
Ultrafast Rectifier, 8 A FRED Pt®

TO-263AB (D²PAK)

TO-262AA

VS-MURB820HM3

VS-MURB820-1HM3

FEATURES

- Ultrafast recovery time
- Low forward voltage drop
- Low leakage current
- 175 °C operating junction temperature
- Meets MSL level 1, per J-STD-020, LF maximum peak of 260 °C
- AEC-Q101 qualified, meets JESD-201 class 1A thin whisker test
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

RoHS
COMPLIANT
HALOGEN
FREE

DESCRIPTION / APPLICATIONS

MUR.. series are the state of the art ultrafast recovery rectifiers specifically designed with optimized performance of forward voltage drop and ultrafast recovery time.

The planar structure and the platinum doped life time control, guarantee the best overall performance, ruggedness and reliability characteristics.

These devices are intended for use in the output rectification stage of SMPS, UPS, DC/DC converters as well as freewheeling diode in low voltage inverters and chopper motor drives.

Their extremely optimized stored charge and low recovery current minimize the switching losses and reduce over dissipation in the switching element and snubbers.

PRODUCT SUMMARY	
Package	TO-263AB (D ² PAK), TO-262AA
$I_{F(AV)}$	8 A
V_R	200 V
V_F at I_F	0.75 V
t_{rr}	35 ns
T_J max.	175 °C
Diode variation	Single die

ABSOLUTE MAXIMUM RATINGS					
PARAMETER	SYMBOL	TEST CONDITIONS	MAX.	UNITS	
Peak repetitive reverse voltage	V_{RRM}		200	V	
Average rectified forward current	$I_{F(AV)}$	Total device, rated V_R , $T_C = 150$ °C	8	A	
Non-repetitive peak surge current	I_{FSM}		100		
Peak repetitive forward current	I_{FM}	Rated V_R , square wave, 20 kHz, $T_C = 150$ °C	16		
Operating junction and storage temperatures	T_J , T_{Stg}		-55 to +175	°C	

ELECTRICAL SPECIFICATIONS ($T_J = 25$ °C unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Breakdown voltage, blocking voltage	V_{BR} , V_R	$I_R = 100$ µA	200	-	-	V
Forward voltage	V_F	$I_F = 8$ A	-	0.92	0.975	
		$I_F = 8$ A, $T_J = 150$ °C	-	0.75	0.895	
Reverse leakage current	I_R	$V_R = V_R$ rated	-	-	5	µA
		$T_J = 150$ °C, $V_R = V_R$ rated	-	-	250	
Junction capacitance	C_T	$V_R = 200$ V	-	25	-	pF
Series inductance	L_S	Measured lead to lead 5 mm from package body	-	8.0	-	nH

DYNAMIC RECOVERY CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise specified)						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Reverse recovery time	t_{rr}	$I_F = 1.0 \text{ A}$, $dI_F/dt = 50 \text{ A}/\mu\text{s}$, $V_R = 30 \text{ V}$	-	-	35	ns
		$I_F = 0.5 \text{ A}$, $I_R = 1.0 \text{ A}$, $I_{REC} = 0.25 \text{ A}$	-	-	25	
		$T_J = 25^\circ\text{C}$	-	20	-	
		$T_J = 125^\circ\text{C}$	-	34	-	
Peak recovery current	I_{RRM}	$T_J = 25^\circ\text{C}$	-	1.7	-	A
		$T_J = 125^\circ\text{C}$	-	4.2	-	
		$I_F = 8 \text{ A}$ $dI_F/dt = 200 \text{ A}/\mu\text{s}$ $V_R = 160 \text{ V}$	-	-	-	
Reverse recovery charge	Q_{rr}	$T_J = 25^\circ\text{C}$	-	23	-	nC
		$T_J = 125^\circ\text{C}$	-	75	-	

THERMAL - MECHANICAL SPECIFICATIONS						
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Maximum junction and storage temperature range	T_J , T_{Stg}		-55	-	175	°C
Thermal resistance, junction to case	R_{thJC}		-	-	3.0	°C/W
Thermal resistance, junction to ambient	R_{thJA}		-	-	50	
Thermal resistance, case to heatsink	R_{thCS}	Mounting surface, flat, smooth and greased	-	0.5	-	
Weight			-	2.0	-	g
			-	0.07	-	oz.
Mounting torque			6.0 (5.0)	-	12 (10)	kgf · cm (lbf · in)
Marking device		Case style TO-263AB (D ² PAK)	MURB820H			
		Case style TO-262AA	MURB820-1H			

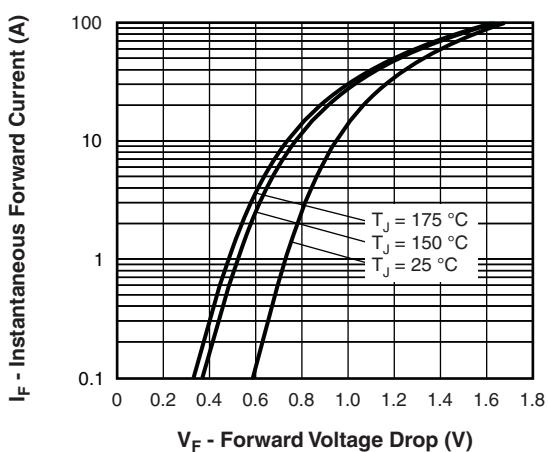


Fig. 1 - Typical Forward Voltage Drop Characteristics

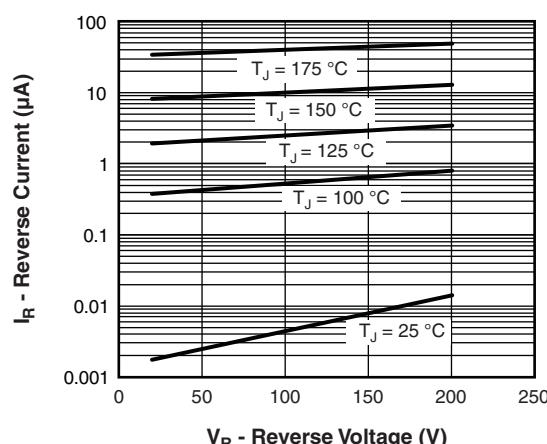


Fig. 2 - Typical Values of Reverse Current vs. Reverse Voltage

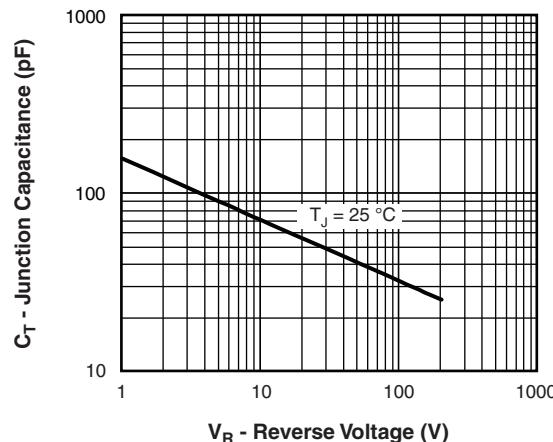


Fig. 3 - Typical Junction Capacitance vs. Reverse Voltage

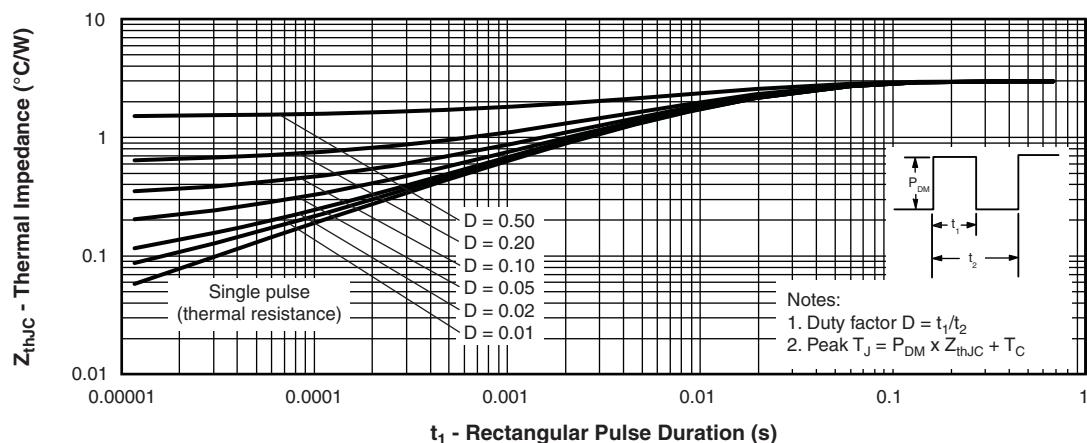


Fig. 4 - Maximum Thermal Impedance Z_{thJC} Characteristics

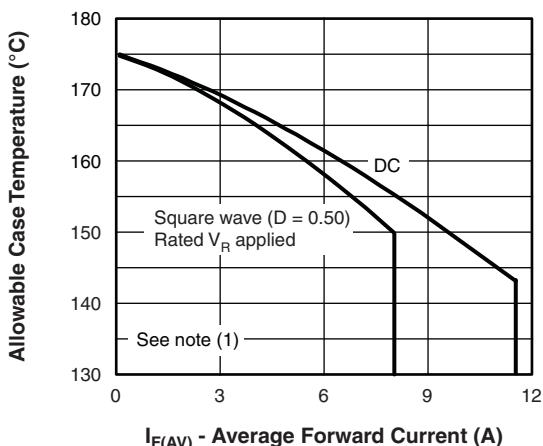


Fig. 5 - Maximum Allowable Case Temperature vs. Average Forward Current

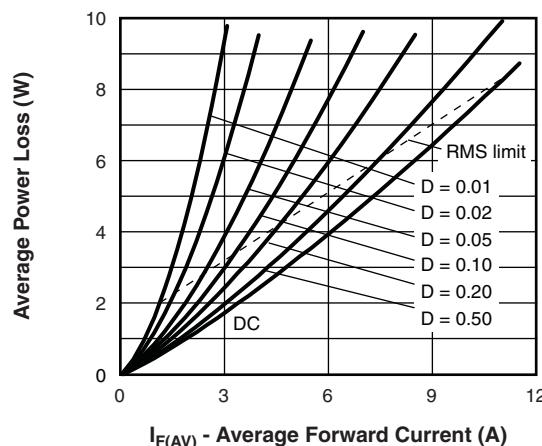


Fig. 6 - Forward Power Loss Characteristics

Note

- 1) Formula used: $T_C = T_J - (P_d + P_{dREV}) \times R_{thJC}$
 $P_d = \text{Forward power loss} = I_{F(AV)} \times V_{FM}$ at $(I_{F(AV)}/D)$ (see fig. 6);
 $P_{dREV} = \text{Inverse power loss} = V_{R1} \times I_R (1 - D)$; I_R at V_{R1} = Rated V_R

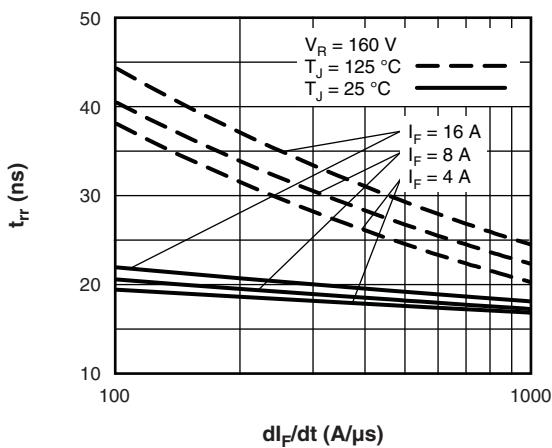


Fig. 7 - Typical Reverse Recovery Time vs. dI_F/dt

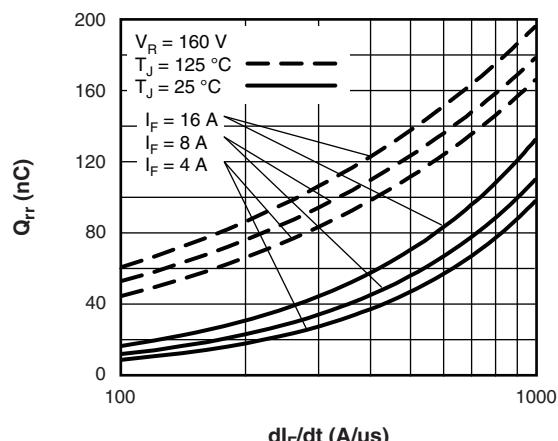
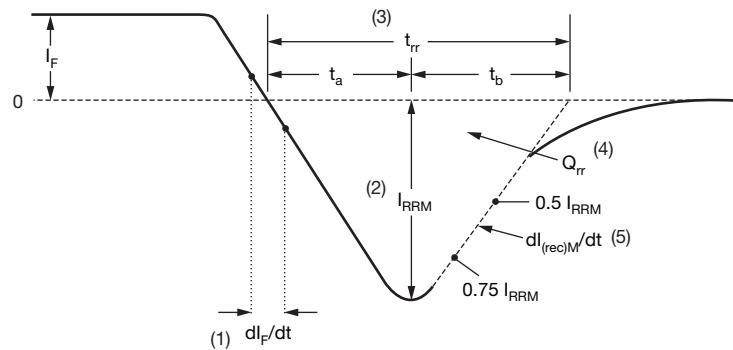



Fig. 8 - Typical Stored Charge vs. dI_F/dt

(1) dI_F/dt - rate of change of current through zero crossing

(4) Q_{rr} - area under curve defined by t_{rr} and I_{RRM}

(2) I_{RRM} - peak reverse recovery current

$$Q_{rr} = \frac{t_{rr} \times I_{RRM}}{2}$$

(3) t_{rr} - reverse recovery time measured from zero crossing point of negative going I_F to point where a line passing through $0.75 I_{RRM}$ and $0.50 I_{RRM}$ extrapolated to zero current.

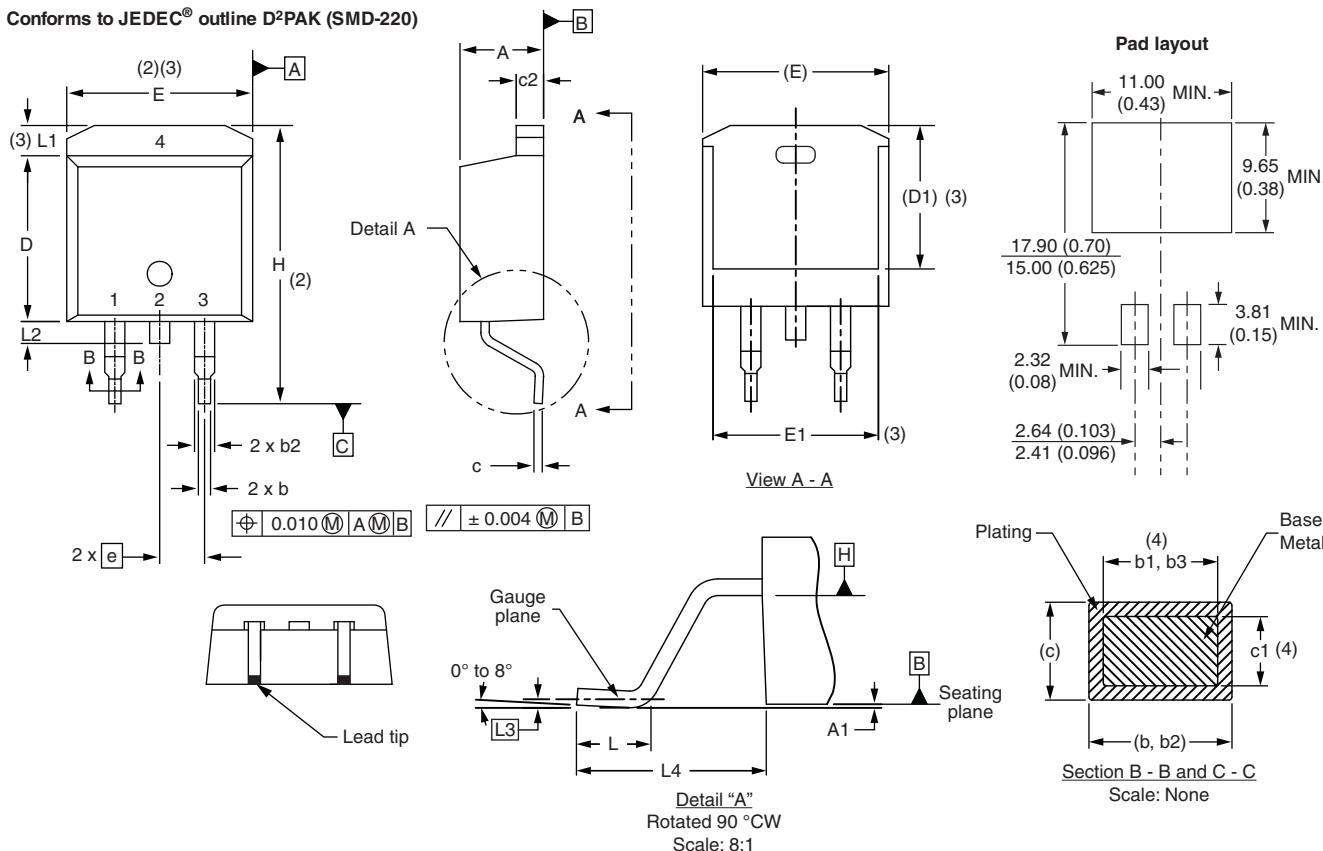
(5) $dI_{(rec)M}/dt$ - peak rate of change of current during t_b portion of t_{rr}

Fig. 9 - Reverse Recovery Waveform and Definitions

ORDERING INFORMATION TABLE

Device code	VS-	MUR	B	8	20	-1	TRL	H	M3
	1	2	3	4	5	6	7	8	9

- 1** - Vishay Semiconductors product
- 2** - Ultrafast MUR series
- 3** - B = D²PAK/TO-262
- 4** - Current rating (8 = 8 A)
- 5** - Voltage rating (20 = 200 V)
- 6** - • None = D²PAK
• -1 = TO-262
- 7** - • None = tube (50 pieces)
• TRL = tape and reel (left oriented, for D²PAK package only)
• TRR = tape and reel (right oriented, for D²PAK package only)
- 8** - H = AEC-Q101 qualified
- 9** - M3 = halogen-free, RoHS-compliant, and terminations lead (Pb)-free


ORDERING INFORMATION			
PREFERRED P/N	QUANTITY PER T/R	MINIMUM ORDER QUANTITY	PACKAGING DESCRIPTION
VS-MURB820HM3	50	1000	Antistatic plastic tube
VS-MURB820TRRHM3	800	800	13" diameter reel
VS-MURB820TRLHM3	800	800	13" diameter reel
VS-MURB820-1HM3	50	1000	Antistatic plastic tube

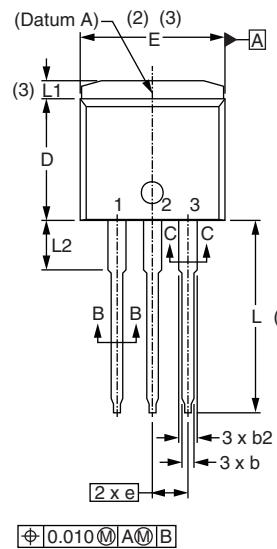
LINKS TO RELATED DOCUMENTS		
Dimensions	TO-263AB (D ² PAK)	www.vishay.com/doc?95046
Dimensions	TO-262AA	www.vishay.com/doc?95419
Part marking information	TO-263AB (D ² PAK)	www.vishay.com/doc?95444
Part marking information	TO-262AA	www.vishay.com/doc?95443
Packaging information		www.vishay.com/doc?95032

D²PAK

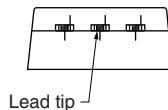
DIMENSIONS in millimeters and inches

Conforms to JEDEC® outline D²PAK (SMD-220)

SYMBOL	MILLIMETERS		INCHES		NOTES		SYMBOL	MILLIMETERS		INCHES		NOTES
	MIN.	MAX.	MIN.	MAX.				MIN.	MAX.	MIN.	MAX.	
A	4.06	4.83	0.160	0.190			D1	6.86	8.00	0.270	0.315	3
A1	0.00	0.254	0.000	0.010			E	9.65	10.67	0.380	0.420	2, 3
b	0.51	0.99	0.020	0.039			E1	7.90	8.80	0.311	0.346	3
b1	0.51	0.89	0.020	0.035	4		e	2.54 BSC		0.100 BSC		
b2	1.14	1.78	0.045	0.070			H	14.61	15.88	0.575	0.625	
b3	1.14	1.73	0.045	0.068	4		L	1.78	2.79	0.070	0.110	
c	0.38	0.74	0.015	0.029			L1	-	1.65	-	0.066	3
c1	0.38	0.58	0.015	0.023	4		L2	1.27	1.78	0.050	0.070	
c2	1.14	1.65	0.045	0.065			L3	0.25 BSC		0.010 BSC		
D	8.51	9.65	0.335	0.380	2		L4	4.78	5.28	0.188	0.208	

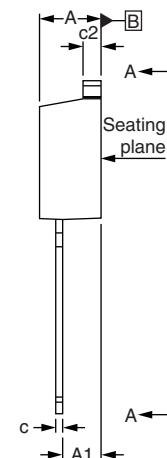

Notes

- (1) Dimensioning and tolerancing per ASME Y14.5 M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E, L1, D1 and E1
- (4) Dimension b1 and c1 apply to base metal only
- (5) Datum A and B to be determined at datum plane H
- (6) Controlling dimension: inch
- (7) Outline conforms to JEDEC® outline TO-263AB

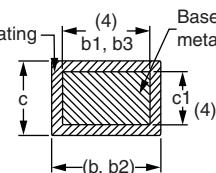

TO-262

DIMENSIONS in millimeters and inches

Modified JEDEC® outline TO-262



Lead assignments


Diodes

- 1. - Anode (two die)/open (one die)
- 2., 4. - Cathode
- 3. - Anode

Section A-A view of the TO-220 package. The diagram shows the top surface with a central rectangular body and two side leads. The width of the package is labeled E at the top. The distance between the centers of the two leads is labeled $E1$ at the bottom. The height of the package is labeled $D1(3)$ on the right side. The leads are shown as vertical lines with a slight downward slope at the bottom.

Section A -

Section B - B and C - C

Scale: None

SYMBOL	MILLIMETERS		INCHES		NOTES
	MIN.	MAX.	MIN.	MAX.	
A	4.06	4.83	0.160	0.190	
A1	2.03	3.02	0.080	0.119	
b	0.51	0.99	0.020	0.039	
b1	0.51	0.89	0.020	0.035	4
b2	1.14	1.78	0.045	0.070	
b3	1.14	1.73	0.045	0.068	4
c	0.38	0.74	0.015	0.029	
c1	0.38	0.58	0.015	0.023	4
c2	1.14	1.65	0.045	0.065	
D	8.51	9.65	0.335	0.380	2
D1	6.86	8.00	0.270	0.315	3
E	9.65	10.67	0.380	0.420	2, 3
E1	7.90	8.80	0.311	0.346	3
e	2.54 BSC		0.100 BSC		
L	13.46	14.10	0.530	0.555	
L1	-	1.65	-	0.065	3
L2	3.36	3.71	0.132	0.146	

Notes

Notes

- (1) Dimensioning and tolerancing as per ASME Y14.5M-1994
- (2) Dimension D and E do not include mold flash. Mold flash shall not exceed 0.127 mm (0.005") per side. These dimensions are measured at the outmost extremes of the plastic body
- (3) Thermal pad contour optional within dimension E. L1, D1 and E1

- (4) Dimension b1 and c1 apply to base metal only
- (5) Controlling dimension: inches
- (6) Outline conform to JEDEC TO-262 except A1 (maximum), b (minimum) , D1 (minimum) and L2 where dimensions derived the actual package outline

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.