address C2h.

Lock interrupt enable

0 = Disabled (default)

1 = Enabled

Cycle complete interrupt enable

0 = Disabled (default)

1 = Enabled

Bus error interrupt enable

0 = Disabled (default)

1 = Enabled

FIFO threshold interrupt enable

0 = Disabled (default)

1 = Enabled

Line interrupt enable

0 = Disabled (default)

1 = Enabled

Data interrupt enable

0 = Disabled (default)

1 = Enabled

3.20.57 Interrupt Configuration Register A

Address C2h Default 04h

7	6	5	4	3	2	1	0
		Reserved			YCbCr enable (VDPOE)	Interrupt A	Interrupt polarity A

YCbCr enable (VDPOE)

- 0 = YCbCr pins are high impedance.
- 1 = YCbCr pins are active if other conditions are met (default).

Interrupt A (read only)

- 0 = Interrupt A is not active on the external pin (default).
- 1 = Interrupt A is active on the external pin.

Interrupt polarity A

- 0 = Interrupt A is active low (default).
- 1 = Interrupt A is active high.

Interrupt configuration register A is used to configure the polarity of the external interrupt terminal. When interrupt A is configured as active low, the terminal is driven low when active and high impedance when inactive (open collector). Conversely, when the terminal is configured as active high, it is driven high when active and driven low when inactive.

3.20.58 VDP Configuration RAM Register

Address C3h C4h C5h
Default DCh 0Fh 00h

Address	7	6 5 4 3 2 1										
C3h		Configuration data										
C4h		RAM address (7:0)										
C5h	Reserved RAM address											

The configuration RAM data is provided to initialize the VDP with initial constants. The configuration RAM is 512 bytes organized as 32 different configurations of 16 bytes each. The first 12 configurations are defined for the current VBI standards. An additional two configurations can be used as a custom programmed mode for unique standards such as Gemstar.

Address C3h is used to read or write to the RAM. The RAM internal address counter is automatically incremented with each transaction. Addresses C5h and C4h make up a 9-bit address to load the internal address counter with a specific start address. This can be used to write a subset of the RAM for only those standards of interest. Registers D0h–FBh must all be programmed with FFh, before writing or reading the configuration RAM. Full field mode (CFh) must be disabled as well.



SLES209-NOVEMBER 2007

The suggested RAM contents are shown in Table 3-13. All values are hexadecimal.

Table 3-13. VBI Configuration RAM for Signals With Pedestal

INDEX	ADDRESS	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
WST SECAM	000	AA	AA	FF	FF	E7	2E	20	26	E6	B4	0E	0	0	0	10	0
WST SECAM	010	AA	AA	FF	FF	E7	2E	20	26	E6	B4	0E	0	0	0	10	0
WST PAL B	020	AA	AA	FF	FF	27	2E	20	2B	A6	72	10	0	0	0	10	0
WST PAL B	030	AA	AA	FF	FF	27	2E	20	2B	A6	72	10	0	0	0	10	0
WST PAL C	040	AA	AA	FF	FF	E7	2E	20	22	A6	98	0D	0	0	0	10	0
WST PAL C	050	AA	AA	FF	FF	E7	2E	20	22	A6	98	0D	0	0	0	10	0
WST NTSC	060	AA	AA	FF	FF	27	2E	20	23	69	93	0D	0	0	0	10	0
WST NTSC	070	AA	AA	FF	FF	27	2E	20	23	69	93	0D	0	0	0	10	0
NABTS, NTSC	080	AA	AA	FF	FF	E7	2E	20	22	69	93	0D	0	0	0	15	0
NABTS, NTSC	090	AA	AA	FF	FF	E7	2E	20	22	69	93	0D	0	0	0	15	0
NABTS, NTSC-J	0A0	AA	AA	FF	FF	A7	2E	20	23	69	93	0D	0	0	0	10	0
NABTS, NTSC-J	0B0	AA	AA	FF	FF	A7	2E	20	23	69	93	0D	0	0	0	10	0
CC, PAL/SECAM	0C0	AA	2A	FF	3F	04	51	6E	02	A6	7B	09	0	0	0	27	0
CC, PAL/SECAM	0D0	AA	2A	FF	3F	04	51	6E	02	A6	7B	09	0	0	0	27	0
CC, NTSC	0E0	AA	2A	FF	3F	04	51	6E	02	69	8C	09	0	0	0	27	0
CC, NTSC	0F0	AA	2A	FF	3F	04	51	6E	02	69	8C	09	0	0	0	27	0
WSS, PAL/SECAM	100	5B	55	C5	FF	0	71	6E	42	A6	CD	0F	0	0	0	ЗА	0
WSS, PAL/SECAM	110	5B	55	C5	FF	0	71	6E	42	A6	CD	0F	0	0	0	ЗА	0
WSS, NTSC C	120	38	00	3F	00	0	71	6E	43	69	7C	08	0	0	0	39	0
WSS, NTSC C	130	38	00	3F	00	0	71	6E	43	69	7C	08	0	0	0	39	0
VITC, PAL/SECAM	140	0	0	0	0	0	8F	6D	49	A6	85	08	0	0	0	4C	0
VITC, PAL/SECAM	150	0	0	0	0	0	8F	6D	49	A6	85	08	0	0	0	4C	0
VITC, NTSC	160	0	0	0	0	0	8F	6D	49	69	94	08	0	0	0	4C	0
VITC, NTSC	170	0	0	0	0	0	8F	6D	49	69	94	08	0	0	0	4C	0
VPS, PAL	180	AA	AA	FF	FF	ВА	CE	2B	0D	A6	DA	0B	0	0	0	60	0
VPS, PAL	190	AA	AA	FF	FF	ВА	CE	2B	0D	A6	DA	0B	0	0	0	60	0
Custom 1	1A0	Programmable															
Custom 1	1B0							F	Prograi	mmabl	е						
Custom 2	1C0							ı	Prograi	mmabl	е						
Custom 2	1D0	Programmable															

3.20.59 VDP Status Register

Address

C6h

7	6	5	4	3	2	1	0
FIFO full error	FIFO empty	TTX available	CC field 1 available	CC field 2 available	WSS available	VPS available	VITC available

The VDP status register indicates whether data is available in either the FIFO or data registers, and status information about the FIFO. Reading data from the corresponding register does not clear the status flags automatically. These flags are only reset by writing a 1 to the respective bit. However, bit 6 is updated automatically.

FIFO full error

- 0 = No FIFO full error
- 1 = FIFO was full during a write to FIFO.

The FIFO full error flag is set when the current line of VBI data can not enter the FIFO. For example, if the FIFO has only ten bytes left and teletext is the current VBI line, the FIFO full error flag is set, but no data is written because the entire teletext line does not fit. However, if the next VBI line is closed caption requiring only two bytes of data plus the header, this goes into the FIFO, even if the full error flag is set.

FIFO empty

- 0 = FIFO is not empty.
- 1 = FIFO is empty.

TTX available

- 0 = Teletext data is not available.
- 1 = Teletext data is available.

CC field 1 available

- 0 = Closed caption data from field 1 is not available.
- 1 = Closed caption data from field 1 is available.

CC field 2 available

- 0 = Closed caption data from field 2 is not available.
- 1 = Closed caption data from field 2 is available.

WSS available

- 0 = WSS data is not available.
- 1 = WSS data is available.

VPS available

- 0 = VPS data is not available.
- 1 = VPS data is available.

VITC available

- 0 = VITC data is not available.
- 1 = VITC data is available.

SLES209-NOVEMBER 2007

3.20.60 FIFO Word Count Register

Number of words									
7	6	5	4	3	2	1	0		
Address	C7h								

This register provides the number of words in the FIFO. One word equals two bytes.

3.20.61 FIFO Interrupt Threshold Register

7	6	5	4	3	2	1	0
Default	80h						
Address	C8h						

This register is programmed to trigger an interrupt when the number of words in the FIFO exceeds this value (default 80h). This interrupt must be enabled at address C1h. One word equals two bytes.

3.20.62 FIFO Reset Register

Address	C9h								
Default	00h								
7	6	5	4	3	2	1	0		
	Any data								

Writing any data to this register resets the FIFO and clears any data present in all VBI read registers.

3.20.63 Line Number Interrupt Register

Default	00h							
7	6	5	4	3	2	1	0	
Field 1 enable	Field 2 enable	Line number						

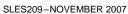
This register is programmed to trigger an interrupt when the video line number matches this value in bits 5:0. This interrupt must be enabled at address C1h. The value of 0 or 1 does not generate an interrupt.

Field 1 enable

Address

0 = Disabled (default)

1 = Enabled


CAh

Field 2 enable

0 = Disabled (default)

1 = Enabled

Line number default is 00h.

3.20.64 Pixel Alignment Registers

Address CBh CCh
Default 4Eh 00h

Address	7	6	5	4	3	2	1	0		
CBh		Switch pixel [7:0]								
CCh			Switch pixel [9:8]							

These registers form a 10-bit horizontal pixel position from the falling edge of sync, where the VDP controller initiates the program from one line standard to the next line standard; for example, the previous line of teletext to the next line of closed caption. This value must be set so that the switch occurs after the previous transaction has cleared the delay in the VDP, but early enough to allow the new values to be programmed before the current settings are required.

3.20.65 FIFO Output Control Register

Address CDh Default 01h

7	6	5	4	3	2	1	0		
	Reserved								

This register is programmed to allow I²C access to the FIFO or allowing all VDP data to go out the video port.

Host access enable

0 = Output FIFO data to the video output Y[7:0]

 $1 = Allow I^2C$ access to the FIFO data (default)

3.20.66 Full Field Enable Register

Address CFh
Default 00h

7	6	5	4	3	2	1	0
	Reserved						

This register enables the full field mode. In this mode, all lines outside the vertical blank area and all lines in the line mode registers programmed with FFh are sliced with the definition of register FCh. Values other than FFh in the line mode registers allow a different slice mode for that particular line.

Full field enable

0 = Disable full field mode (default)

1 = Enable full field mode



SLES209-NOVEMBER 2007

3.20.67 Line Mode Registers

Address D0h D1h-FBh
Default 00h FFh

Address	7	6	5	4	3	2	1	0					
D0		•	*	Line	6 Field 1	•	•						
D1				Line	6 Field 2								
D2				Line	7 Field 1								
D3				Line	7 Field 2								
D4				Line	8 Field 1								
D5		Line 8 Field 2											
D6		Line 9 Field 1											
D7				Line	9 Field 2								
D8				Line 1	0 Field 1								
D9				Line 1	0 Field 2								
DA				Line 1	1 Field 1								
DB				Line 1	1 Field 2								
DC				Line 1	2 Field 1								
DD				Line 1	2 Field 2								
DE				Line 1	3 Field 1								
DF				Line 1	3 Field 2								
E0				Line 1	4 Field 1								
E1				Line 1	4 Field 2								
E2				Line 1	5 Field 1								
E3				Line 1	5 Field 2								
E4				Line 1	6 Field 1								
E5				Line 1	6 Field 2								
E6				Line 1	7 Field 1								
E7				Line 1	7 Field 2								
E8				Line 1	8 Field 1								
E9				Line 1	8 Field 2								
EA				Line 1	9 Field 1								
EB				Line 1	9 Field 2								
EC				Line 2	0 Field 1								
ED				Line 2	0 Field 2								
EE				Line 2	1 Field 1								
EF				Line 2	1 Field 2								
F0				Line 2	22 Field 1								
F1				Line 2	22 Field 2								
F2				Line 2	3 Field 1								
F3				Line 2	3 Field 2								
F4				Line 2	4 Field 1								
F5				Line 2	24 Field 2								
F6				Line 2	5 Field 1								
F7				Line 2	5 Field 2								
F8				Line 2	26 Field 1								
F9				Line 2	6 Field 2								
FA				Line 2	7 Field 1								
FB					7 Field 2								

These registers program the specific VBI standard at a specific line in the video field.

Bit 7

- 0 = Disable filtering of null bytes in closed caption modes
- 1 = Enable filtering of null bytes in closed caption modes (default)

In teletext modes, bit 7 enables the data filter function for that particular line. If it is set to 0, the data filter passes all data on that line.

Bit 6

- 0 = Send VBI data to registers only
- 1 = Send VBI data to FIFO and the registers. Teletext data only goes to FIFO (default).

Bit 5

- 0 = Allow VBI data with errors in the FIFO
- 1 = Do not allow VBI data with errors in the FIFO (default)

Bit 4

- 0 = Do not enable error detection and correction
- 1 = Enable error detection and correction (when bits [3:0] = 1 2, 3, and 4 only) (default)

Bits [3:0]

- 0000 = WST SECAM
- 0001 = WST PAL B
- 0010 = WST PAL C
- 0011 = WST NTSC
- 0100 = NABTS NTSC
- 0101 = TTX NTSC
- 0110 = CC PAL
- 0111 = CC NTSC
- 1000 = WSS PAL
- 1001 = WSS NTSC
- 1010 = VITC PAL
- 1011 = VITC NTSC
- 1100 = VPS PAL
- 1101 = Custom 1
- 1110 = Custom 2
- 1111 = Active video (VDP off) (default)

A value of FFh in the line mode registers is required for any line to be sliced as part of the full field mode.

3.20.68 Full Field Mode Register

Address FCh
Default 7Fh

7	6	5	4	3	2	1	0		
	Full field mode								

This register programs the specific VBI standard for full field mode. It can be any VBI standard. Individual line settings take priority over the full field register. This allows each VBI line to be programmed independently but have the remaining lines in full field mode. The full field mode register has the same definitions as the line mode registers (default 7Fh).

SLES209-NOVEMBER 2007

4 Electrical Specifications

4.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)

	IO_DVDD to DGND	−0.5 V to 4.5 V
Supply voltage range	DVDD to DGND	−0.5 V to 2.3 V
Supply voltage range	PLL_AVDD to PLL_AGND	−0.5 V to 2.3 V
	CH_AVDD to CH_AGND	–0.5 V to 2.3 V
Digital input voltage range, V _I to DGND	−0.5 V to 4.5 V	
Input voltage range, XTAL1 to PLL_GND		−0.5 V to 2.3 V
Analog input voltage range A _I to CH_AGND		-0.2 V to 2.0 V
Digital output voltage range, V _O to DGND		−0.5 V to 4.5 V
Operating free air temperature T	Commercial	0°C to 70°C
Operating free-air temperature, T _A	Industrial	-40°C to 85°C
Storage temperature range, T _{stg}		−65°C to 150°C

4.2 Recommended Operating Conditions

			MIN	NOM	MAX	UNIT	
IO_DVDD	Digital I/O supply voltage		3.0	3.3	3.6	V	
DVDD	Digital supply voltage		1.65	1.8	1.95	V	
PLL_AVDD	Analog PLL supply voltage		1.65	1.8	1.95	V	
CH_AVDD	Analog core supply voltage		1.65	1.8	1.95	V	
V _{I(P-P)}	Analog input voltage (ac-coupling ne	cessary)	0		0.75	V	
V _{IH}	Digital input voltage high	Digital input voltage high				V	
V _{IL}	Digital input voltage low			0.3 IO_DVDD	V		
V _{IH_XTAL}	XTAL input voltage high		0.7 PLL_AVDD			V	
V _{IL_XTAL}	XTAL input voltage low				0.3 PLL_AVDD	V	
I _{OH}	High-level output current				2	mA	
I _{OL}	Low-level output current				-2	mA	
I _{OH_SCLK}	SCLK high-level output current				4	mA	
I _{OL_SCLK}	SCLK low-level output current			-4	mA		
_	Operating free circumperature	Commercial	ommercial 0		70	٥,0	
T _A	Operating free-air temperature	Industrial	-40		85	°C	

SLES209-NOVEMBER 2007

4.3 **Electrical Characteristics**

DVDD = 1.8 V, PLL AVDD = 1.8 V, CH AVDD = 1.8 V, IO DVDD = 3.3 V

For minimum/maximum values $T_A = 0$ °C to 70°C for commercial or $T_A = -40$ °C to 85°C for industrial, for typical values $T_A = 25^{\circ}C$ (unless otherwise noted)

4.3.1 DC Electrical Characteristics

	PARAMETER	TEST CONDITIONS ⁽¹⁾	MIN TYP	MAX	UNIT
I _{DD(IO_D)}	3.3-V I/O digital supply current	Color bar input ⁽²⁾	4.8	6.2	mA
$I_{DD(D)}$	1.8-V digital supply current	Color bar input ⁽²⁾	25.3	32.9	mA
I _{DD(PLL_A)}	1.8-V analog PLL supply current	Color bar input ⁽²⁾	5.4	7.1	mA
I _{DD(CH_A)}	1.8-V analog core supply current	Color bar input ⁽²⁾	24.4	31.7	mA
P _{TOT}	Total power dissipation, normal mode	Color bar input ⁽²⁾	115	150	mW
P _{DOWN}	Total power dissipation, power-down mode (3)	Color bar input		1	mW
Ci	Input capacitance	By design	8		pF
V _{OH}	Output voltage high	I _{OH} = 2 mA	0.8 IO_DVDD		V
V _{OL}	Output voltage low	$I_{OL} = -2 \text{ mA}$		0.22 IO_DVDD	V
V _{OH_SCLK}	SCLK output voltage high	I _{OH} = 4 mA	0.8 IO_DVDD		V
V _{OL_SCLK}	SCLK output voltage low	$I_{OL} = -4 \text{ mA}$		0.22 IO_DVDD	V
I _{IH}	High-level input current ⁽⁴⁾	$V_{I} = V_{IH}$		±20	μΑ
I _{IL}	Low-level input current ⁽⁴⁾	$V_I = V_{IL}$		±20	μΑ

⁽¹⁾ Measured with a load of 15 pF

4.3.2 Analog Electrical Characteristics

	PARAMETER	TEST CONDITIONS	MIN T	P MAX	UNIT
Zi	Input impedance, analog video inputs	By design	5	00	kΩ
C_{i}	Input capacitance, analog video inputs	By design		10	pF
$V_{i(pp)}$	Input voltage range ⁽¹⁾	$C_{coupling} = 0.1 \mu F$	0	0.75	V
ΔG	Gain control maximum			12	dB
ΔG	Gain control minimum			0	dB
DNL	DC differential nonlinearity	A/D only	±0).5 ±1	LSB
INL	DC integral nonlinearity	A/D only		±1 ±2.5	LSB
Fr	Frequency response	6 MHz, Specified by design	-().9 –3	dB
SNR	Signal-to-noise ratio	6 MHz, 1.0 V _{P-P}		50	dB
NS	Noise spectrum	50% flat field		50	dB
DP	Differential phase		1	.5	0
DG	Differential gain		().5	%

⁽¹⁾ The 0.75-V maximum applies to the sync-chroma amplitude, not sync-white. The recommended termination resistors are 37.4 Ω , as seen in Section 6.

For typical measurements only

Assured by device characterization

YOUT7 is a bidirectional terminal with an internal pulldown resistor. This terminal may sink more than the specified current when in

SLES209-NOVEMBER 2007

4.3.3 Clocks, Video Data, Sync Timing

	PARAMETER	TEST CONDITIONS ⁽¹⁾	MIN	TYP	MAX	UNIT
	Duty cycle, PCLK			50		%
t1	PCLK high time	≥90%	13.4	14.5	16.4	ns
t2	PCLK low time	≤10%	13.4	14.5	16.4	ns
t3	PCLK fall time	90% to 10%	2	4	5	ns
t4	PCLK rise time	10% to 90%	2	4	5	ns
t5	Output hold time		2			ns
t6	Output delay time			3	8	ns

(1) Measured with a load of 15 pF. Specified by design.

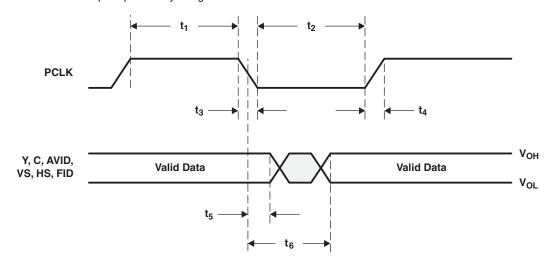


Figure 4-1. Clocks, Video Data, and Sync Timing

SLES209-NOVEMBER 2007

4.3.4 PC Host Port Timing⁽¹⁾

	PARAMETER	MIN	TYP	MAX	UNIT
t1	Bus free time between Stop and Start	1.3			μs
t2	Setup time for a (repeated) Start condition	0.6			μs
t3	Hold time (repeated) Start condition	0.6			μs
t4	Setup time for a Stop condition	0.6			ns
t5	Data setup time	100			ns
t6	Data hold time	0		0.9	μs
t7	Rise time, VC1(SDA) and VC0(SCL) signal	250			ns
t8	Fall time, VC1(SDA) and VC0(SCL) signal		250		ns
C _b	Capacitive load for each bus line			400	pF
f _{I2C}	I ² C clock frequency			400	kHz

(1) Specified by design

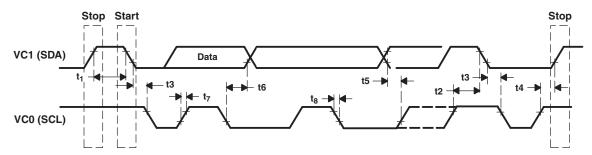


Figure 4-2. I²C Host Port Timing

SLES209-NOVEMBER 2007

5 Example Register Settings

The following example register settings are provided only as a reference. These settings, given the assumed input connector, video format, and output format, set up the TVP5150AM1 decoder and provide video output. Example register settings for other features and the VBI data processor are not provided here.

5.1 Example 1

5.1.1 Assumptions

Device: TVP5150AM1

Input connector: Composite (AIP1A)

Video format: NTSC-M, PAL (B, G, H, I), or SECAM

NOTE

NTSC-443, PAL-N, and PAL-M are masked from the autoswitch process by default. See the autoswitch mask register at address 04h.

Output format: 8-bit ITU-R BT.656 with embedded syncs

5.1.2 Recommended Settings

Recommended I²C writes: For this setup, only one write is required. All other registers are set up by default.

I²C register address 03h = Miscellaneous controls register address

I²C data 09h = Enables YCbCr output and the clock output

NOTE

HSYNC, VSYNC/PALI, AVID, and FID/GLCO are high impedance by default. See the miscellaneous control register at address 03h.

SLES209-NOVEMBER 2007

5.2 Example 2

5.2.1 Assumptions

Device: TVP5150AM1

Input connector: S-video (AIP1A (luma), AIP1B (chroma))

Video format: NTSC-M, 443, PAL (B, G, H, I, M, N) or SECAM (B, D, G, K, KI, L)

Output format: 8-bit 4:2:2 YCbCr with discrete sync outputs

5.2.2 Recommended Settings

Recommended I²C writes: This setup requires additional writes to output the discrete sync 4:2:2 data outputs, the HSYNC, and the VSYNC, and to autoswitch between all video formats mentioned above.

I²C register address 00h = Video input source selection #1 register

I²C data 01h = Selects the S-Video input, AIP1A (luma), and AIP1B (chroma)

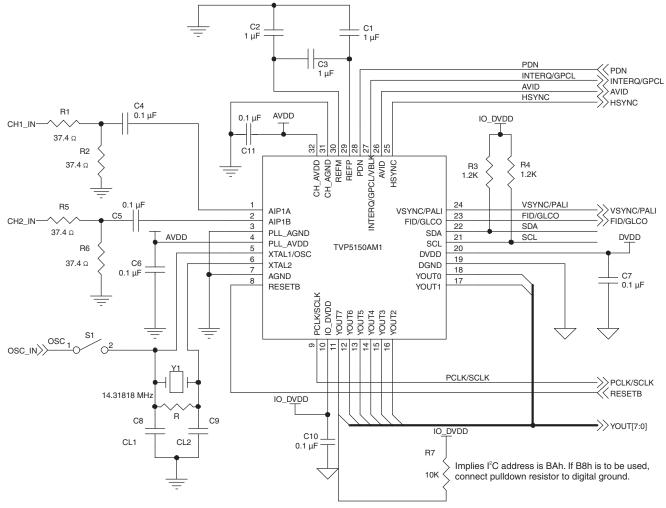
l²C register address 03h = Miscellaneous controls register address

I²C data 0Dh = Enables the YCbCr output data, HSYNC, VSYNC/PALI, AVID, and FID/GLCO

I²C register address 04h = Autoswitch mask register

I²C data C0h = Unmask NTSC-443, PAL-N, and PAL-M from the autoswitch process

I²C register address 0Dh = Outputs and data rates select register


I²C data 40h = Enables 8-bit 4:2:2 YCbCr with discrete sync output

SLES209-NOVEMBER 2007

6 **Application Information**

6.1 **Application Example**

- The use of INTERQ/GPCL/AVID/HSYNC and VSYNC is optional. These are outputs and can be left floating. A.
- When OSC is connected through S1, remove the capacitors for the crystal.
- C. PDN needs to be high, if device has to be always operational.
- RESETB is operational only when PDN is high. This allows an active low reset to the device.
- Resistor in parallel with the crystal may or may not be required depending on the crystal used.

Figure 6-1. Application Example

PACKAGE OPTION ADDENDUM

ti.com 2-Noy-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
TVP5150AM1IPBS	PREVIEW	TQFP	PBS	32		TBD	Call TI	Call TI
TVP5150AM1IPBSR	PREVIEW	TQFP	PBS	32		TBD	Call TI	Call TI
TVP5150AM1IZQC	PREVIEW	BGA MI CROSTA R JUNI OR	ZQC	48		TBD	Call TI	Call TI
TVP5150AM1IZQCR	PREVIEW	BGA MI CROSTA R JUNI OR	ZQC	48		TBD	Call TI	Call TI
TVP5150AM1PBS	ACTIVE	TQFP	PBS	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
TVP5150AM1PBSG4	ACTIVE	TQFP	PBS	32	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
TVP5150AM1PBSR	ACTIVE	TQFP	PBS	32	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
TVP5150AM1PBSRG4	ACTIVE	TQFP	PBS	32	1000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-3-260C-168 HR
TVP5150AM1ZQC	ACTIVE	BGA MI CROSTA R JUNI OR	ZQC	48	360	Pb-Free (RoHS)	SNAGCU	Level-3-260C-168 HR
TVP5150AM1ZQCR	ACTIVE	BGA MI CROSTA R JUNI OR	ZQC	48	2500	Pb-Free (RoHS)	SNAGCU	Level-3-260C-168 HR

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

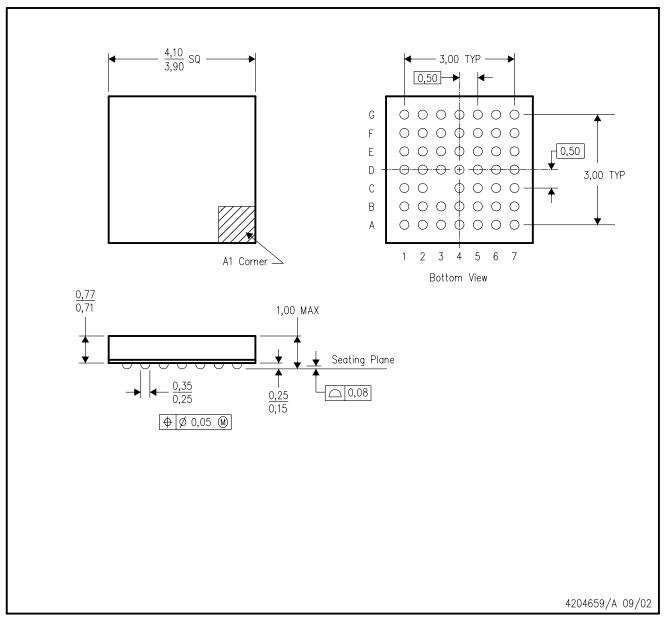
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited


PACKAGE OPTION ADDENDUM

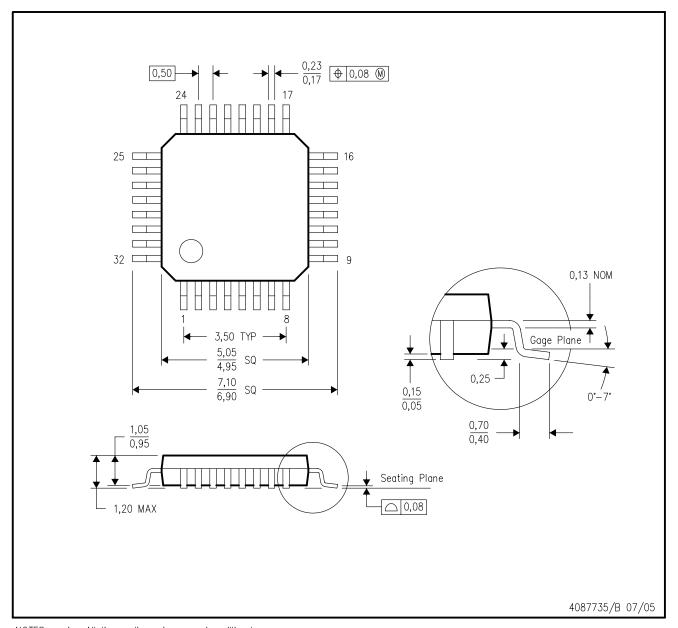
2-Nov-2007

information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

ZQC (S-PBGA-N48)

PLASTIC BALL GRID ARRAY

NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. MicroStar Junior™ BGA configuration
- D. Falls within JEDEC MO-225
- E. This package is lead-free.

MicroStar Junior is a trademark of Texas Instruments.

PBS (S-PQFP-G32)

PLASTIC QUAD FLATPACK

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Telephony	www.ti.com/telephony
Low Power Wireless	www.ti.com/lpw	Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated