

Vishay Siliconix

High-Speed Quad Monolithic SPST CMOS Analog Switch

FEATURES

Fast Switching t_{ON}: 55 ns
Low Charge Injection: 5 pC

Low r_{DS(on)}: 32 Ω
 TTL/CMOS Compatible
 Low Leakage: 50 pA

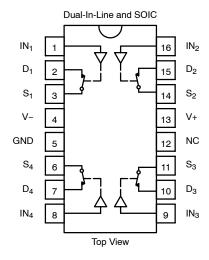
BENEFITS

- Fast Settling Times
- Reduced Switching Glitches
- High Precision

APPLICATIONS

- High-Speed Switching
- Sample/Hold
- Digital Filters
- Op Amp Gain Switching
- Flight Control Systems
- Automatic Test Equipment
- Choppers
- Communication Systems

DESCRIPTION


The DG271B high speed quad single-pole single-throw analog switch is intended for applications that require low on-resistance, low leakage currents, and fast switching speeds.

Built on the Vishay Siliconix' proprietary high voltage silicon gate process to achieve superior on/off performance, each switch conducts equally well in both directions when on, and blocks up to the supply voltage when off. An epitaxial layer prevents latchup.

The DG271B has a redesign internal regulator which improves start-up over the DG271.

As a committed partner to the community and the environment, Vishay Siliconix manufactures this product with the lead (Pb)-free device terminations. For analog switching products manufactured with 100% matte tin device terminations, the lead (Pb)-free "—E3" suffix is being used as a designator.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

TRUTH TABLE			
Logic	Switch		
0	ON		
1	OFF		

 $\begin{array}{l} \text{Logic "0"} \leq 0.8 \ \text{V} \\ \text{Logic "1"} \geq 2.4 \ \text{V} \end{array}$

ORDERING INFORMATION					
Temp Range Package Part Number					
0 to 70°C	16-Pin Plastic DIP	DG271BCJ—E3			
−40 to 85°C	16-Pin Narrow SOIC	DG271BDY—E3			
		DG271BDY-T1—E3 (with Tape and Reel)			

DG271B

Vishay Siliconix

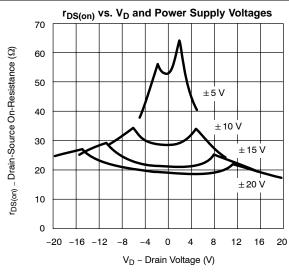
ABSOLUTE MAXIMUM RATINGS

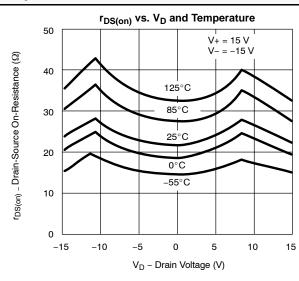
GND to V		
		20 mA, whichever occurs first
Current, Any Terminal		
Peak Current, S or D		
(Pulsed at 1 ms, 10% duty of	cycle max)	100 mA
Storage Temperature	(DY Suffix)	65 to 150°C
	(CJ Suffix)	65 to 125°C

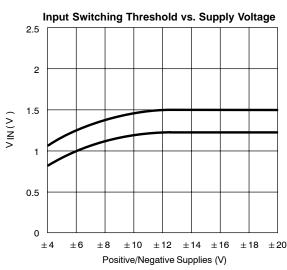
Power Dissipation (Package)b

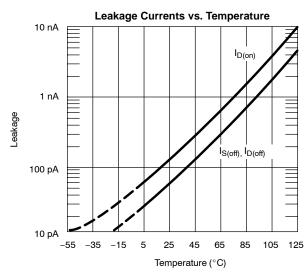
- Signals on S_X , D_X , or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
- All leads welded or soldered to PC Board.
- Derate 6.5 mW/°C above 75°C Derate 7.6 mW/°C above 75°C

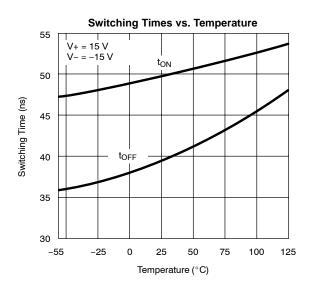
Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

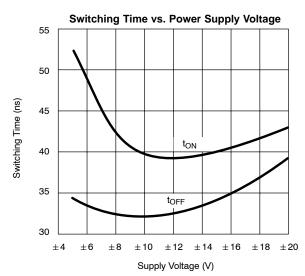

SPECIFICATIONS ^a							
		Test Conditions Unless Specified $V_+ = 15 \text{ V}, V = -15 \text{ V}$ $V_{\text{IN}} = 2.4 \text{ V}, 0.8 \text{ V}^{\text{f}}$		C, D Suffix 0 to 70°C -40 to 85°C			
Parameter Symbol	Symbol		Tempb	Min ^d	Турс	Max ^d	Unit
Analog Switch							
Analog Signal Range ^e	V _{ANALOG}		Full	-15		15	V
Drain-Source On-Resistance	r _{DS(on)}	I_S = 1 mA, V_D = \pm 10 V	Room Full		32	50 75	Ω
Switch Off Leakage Current	I _{S(off)}	$V_D = \pm 14 \text{ V}, V_S = \mp 14 \text{ V}$	Room Full	-1 -20	± 0.05	1 20	nA
Switch Oil Leakage Ourrent	I _{D(off)}		Room Full	-1 -20	±0.05	1 20	
Channel On Leakage Current	I _{D(on)} + I _{S(on)}	$V_S = V_D = \pm 14 \text{ V}$	Room Full	-1 -20	± 0.05	1 20	
Digital Control							
		V _{IN} = 2 V	Full	-1	0.010	1	
Input Current with Voltage High	V _{IN} = 15 V	Full	-1	0.010	1	μΑ	
Input Current with Voltage Low	I _{INL}	V _{IN} = 0 V	Full	-1	0.010	1	
Dynamic Characteristics							
Turn-On Time	t _{ON}	V _S = ±10 V See Figure 3	Room Full		55	65 80	. ns
Turn-Off Time	t _{OFF}		Room Full		50	65 80	
Charge Injection	Q	C_L = 1 nF, V_S = 0 V V_{gen} = 0 V, R_{gen} = 0 Ω See Figure 3	Room		-5		рС
Source Off Capacitance	C _{S(off)}	V _S = 0 V, V _{IN} = 5 V	Room		8		
Drain Off Capacitance	C _{D(off)}	$V_S = 0 \text{ V}, V_{IN} = 5 \text{ V}$ f = 1 MHz	Room		8		pF
Channel On Capacitance	C _D (_{on)}	$V_D = V_S = 0 \text{ V}, V_{IN} = 0 \text{ V}$	Room		30		
Off Isolation	OIRR	C_L = 10 pF, R_L = 1 k Ω f = 100 kHz See Figures 4 and 5	Room		85		dB
Crosstalk	X _{TALK}		Room		100		
Supply							
Positive Supply Current	I+	All Channels On or Off V _{IN} = 5 V or 0 V	Room Full		5.5	7.5 9	mA
Negative Supply Current	I–		Room Full	-6 -8	-3.4		


- Refer to PROCESS OPTION FLOWCHART.
- Room = 25°C, Full = as determined by the operating temperature suffix.


 Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
- The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- Guaranteed by design, not subject to production test. V_{IN} = input voltage to perform proper function.




TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)



Vishay Siliconix

SCHEMATIC DIAGRAM (TYPICAL CHANNEL)

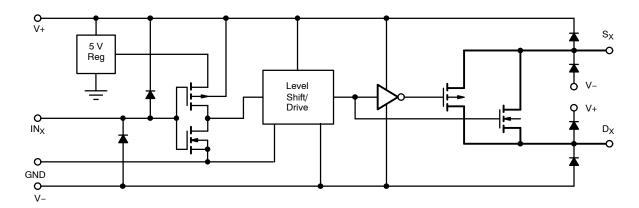


FIGURE 1.

TEST CIRCUITS

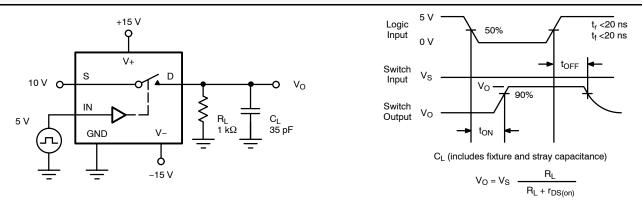


FIGURE 2. Switching Time

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see http://www.vishay.com/ppg?70966.

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com Revision: 08-Apr-05