Vishay Siliconix

Improved Quad SPST CMOS Analog Switches

FEATURES

- Low On-Resistance: 45 Ω
- Low Power Consumption: 1.0 mW
- Fast Switching Action—t_{ON}: 120 ns
- Low Charge Injection
- TTL/CMOS Logic Compatible

BENEFITS

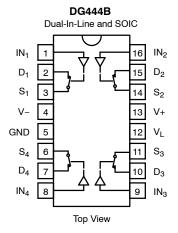
- Low Signal Errors and Distortion
- Reduced Power Supply Consumption
- Faster Throughput
- Reduced Pedestal Errors
- Simple Interfacing

APPLICATIONS

- Audio Switching
- Data Acquisition
- Sample-and-Hold Circuits
- Communication Systems
- Automatic Test Equipment
- Medical Instruments

DESCRIPTION

The DG444B/445B are monolithic quad analog switches designed to provide high speed, low error switching of analog and audio signals. The DG444B/445B are upgrades to the original DG444/445.


Combing low on-resistance (45 Ω , typ.) with high speed (toN 120 ns, typ.), the DG444B/445B are ideally suited for Data Acquisition, Communication Systems, Automatic Test Equipment, or Medical Instrumentation. Charge injection has

been minimized on the drain for use in sample-and-hold circuits.

The DG444B/445B are built using Vishay Siliconix's high-voltage silicon-gate process. An epitaxial layer prevents latchup.

When on, each switch conducts equally well in both directions and blocks input voltages to the supply levels when off.

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

	DG444B QFN16 (4x4 mm) D ₁ IN ₁ IN ₂ D ₂	
S ₁ V-	16 15 14 13	S ₂
GND S ₄	3 4 4 5 6 7 8	V _L S ₃
	D_4 IN_4 IN_3 D_3 $Top\ View$	

TRUTH TABLE						
Logic	DG444B	DG445B				
0	ON	OFF				
1	OFF	ON				

Logic "0" ≤ 0.8 V Logic "1" ≥ 2.4 V

ORDERING INFORMATION					
Temp Range	Package	Part Number			
	16-Pin Plastic DIP DG445	DG444BDJ			
		DG445BDJ			
–40 to 85°C		DG444BDY			
-40 to 65 C	10-FIII Narrow SOIC	DG445BDY			
	16-Pin QFN 4x4 mm	DG444BDN			
		DG445BDN			

Vishay Siliconix

New Product

ABSOLUTE MAXIMUM RATINGS

V+ to V	
GND to V	
$V_L \ldots \ldots V_L$	(GND -0.3 V) to (V+) + 0.3 V
Digital Inputs ^a V _S , V _D	(V–) –2 V to (V+) +2 V
	or 30 mA, whichever occurs first
Continuous Current (Any Terminal)	30 mA
Current, S or D (Pulsed 1 ms, 10% duty cyc	cle) 100 mA
Storage Temperature	65 to 125°C

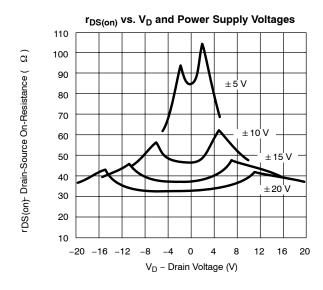
Power Dissipation (Package)b 16-Pin Plastic DIP^c 470 mW 16-Pin Narrow Body SOIC^d 640 mW

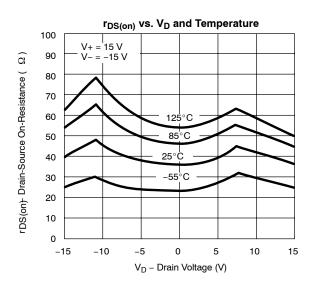
Notes:

- es: Signals on S_X , D_X , or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings. All leads welded or soldered to PC Board. Derate 6 mW/ $^{\circ}$ C above 75 $^{\circ}$ C Derate 8 mW/ $^{\circ}$ C above 75 $^{\circ}$ C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

SPECIFICATIONS FO	R DUAL SU	IPPLIES					
		Test Conditions Unless Otherwise Specified		Limits -40 to 85°C			
Parameter	Symbol	$V_{+} = 15 \text{ V}, V_{-} = -15 \text{ V}$ $V_{L} = 5 \text{ V}, V_{ N} = 2.4 \text{ V}, 0.8 \text{ V}^{e}$	Temp ^a	Minb	Турс	Max ^b	Unit
Analog Switch							
Analog Signal Range ^d	V _{ANALOG}		Full	-15		15	V
Drain-Source On-Resistance	r _{DS(on)}	$I_S = 1 \text{ mA}, V_D = \mp 10 \text{ V}$	Room Full		45	80 95	Ω
0 " 0"	I _{S(off)}	VV	Room Full	-0.5 -5	±0.01	0.5 5	
Switch Off Leakage Current	I _{D(off)}	$V_D = \mp 14 \text{ V}, V_S = \mp 14 \text{ V}$	Room Full	-0.5 -5	±0.01	0.5 5	nA
Channel On Leakage Current	I _{D(on)}	$V_S = V_D = \mp 14 \text{ V}$	Room Full	-0.5 -10	∓0.02	0.5 10	
Digital Control					ı		I
Input Voltage Low	V_{INL}		Full			0.8	
Input Voltage High	V _{INH}		Full	2.4			V
Input Current V _{IN} Low	I _{INL}	V _{IN} under test = 0.8 V, All Other = 2.4 V	Full	-1	-0.01	1	_
Input Current V _{IN} High	I _{INH}	V _{IN} under test = 2.4 V, All Other = 0.8 V	Full	-1	0.01	1	μA
Dynamic Characteristics	•		•				
Turn-On Time	t _{ON}	$R_L = 1 \text{ k}\Omega$, $C_L = 35 \text{ pF}$	Room			300	
Turn-Off Time	t _{OFF}	$V_S = \pm 10 \text{ V, See Figure 2}$	Room			200	ns
Charge Injection ^e	Q	C_L = 1 nF, V_S = 0 V V_{gen} = 0 V, R_{gen} = 0 Ω	Room		1		рС
Off Isolation ^e	OIRR	R_L = 50 Ω, C_L = 15 pF, V_S = 1 V_{RMS} f = 100 kHz	Room		90		40
Crosstalk (Channel-to-Channel)d	X _{TALK}	f = 100 kHz	Room		95		dB
Source Off Capacitance	C _{S(off)}	V. 0.V.f. 100.kH-	Room		5		
Drain Off Capacitance	C _{D(off)}	$V_S = 0 V$, $f = 100 kHz$	Room		5		pF
Channel On Capacitance	C _{D(on)}	$V_S V_D = 0 V$, $f = 1 MHz$	Room		16		
Power Supplies							
Positive Supply Current	l+	V _{IN} = 0 or 5 V	Room Full			1 5	
Negative Supply Current	I-		Room Full	-1 -5			μΑ
Logic Supply Current	I _{IN}		Room Full			1 5	

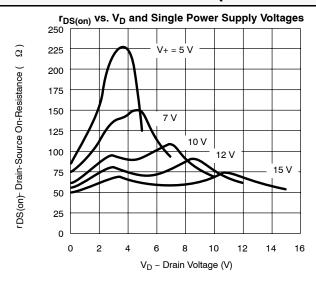

Vishay Siliconix

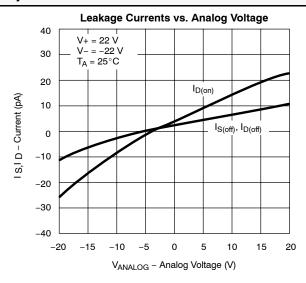

SPECIFICATIONS FO	R UNIPOLA	R SUPPLIES					
		Test Conditions Unless Otherwise Specified		D Suffix -40 to 85°C			
Parameter	Symbol	$V_{+} = 12 V, V_{-} = 0 V$ $V_{L} = 5 V, V_{IN} = 2.4 V, 0.8 V^{e}$	Temp ^a	Minb	Typc	Max ^b	Unit
Analog Switch							
Analog Signal Range ^d	V _{ANALOG}		Full	0		12	V
Drain-Source On-Resistanced	r _{DS(on)}	I _S = 1 mA, V _D = 3 V, 8 V	Room Full		90	160 200	Ω
Dynamic Characteristics							
Turn-On Time	t _{ON}	$R_L = 1 kΩ, C_L = 35 pF, V_S = 8 V$	Room		120	300	- ns
Turn-Off Time	t _{OFF}	See Figure 2	Room		60	200	
Charge Injection	Q	C_L = 1 nF, V_{gen} = 6 V, R_{gen} = 0 Ω	Room		4		рC
Power Supplies							
Positive Supply Current	I+	V 0 275 V	Room Full			1 5	
Negative Supply Current	I-	- V _{IN} = 0 or 5 V	Room Full	-1 -5			μΑ
Logic Supply Current	I _{IN}	V _L = 5.25 V, V _{IN} = 0 or 5 V	Room Full			1 5	

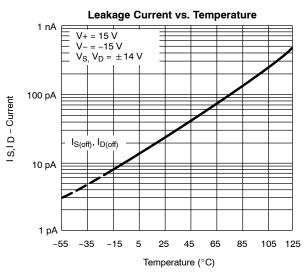
Notes:

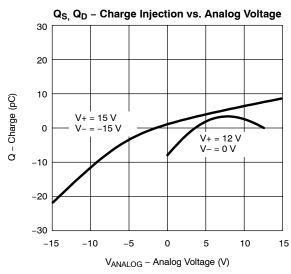
- Room = 25 $^{\circ}$ C, Full = as determined by the operating temperature suffix.
- The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. b.
- C.
- Guaranteed by design, not subject to production test. V_{IN} = input voltage to perform proper function. d.

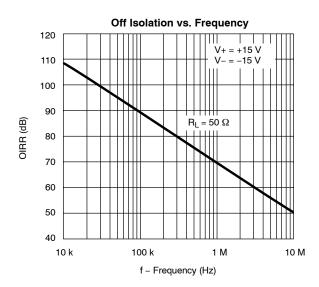
TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)




Vishay Siliconix


New Product




TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

SCHEMATIC DIAGRAM (TYPICAL CHANNEL)

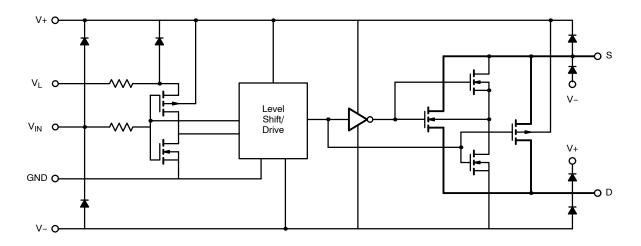
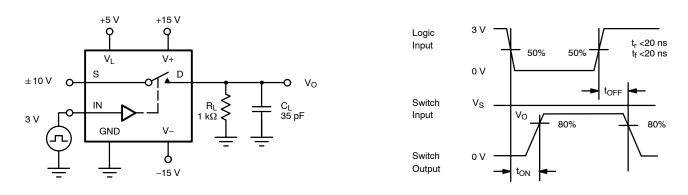



FIGURE 1.

TEST CIRCUITS

Note:

Logic input waveform is inverted for DG445.

FIGURE 2. Switching Time

C_L (includes fixture and stray capacitance)

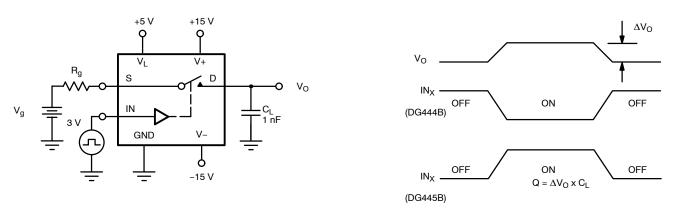


FIGURE 3. Charge Injection

 S_2

GND

New Product

TEST CIRCUITS

0V, 2.4 V O

C = 1 mF tantalum in parallel with 0.01 mF ceramic D_2 0V, 2.4 V GND

Off Isolation = 20 log X_{TALK} Isolation = 20 log C = RF bypass

FIGURE 4. Crosstalk

FIGURE 5. Off Isolation

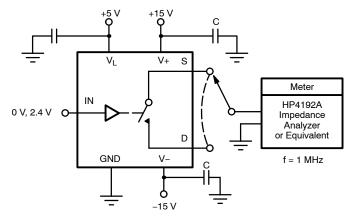


FIGURE 6. Source/Drain Capacitances

APPLICATIONS

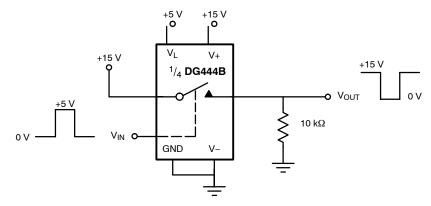


FIGURE 7. Level Shifter

APPLICATIONS

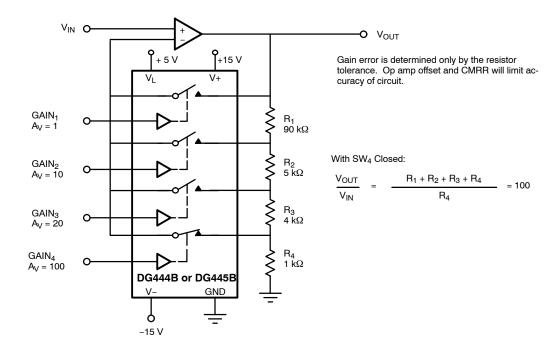


FIGURE 8. Precision-Weighted Resistor Programmable-Gain Amplifier

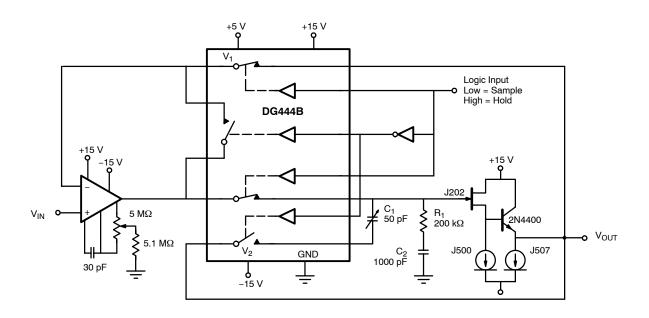


FIGURE 9. Precision Sample-and-Hold

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.